
Hacking the Extensible Hacking the Extensible
Firmware InterfaceFirmware Interface

John Heasman, Director of ResearchJohn Heasman, Director of Research

¾¾ The role of the BIOSThe role of the BIOS

¾¾ Attacking a legacy BIOSAttacking a legacy BIOS

¾¾ Limitations of the legacy BIOSLimitations of the legacy BIOS

¾¾ Introduction to the EFI environmentIntroduction to the EFI environment

¾¾ Attacking the EFI environmentAttacking the EFI environment

¾¾ UEFI, summary and conclusionsUEFI, summary and conclusions

Agenda

¾¾ This talk is about rootkit persistenceThis talk is about rootkit persistence
-- i.e. how to deploy a rootkit from the BIOS/EFIi.e. how to deploy a rootkit from the BIOS/EFI

¾¾ This talk is not about Trusted ComputingThis talk is not about Trusted Computing

¾¾ Some attacks may require physical accessSome attacks may require physical access
-- And most require root accessAnd most require root access
-- Could be deployed as a blended attackCould be deployed as a blended attack
-- e.g. browser bug e.g. browser bug --> escalation to kernel > escalation to kernel -->>

deploy rootkit deploy rootkit

¾¾ Parts of this research are still work in progressParts of this research are still work in progress……

Some Caveats…

¾¾ Test and initialise the hardwareTest and initialise the hardware
-- Configure Northbridge and SouthbridgeConfigure Northbridge and Southbridge

¾¾ Locate and execute options ROMsLocate and execute options ROMs
-- Scan PCI busesScan PCI buses
-- Copy option ROMs to RAMCopy option ROMs to RAM
-- Scan RAM for options ROMs and executeScan RAM for options ROMs and execute

¾¾ Provide means of user configurationProvide means of user configuration
-- User can select boot device priority and configure hwUser can select boot device priority and configure hw
-- Persists settings to CMOSPersists settings to CMOS

¾¾ Launch Launch bootloaderbootloader

The Role of the BIOS

¾¾ #1 #1 -- Modify BIOS code and Modify BIOS code and reflashreflash firmwarefirmware

¾¾ #2 #2 -- Modify PCI Option ROM and Modify PCI Option ROM and reflashreflash devicedevice

¾¾ #3 #3 -- Modify ACPI tables and Modify ACPI tables and reflashreflash firmwarefirmware

¾¾ #4 #4 -- NonNon--persistent warm reboot attackspersistent warm reboot attacks

Attacking a Legacy BIOS

¾¾ Many places that we can insert codeMany places that we can insert code
-- Ultimately we want to subvert the Ultimately we want to subvert the bootloaderbootloader
-- The The bootloaderbootloader relies on the Interrupt Vector Tablerelies on the Interrupt Vector Table
-- The IVT is created dynamicallyThe IVT is created dynamically

¾¾ BIOS calls BIOS calls intint 19h (19h (““the bootstrap loaderthe bootstrap loader”” vector)vector)
-- Append code before this call after IVT is builtAppend code before this call after IVT is built
-- Rewrite IVT to hook desired interruptRewrite IVT to hook desired interrupt

¾¾ Caveats:Caveats:
-- May require physical access (write protect jumper)May require physical access (write protect jumper)
-- Secure Flash may prevent unsigned updatesSecure Flash may prevent unsigned updates

1. Patching the BIOS

¾¾ ROM on PCI card holding initialisation codeROM on PCI card holding initialisation code

¾¾ Can be for any platform but typically holds x86 codeCan be for any platform but typically holds x86 code

¾¾ Copied to RAM and executed by BIOSCopied to RAM and executed by BIOS

¾¾ Stored in EPROM or EEPROMStored in EPROM or EEPROM

¾¾ Example: EEPROM on your PCIe graphics card:Example: EEPROM on your PCIe graphics card:
-- Hooks Hooks intint 10h in real mode IVT10h in real mode IVT
-- Implements VGA/VBE BIOS functionsImplements VGA/VBE BIOS functions

2. PCI Option ROMs

¾¾ Obtain option ROM and flash toolObtain option ROM and flash tool

¾¾ Patch option ROMPatch option ROM
-- Add code to hook interrupt of choiceAdd code to hook interrupt of choice
-- Gain control when Gain control when bootloaderbootloader calls interruptcalls interrupt
-- Patch kernel itself or kernel modulesPatch kernel itself or kernel modules

¾¾ Which interrupt to hook?Which interrupt to hook?
-- eEyeeEye’’ss BootRootBootRoot hooked hooked intint 13h (disk)13h (disk)
-- Can also hook Can also hook intint 10h (video) on Windows10h (video) on Windows
-- There are likely other candidatesThere are likely other candidates

Attacking Option ROMs

¾¾ Typically no jumper on PCI cardTypically no jumper on PCI card
-- Flashing is easy Flashing is easy –– typically just I/O to the cardtypically just I/O to the card
-- Almost all standalone graphics card can be flashedAlmost all standalone graphics card can be flashed
-- Network cards with PXE are usefulNetwork cards with PXE are useful

¾¾ Space is typically limited to a few kilobytesSpace is typically limited to a few kilobytes
-- Could distribute over multiple PCI devicesCould distribute over multiple PCI devices

¾¾ Detection is fairly easyDetection is fairly easy
-- Dump ROM from card and analyseDump ROM from card and analyse
-- Give Give awaysaways e.g. presence of protected mode codee.g. presence of protected mode code
-- Detection process could be subverted thoughDetection process could be subverted though

Pros and Cons of Option ROM Attacks

3. Typical ACPI Implementation

ACPI Registers ACPI BIOS ACPI Tables

ACPI Drivers/

AML Interpreter
Device Driver

Kernel OSPM System Code

Applications

BIOS Hardware

¾¾ BIOS holds tables containing AML instructionsBIOS holds tables containing AML instructions

¾¾ ACPI device driver contains AML interpreterACPI device driver contains AML interpreter

¾¾ AML instruction set allows us to modify system memoryAML instruction set allows us to modify system memory

¾¾ ReRe--flash BIOS to contain patched ACPI tablesflash BIOS to contain patched ACPI tables

¾¾ AML methods now deploy rootkit from BIOSAML methods now deploy rootkit from BIOS

ACPI BIOS Rootkits

¾¾ Independent of OS!Independent of OS!
-- AML is platform and OS independentAML is platform and OS independent

¾¾ ASL is a high level languageASL is a high level language
-- Easy to disassemble AML to ASL and recompileEasy to disassemble AML to ASL and recompile

¾¾ Kernel is already loaded when AML is interpretedKernel is already loaded when AML is interpreted
-- Modify kernel data structures directlyModify kernel data structures directly

¾¾ Make Make ““smartsmart”” decisions before deploying rootkitdecisions before deploying rootkit
-- FutureFuture--proof rootkit against service packs/proof rootkit against service packs/hotfixeshotfixes

Benefits of ACPI Rootkits

¾¾ Must be able to update system BIOSMust be able to update system BIOS
-- Signed updates prevent attack (Secure Flash)Signed updates prevent attack (Secure Flash)

¾¾ OS must have ACPI device driverOS must have ACPI device driver
-- Stop it loading for crossStop it loading for cross--view detectionview detection

¾¾ OS must not sandbox AML interpreterOS must not sandbox AML interpreter
-- Prevent mapping of kernel address spacePrevent mapping of kernel address space

Limitations of ACPI Rootkits

¾¾ Previous attacks make persistent modificationsPrevious attacks make persistent modifications
-- Makes detection easierMakes detection easier
-- Systems with Systems with SLAsSLAs are not cold booted regularlyare not cold booted regularly
-- But might be warm rebooted (to install updates)But might be warm rebooted (to install updates)

¾¾ Persist across reboot by modifying code at reset vectorPersist across reboot by modifying code at reset vector
-- This is copied to shadow RAM during cold bootThis is copied to shadow RAM during cold boot
-- We must remove write protection then modifyWe must remove write protection then modify

¾¾ Removing write protection is chipset specificRemoving write protection is chipset specific
-- Intel: Programmable Attribute Map Registers (Intel: Programmable Attribute Map Registers (PAMsPAMs))
-- AMD: Memory Type Range Registers (AMD: Memory Type Range Registers (MTRRsMTRRs))

4. Warm Reboot Attacks

¾¾ BIOS typically written in AssemblerBIOS typically written in Assembler
-- Who writes 16Who writes 16--bit real mode assembler?bit real mode assembler?
-- Rooted in x86 Interrupt modelRooted in x86 Interrupt model

¾¾ Few cleanly defined interfaces exposed by vendorsFew cleanly defined interfaces exposed by vendors
-- intint 15h is the 15h is the ““miscellaneousmiscellaneous”” interruptinterrupt
-- SubfunctionsSubfunctions vary from vendor to vendorvary from vendor to vendor
-- Interfaces that are defined are clunkyInterfaces that are defined are clunky
e.g. the Post Memory Manager (PMM) spec:e.g. the Post Memory Manager (PMM) spec:

Legacy BIOS Limitations

““A client follows this procedure to locate and access PMM ServiceA client follows this procedure to locate and access PMM Services:s:

1. Search for the four1. Search for the four--byte byte ““PMMPMM”” string on paragraph boundaries starting string on paragraph boundaries starting
at E000h, and ending, if not found, at at E000h, and ending, if not found, at FFFFhFFFFh..

2. Verify that the PMM Structure data is valid by performing a c2. Verify that the PMM Structure data is valid by performing a checksum. hecksum.
The checksum is calculated by doing a byteThe checksum is calculated by doing a byte--wise sum of the entire wise sum of the entire
PMM Structure and comparing this sum with zero. If the checksum PMM Structure and comparing this sum with zero. If the checksum is is
not zero, then the PMM Structure data is not valid and the not zero, then the PMM Structure data is not valid and the EntryPointEntryPoint
field should not be called.field should not be called.

3. Optionally inspect the 3. Optionally inspect the StructureRevisionStructureRevision field to determine the field to determine the
appropriate structure map. The appropriate structure map. The StructureRevisionStructureRevision field changes if field changes if
previously reserved fields in the PMM Structure are redefined topreviously reserved fields in the PMM Structure are redefined to be be
valid fields.valid fields.

4. Make calls to the 4. Make calls to the EntryPointEntryPoint field in the PMM Structure to allocate and field in the PMM Structure to allocate and
free memory as desired.free memory as desired.””

Legacy BIOS Limitations Cont.

Introduction Introduction
to EFIto EFI

¾¾ ReRe--use existing technologies:use existing technologies:
-- EFI system partition EFI system partition filesystemfilesystem is FATis FAT
-- Executables are PE/PE32+Executables are PE/PE32+
-- ACPI, SMBIOSACPI, SMBIOS

¾¾ Extensibility and modularityExtensibility and modularity
-- Core EFI implementation is in firmwareCore EFI implementation is in firmware
-- Third party drivers can exist on disk or firmwareThird party drivers can exist on disk or firmware

¾¾ Development in high level languageDevelopment in high level language
-- BootloadersBootloaders/drivers typically written in C/drivers typically written in C
-- Platform agnostic, spec simply defines interfacesPlatform agnostic, spec simply defines interfaces
-- EFI Byte Code (EBC) is interpreted instruction setEFI Byte Code (EBC) is interpreted instruction set

EFI Design Principles

A Typical EFI Environment

¾¾ Protocol Protocol –– ““driversdrivers”” that expose interfacesthat expose interfaces
-- Each protocol has a GUIDEach protocol has a GUID
-- A single driver can implement multiple protocolsA single driver can implement multiple protocols

¾¾ EFI System TableEFI System Table
-- Key EFI data structure handed to every app/driverKey EFI data structure handed to every app/driver
-- Provides means of accessing EFI servicesProvides means of accessing EFI services

¾¾ Boot Services Boot Services –– ServicesServices available in EFI environmentavailable in EFI environment
-- Event, Timer and Task Priority ServicesEvent, Timer and Task Priority Services
-- Memory Allocation ServicesMemory Allocation Services
-- Protocol Handler ServicesProtocol Handler Services
-- Images ServicesImages Services

Key EFI Definitions

¾¾ Runtime Services Runtime Services –– ServicesServices available post EFIavailable post EFI
-- Variable ServicesVariable Services
-- Time ServicesTime Services
-- Virtual Memory ServicesVirtual Memory Services

¾¾ ““The FrameworkThe Framework”” –– IntelIntel’’s reference implementations reference implementation
-- Used by OS XUsed by OS X
-- Partially open source as Partially open source as ““TianoTiano””

““Intel views the Framework as the implementation of choiceIntel views the Framework as the implementation of choice””

Key EFI Definitions Cont.

¾¾ EFI 1.10 spec not focused on securityEFI 1.10 spec not focused on security
-- Framework docs elaborate on Security phaseFramework docs elaborate on Security phase

¾¾ Security (SEC) is first phase in the Framework:Security (SEC) is first phase in the Framework:
- Handles all platform restart events
- Creates a temporary memory store
- Serves as the root of trust in the system
- Passes handoff information to the PEI

¾¾ PEI is the PrePEI is the Pre--EFI phase:EFI phase:
-- Loads modules specific to low level hardwareLoads modules specific to low level hardware
-- Maintains root of trust Maintains root of trust
-- Invokes Driver Execution Environment (DXE) loaderInvokes Driver Execution Environment (DXE) loader

EFI Security

EFI Security Cont.

Abusing EFIAbusing EFI

¾¾ Get code into the EFI environmentGet code into the EFI environment
1. Modify 1. Modify bootloaderbootloader itselfitself
2. Modify NVRAM 2. Modify NVRAM bootloaderbootloader variablevariable
3. Modify and 3. Modify and reflashreflash platform firmwareplatform firmware
4. Exploit implementation flaw in driver4. Exploit implementation flaw in driver

¾¾ Subvert loading of the operating systemSubvert loading of the operating system
1. Shim a boot service/runtime service 1. Shim a boot service/runtime service
2. Modify the ACPI tables2. Modify the ACPI tables
3. Load an SMM driver3. Load an SMM driver
4. Hook interrupt handlers if CSM & legacy 4. Hook interrupt handlers if CSM & legacy bootloaderbootloader

Objectives

¾¾ Modify the Modify the bootloaderbootloader binary itselfbinary itself
-- MacOSMacOS XX: /System/Library//System/Library/CoreServices/boot.efiCoreServices/boot.efi
-- N.B. OS X does not use the EFI system partitionN.B. OS X does not use the EFI system partition

¾¾ Not very stealthyNot very stealthy
-- Easily detected with system integrity toolsEasily detected with system integrity tools
-- Why not just modify the kernel itself?Why not just modify the kernel itself?
-- WonWon’’t work if environment enforces driver signingt work if environment enforces driver signing

Modifying the Bootloader

¾¾ Global variables persisted in NVRAMGlobal variables persisted in NVRAM
-- Specifies which Specifies which bootloaderbootloader to useto use
-- EFI provides interface for reading/writingEFI provides interface for reading/writing
-- OS typically provides an OS typically provides an ‘‘nvramnvram’’ tooltool

¾¾ Create custom Create custom bootloaderbootloader
-- Can simply patch environment and call originalCan simply patch environment and call original
-- Modify Modify ““efiefi--bootboot--devicedevice”” variablevariable

¾¾ Stealthier than modifying original Stealthier than modifying original bootloaderbootloader??
-- Leaves original Leaves original bootloaderbootloader in tactin tact
-- But obviously requires extra file on diskBut obviously requires extra file on disk
-- WonWon’’t work if environment enforces driver signingt work if environment enforces driver signing

Modifying NVRAM Variables

¾¾ Important when firmware verifies digital signaturesImportant when firmware verifies digital signatures
-- Depends on implementation flaw in driverDepends on implementation flaw in driver

¾¾ Plenty of targets:Plenty of targets:
-- File system drivers (e.g. FAT32, HFS+)File system drivers (e.g. FAT32, HFS+)
-- PE parsing codePE parsing code
-- Crypto code (Data in Crypto code (Data in certscerts, ASN.1 decoding), ASN.1 decoding)
-- Network interaction (PXE)Network interaction (PXE)

Code Injection Attacks

¾¾ BootloaderBootloader must call must call ExitBootServicesExitBootServices()()
-- This indicates it is ready to launch kernelThis indicates it is ready to launch kernel
-- Runtime drivers remainRuntime drivers remain
-- Perfect place to hook as kernel is likely in memoryPerfect place to hook as kernel is likely in memory

¾¾ Create runtime driver that hooks Create runtime driver that hooks ExitBootServicesExitBootServices::
-- Replace Replace ExitBootServicesExitBootServices function pointerfunction pointer
-- Function pointer located in EFI System TableFunction pointer located in EFI System Table
-- Locate kernel, patch to deploy rootkitLocate kernel, patch to deploy rootkit

¾¾ Could alternatively shim a runtime service, if calledCould alternatively shim a runtime service, if called

Shimming Boot Services

eLiloeLilo loading kernel: loading kernel:

1. 1. kernel_load(image, kname, &kd, &imem, &mmem))kernel_load(image, kname, &kd, &imem, &mmem));;

/* free resources associated with file accesses /* free resources associated with file accesses
(before ExitBootServices) */(before ExitBootServices) */

2. 2. close_devices();close_devices();

/* terminate bootservices *//* terminate bootservices */
3. 3. status = BSstatus = BS-->ExitBootServices(image, cookie);>ExitBootServices(image, cookie);

4. 4. start_kernel(kd.kentry, bp);start_kernel(kd.kentry, bp);
/* NOT REACHED *//* NOT REACHED */

Shimming Boot Services Cont.

¾¾ SMM first introduced in 386SLSMM first introduced in 386SL
-- Entered via SMIEntered via SMI
-- May be triggered via external eventMay be triggered via external event
-- Or periodicallyOr periodically
-- Or on I/O accessOr on I/O access

¾¾ ““Get out of jail free cardGet out of jail free card”” for platform designersfor platform designers
-- Enable/disable ACPI modeEnable/disable ACPI mode
-- Power button support while not in ACPI modePower button support while not in ACPI mode
-- Error logging for ECC/PERR/SERR in IAError logging for ECC/PERR/SERR in IA--3232
-- Protected flash writes on some IAProtected flash writes on some IA--32 platforms32 platforms
-- Century rollover bug workaroundCentury rollover bug workaround

System Management Mode

¾¾ LoicLoic DuflotDuflot used SMM to bypass BSD used SMM to bypass BSD SecurelevelsSecurelevels
-- Hinted at possibility of SMMHinted at possibility of SMM--based malwarebased malware

¾¾ What does this mean for rootkits/rootkit detection?What does this mean for rootkits/rootkit detection?
-- Hardware breakpoints do not fire in SMMHardware breakpoints do not fire in SMM
-- Access to SMM memory blocked if lock bit setAccess to SMM memory blocked if lock bit set
-- SMIsSMIs cannot be interrupted, even by cannot be interrupted, even by NMIsNMIs
-- SMM can trap I/O reads/writesSMM can trap I/O reads/writes

¾¾ Why has there been no SMM malware yet?Why has there been no SMM malware yet?
-- Bar for entry is high: debug with logic analyzerBar for entry is high: debug with logic analyzer
-- Limited opportunity with SMM lock bitLimited opportunity with SMM lock bit
-- System dependencies make it less attractiveSystem dependencies make it less attractive

Abusing SMM

¾¾ EFI provides clean, easy to use SMM interfacesEFI provides clean, easy to use SMM interfaces
-- Base Protocol for driver registrationBase Protocol for driver registration
-- Access Protocol for setting lock bitAccess Protocol for setting lock bit
-- Control Protocol for triggering SMIControl Protocol for triggering SMI
-- Child Dispatch Protocol for types of SMM eventChild Dispatch Protocol for types of SMM event

¾¾ System Management System Table (SMST)System Management System Table (SMST)
-- Provides set of services to SMM driversProvides set of services to SMM drivers
-- Handles memory allocation/deHandles memory allocation/de--allocationallocation
-- Abstracts access to CPU context, memory, Abstracts access to CPU context, memory,

and I/O spaceand I/O space

EFI and SMM

EFI and SMM Cont.

““The SMM phase must preserve the chain of trust initiated in the The SMM phase must preserve the chain of trust initiated in the previous previous
phase. To do so, it must validate the modules that it loads for phase. To do so, it must validate the modules that it loads for the the
subsequent dispatcher.subsequent dispatcher.””

¾¾ Provide backwards compatibility for legacy Provide backwards compatibility for legacy bootloaderbootloader
-- Implements IVTImplements IVT
-- Execute Execute bootloaderbootloader in 16in 16--bit real modebit real mode
-- Interrupt handlers Interrupt handlers thunkthunk to EFI (32to EFI (32--bit, protected)bit, protected)

¾¾ Examples:Examples:
-- XpXp On Mac (XOM) On Mac (XOM)
-- Apple Apple BootcampBootcamp

¾¾ Hook IVT as per legacy BIOS attackHook IVT as per legacy BIOS attack

Compatibility Support Modules

UEFIUEFI

¾¾ ““Unified EFIUnified EFI”” spec originally based on EFI 1.10spec originally based on EFI 1.10
-- UEFI is a consortium of major hw/UEFI is a consortium of major hw/swsw vendorsvendors
-- Current version is 2.1Current version is 2.1

¾¾ Provides further information on driver signingProvides further information on driver signing

¾¾ Trusted Computing Group specs:Trusted Computing Group specs:
-- TCG EFI Platform Specification TCG EFI Platform Specification
-- TCG EFI Protocol SpecificationTCG EFI Protocol Specification

EFI and UEFI

EFI and UEFI

¾¾ EFI offers a large attack surfaceEFI offers a large attack surface
-- High level development tools make it more of a target High level development tools make it more of a target
-- Third party driver model presents easier targetThird party driver model presents easier target

¾¾ The EFI spec is vague on securityThe EFI spec is vague on security
-- Blurred relationship between spec and Framework Blurred relationship between spec and Framework
-- How is the Sec phase supposed to be implemented?How is the Sec phase supposed to be implemented?

¾¾ UEFI makes things clearerUEFI makes things clearer
-- But plenty of surface for code injection attacksBut plenty of surface for code injection attacks

¾¾ More to come on EFI attacks, stay tuned More to come on EFI attacks, stay tuned ☺☺

Summary & Conclusions

¾¾ EFI EFI -- http://http://www.intel.com/technology/efiwww.intel.com/technology/efi//

¾¾ UEFI UEFI -- http://http://www.uefi.orgwww.uefi.org/specs//specs/

¾¾ TianoTiano -- https://https://www.tianocore.orgwww.tianocore.org//

¾¾ ““Security Issues Relating to System Management ModeSecurity Issues Relating to System Management Mode””
-- http://www.cansecwest.com/slides06/csw06http://www.cansecwest.com/slides06/csw06--duflot.pptduflot.ppt

¾¾ XP On Mac XP On Mac -- http://http://www.onmac.netwww.onmac.net//

References

Any Questions?Any Questions?

Thanks!Thanks!

john at john at ngssoftwarengssoftware dot comdot com

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Any Questions?��Thanks!

