
THE GREAT ESCAPES OF VMWARE: A RETROSPECTIVE CASE STUDY OF

VMWARE GUEST-TO-HOST ESCAPE VULNERABILITIES

Presented By : Debasish Mandal & Yakun Zhang

#BHEU / @BLACKHATEVENTS

About Us: Debasish Mandal

 Security researcher on McAfee IPS Vulnerability Research Team.

 Working in information security industry for past six years.

 At first was mostly focused on penetration testing of web applications and networks.

 Last three years at McAfee/Intel Security, primary focus has shifted to vulnerability

research, reverse engineering, exploits, and advanced exploitation techniques.

 In spare time, do security bug hunting, blogging.

 http://www.debasish.in/

 https://securingtomorrow.mcafee.com/author/debasish-mandal/

 @debasishm89

#BHEU / @BLACKHATEVENTS

http://www.debasish.in/
https://securingtomorrow.mcafee.com/author/debasish-mandal/
https://twitter.com/debasishm89

About Us: Yakun Zhang

 Security researcher on McAfee IPS Vulnerability Research Team.

 Malware analyst in the past.

 Focus on software and Linux kernel security.

 @VigiZhang

#BHEU / @BLACKHATEVENTS

https://twitter.com/VigiZhang

Agenda

 Why VMWare Patch Analysis?

 Popular VMWare Workstation/Fusion Attack Surfaces

 Attack Surface: RPC

 Attack Surface: Virtual Printer

 Attack Surface: Graphics

 VMWare Workstation/Fusion Vulnerability Trend

 Takeaways

#BHEU / @BLACKHATEVENTS

Why VMWare Patch Analysis?

 Virtual machine escapes are not good.

 One of the most popular virtualization software with rich functionalities and features.

 Targeted in much exploitation content such as Pwn2Own, Pwnfest, etc.

#BHEU / @BLACKHATEVENTS

What’s being targeted in VMWare

Workstation/Fusion?

 Data collected from last year in VMWare

Workstation/Fusion security advisories.

 Silently patched bugs are not included.

 The numbers are mostly based on the

CVE(s) present in official VMware security

advisories.

#BHEU / @BLACKHATEVENTS

20%

40%

30%

10%

Most Targeted Components

RPC SVGA Virtual Printer Other

VMWare Workstation Attack Surfaces

 RPC

 Virtual Printer

 Graphics (SVGA – II)

#BHEU / @BLACKHATEVENTS

ATTACK SURFACE: RPC

#BHEU / @BLACKHATEVENTS

VM-Tools & VMWare RPC

 VMware tools need to be installed on

the guest OS to fully utilize RPC

capabilities.

 In guest OS vmtoolsd.exe responsible for

various RPC related operations.

 vmtoolsd.exe process starts when guest

starts.

#BHEU / @BLACKHATEVENTS

Guest RPC Mechanism

 To make an RPC call, the guest application can

directly interact with an interface, named VM

Backdoor.

 vmtools.dll provides high-level RPC API(s).

 Application can invoke API(s) exported by vmtools.dll

(on Windows).

 RpcOut *RpcOut_Construct(..);

 Bool RpcOut_start(..);

 Bool RpcOut_send(..);

 Bool RpcOut_stop(..);

#BHEU / @BLACKHATEVENTS

VM Backdoor

 VMware Backdoor is the lowest component of RPC

implementation.

 Backdoor is a special I/O port specific to VMware.

mov eax, 564D5868h ; vmware magic bytes

mov ebx, command-specific-parameter

mov cx, backdoor-command-number

mov dx, 5658h ; the vmware I/O Port

in eax, dx

 Command list:

https://sites.google.com/site/chitchatvmback/backdoor

 In vmtools, vmtools!Backdoor() function takes care of this.
#BHEU / @BLACKHATEVENTS

https://sites.google.com/site/chitchatvmback/backdoor

RPC Packet

 For different guest operations VMware has different RPC packet structures.

 Guest RPC packet starts with an RPC command string.

 Based on the RPC command, host – vmware-vmx.exe process decides how to process the

RPC packet.

 The screenshot shows a raw RPC packet structure in memory with the command

vmx.tools.get_version_status

#BHEU / @BLACKHATEVENTS

RPC Packet Handling in Host

 Each running virtual machine has a separate user
mode process called vmware-vmx.exe.

 Most of the VMware workstation virtualization
codes are present in vmware-vmx.exe.

 It handles most of the events invoked by the guest
operating system including RPC calls

 One of the most complex binaries in VMware
Workstation with rich features; hence very attack
prone.

 Considered as most popular gateway to escape
from a VMware virtual machine.

#BHEU / @BLACKHATEVENTS

Sending Custom RPC Packets From Guest

to Host

 Using vmtools.dll API(s) we can send and receive RPC packets from guest to host.

#BHEU / @BLACKHATEVENTS

RPC Layer Vulnerabilities Fixed in VMware

Workstation/Fusion in Recent Past

 VMSA-2016-0019 (Patched version 12.5.2) : The drag-and-drop (DnD) function in VMware

Workstation and Fusion has an out-of-bounds memory access vulnerability.

 VMSA-2017-0005 (Patched Version 12.5.4): The drag-and-drop function in VMware

Workstation and Fusion has an out-of-bounds memory access vulnerability.

#BHEU / @BLACKHATEVENTS

VMware Advisory Unpatched Version Patched Version

VMSA-2016-0019 12.5.1 12.5.2

VMSA-2017-0005 12.5.3 12.5.4

RPC Bug 1: OOB in Drag and Drop

#BHEU / @BLACKHATEVENTS

Patch
Untrusted

Vulnerable

Code

Achieving OOB Read

 In the RPC structure payloadSize is in our control.

 Send an RPC packet with a large payloadSize but no
payload.

 memcpy() overreads some memory from RPC packet

buffer.

#BHEU / @BLACKHATEVENTS

D
n

D
C

P
M

sg
H

d
rV

4
a

d
d

rI
d

b
in

a
ry

cmd

type

src

sessionId

status

param1

Binary Size

Payload offset

Payload size

1. Send RPC Packet with following

characteristics

• packet->payloadSize = 0x500

• packet payload = NULL

payload buffer Other Heap Block

Achieving OOB Write

 We have to send at least two RPC packets to the host with the
same sessionID.

 Host will allocate new buffer to append payload of two RPC
packets

 Packet 1:

 packet->sessionID = 0xdeaddead.

 packet->binarySize = 0x10000.

 packet->payloadOffset = 0x0.

 packet->payloadSize = 0x500.

 Packet 2:

 packet->sessionID = 0xdeaddead.

 packet->binarySize = 0x10100.

 packet->payloadOffset = 0x500.

 packet->payloadSize = 0xFC00.

#BHEU / @BLACKHATEVENTS

1. After first packet new payload buffer

will be created of size 0x10000

2. 0x500 bytes of payload will be

copied to that buffer.

3. After second packet a same

payload buffer will be used and

0xFC00 bytes of payload will be

copied.

4. Since 0x500 + 0xFC00 = 0x10100

which is > 0x10000 (We have 0x100

byte OOB write)

0x10000

0x500 0xFC00

OOB Write

Info. Leak Using OOB Write Over RPC

 Required for ASLR bypass.

1. We allocate desired heap chunks.

2. We trigger the overflow and

change the length to the string

object, which is accessible from

guest.

3. We read back the yellow block

from guest, which will have the

vftable address of the green

object.

4. From that we calculate the base of

vmware-vmx.exe.

5. Thanks to Chaitin Security Research

Lab

#BHEU / @BLACKHATEVENTS

Overflow Chunk

Controlled string

DND or CP Object

v
ft

a
b

le

v
ft

a
b

le

v
ft

a
b

le

v
ft

a
b

le

v
ft

a
b

le

v
ft

a
b

le

Fig 1

Fig 2

Fig 3

Bug 2: Yet another OOB in Drag and Drop

#BHEU / @BLACKHATEVENTS

• Discovered by Chaitin Security Research Lab.

• This bug is almost identical to the bug we just discussed.

• But it was present in DnDCP version 3.

• To be able to trigger this bug DnDCP version has to be

downgraded to version 3 from 4.

• tools.capability.dnd_version 3

• vmx.capability.dnd_version

• tools.capability.copypaste_version 3

• vmx.capability.copypaste_version

Bug 3: Use After Free

1. Set DnD version to 2 by sending following RPC
commands to host

• tools.capability.dnd_version 2

• vmx.capability.dnd_version

2. Set DnD version to 3 by sending following RPC
commands to the host

• tools.capability.dnd_version 3

• vmx.capability.dnd_version

3. Host will register version 3 RPC and free function
pointers, registered for different v2 RPCs.

4. Although the function pointers are freed. The
associated RPC callbacks remain active.

5. When any of these RPC commands, invoked, the
existing callbacks will try to reuse a freed pointer,
leading to use after free.

#BHEU / @BLACKHATEVENTS

• tools.capability.dnd_version 2
• vmx.capability.dnd_version
• tools.capability.dnd_version 3
• vmx.capability.dnd_version

And any of these RPC call:
• dnd.ready

• dnd.feedback

• dnd.setGuestFileRoot

• dnd.enter

• dnd.data.set

• dnd.transport

• copypaste.transport

Struct rpc_struct {
uint64 *rpcCommand;

uint64 commandLen;
void *rpcCallback;
uint64 *relatedBuffer;
uint64 flags;

};

How Could These Issues be Identified

 RPC commands are documented and can be found

in open-vm-tools as well as vmware_vmx.exe binary

(through reverse engineering).

 RPC packet structures of different guest-to-host

operations are well defined and documented in open

vmtools: https://github.com/vmware/open-vm-tools.

#BHEU / @BLACKHATEVENTS

Collect valid RPC

commands & Packet

Structures

Mutate RPC Packets in

Guest

Monitor host vm

process(vmware_vmx) for

interesting events

Send RPC Packet from

Guest to Host

https://github.com/vmware/open-vm-tools

ATTACK SURFACE: VIRTUAL PRINTER

(EMF HANDLING)

#BHEU / @BLACKHATEVENTS

VMware Virtual Printer

 Allows guest virtual machine to print documents using printing device
available at the host.

 Not a default feature. Need to enable this option before VMware boots.

 Guest uses COM1 port to talk to Host.

 vmware-vmx.exe communicates with vprintproxy.exe using named
pipes.

 EMFSPOOL file stores print jobs processed from guest to host.

 EMFSPOOL file contains EMF file, which is the content to be printed.

 vprintproxy.exe loads tpview.dll to preview the print.

 It will parse the EMF file and render the preview.

#BHEU / @BLACKHATEVENTS

EMFSPOOL

EMF

EMR EMR EMR

A print job

VMware Virtual Printer

#BHEU / @BLACKHATEVENTS

VM VM VM

vmware-vmx.exe vprintproxy.exe

tpview.dll

Guest

Host
COM1

Named Pipes

Print

preview

Triggering the Print Preview

 Thanks to Kostya’s work.

 The variable devmode

contains device settings.

 Argument emf as input file.

 Code structure can be

changed to turn it into a

fuzzer.

#BHEU / @BLACKHATEVENTS

EMF

 Enhanced Metafile Format.

 Stores device-independent representations of graphics images.

 Used by Internet Explorer, Microsoft Office, printer drivers, etc.

 Mainly composed of EMF header and EMR (EMF records) structures.

 JPEG file will be embedded in EMF file.

#BHEU / @BLACKHATEVENTS

EMF Header

EMF Record

EMF Record

EMF Record

EMF EoF Record

…

EMR

 Properties and definitions for representing the EMF file.

 Grouped into many categories (bitmap, clipping,

control, OpenGL, transform, etc.).

 Well-documented in the official MS-EMF article.

#BHEU / @BLACKHATEVENTS

Some EMR types example:

Issues in Recent Past

 In VMware Workstation Version 11.1, Kostya of Google Security Team found a lot of

vulnerabilities in tpview.dll.

 He leveraged one stack overflow vulnerability in tpview.dll JPEG2000 handling function to

a full VMware escape exploit.

 In 2016, j00ru did some fuzzing on the same module and discovered three vulnerabilities:

CVE-2016-7082, CVE-2016-7083, CVE-2016-7084. Thanks to j00ru’s great work.

#BHEU / @BLACKHATEVENTS

VMware Advisory Unpatched Version Patched Version

VMSA-2016-0014 12.1.1 12.5.0

Double Free in EMR_SMALLTEXTOUTW

(CVE-2016-7082)

 Present in tpview.dll

EMR_SMALLTEXTOUTW handling

function.

 Problem is how to bypass *(a3+44)

check.

 Add a registry key on the host:

“HKLM\SOFTWARE\ThinPrint\TPView”

 Create a DWORD “ClipRect” set

value as “0”.

#BHEU / @BLACKHATEVENTS

Double free

Double Free in EMR_SMALLTEXTOUTW

(CVE-2016-7082)

 $edi is the pointer.

 Before stepping over the second free(),

the buffer is already freed.

 Double free makes heap error.

#BHEU / @BLACKHATEVENTS

This is the second free()

Already freed

Patch for CVE-2016-7082

 No patch, no fix

 Should have been patched in Version 12.5.0 (VMSA-2016-0014)

 Still exists in Version 14.0.0 (as of Nov. 2017)

#BHEU / @BLACKHATEVENTS

v12.1.1 vs v12.5.0

Double Free in EMR_SMALLTEXTOUTW

(CVE-2016-7082)

 Demo

#BHEU / @BLACKHATEVENTS

Out of Bounds memset() in TrueTypeFont

Embedded EMFSPOOL (CVE-2016-7083)

 Memory corruption vulnerability when handling TrueTypeFont embedded EMFSPOOL file.

 In EMFSPOOL, after EMF content we need to add the EMRI_ENGINE_FONT structure, which

contains the TrueTypeFont file.

 tpview.dll parses TrueTypeFont, gets NameTable structure, and extracts its NameBuffer and

NameSize.

 memset(NameBuffer, 0, NameSize).

 No check for the NameSize. Out of bounds memset().

#BHEU / @BLACKHATEVENTS

EMFSPOOL

EMF TTF file

Out of Bounds memset() in TrueTypeFont

Embedded EMF (CVE-2016-7083)

#BHEU / @BLACKHATEVENTS

No check for v7.

$edi holds NameSize and the

value is 0xFFFFFFFF.

memset() triggers crash.

No check to restrict v7 value

memset(eax, 0, 0xffffffff)

Patch for CVE-2016-7083

 Added necessary

checks before

memset().

#BHEU / @BLACKHATEVENTS

Before the memset()

Many Vulnerabilities in JPEG2000

Decompression (CVE-2016-7084)

 A set of vulnerabilities was patched under one CVE.

 j00ru discovered about 40 crashes in the JPEG2000 handling function.

 Understanding of JPEG2000 structure and its decompression algorithm is required.

#BHEU / @BLACKHATEVENTS

Out of Bounds Write Vulnerability in

JPEG2000 Decompression (CVE-2016-7084)

 Bug was present in tpview.dll
JP2_decompress_Image function.

 A while loop takes up the values in a heap
buffer, adds some calculated values, and
refills them to the heap buffer.

 The heap entry size is 0xB0. Filling operation
starts from the heap user offset 0x8.

 (0xB0 - 0x8 - 0x8) = 0xA0 = 0x28 * 4.

 The loop count from 0x0 to 0x27. Should be less
than 0x28.

 No check for the loop count.

 OOB write to next heap entry.
#BHEU / @BLACKHATEVENTS

Old value
another

value

New

value

Buffer

+ =

Out of Bounds Write Vulnerability in

JPEG2000 Decompression (CVE-2016-7084)

#BHEU / @BLACKHATEVENTS

 This is the 0x30 (42nd) write.

The loop count is 0x29.

 When the loop count was

0x28, it was an OOB write,

however $edi was 0x0. No

impact on the memory.

 In this time, loop count is

0x29, $edi is 0xe.

 It tries to add 0xe to

0x3a02b94, which belongs to

the next heap entry.

edx = 0x28

edx = 0x29

Next heap entry

Patch for CVE-2016-7084

#BHEU / @BLACKHATEVENTS

 Necessary checks were added.

 v29 cannot be greater or equal

to v13[3].

More Fuzzing

 VMware virtual printer is an important attack surface for VMware escape.

 Because it has many types of complex EMR structures, EMF is an appropriate fuzzing

target.

 Thanks to Kostya’s work. We need to only mutate EMF file structure and capture crashes.

1. Create classes for all of EMR types structures.

2. Mutate EMR class members. Randomly combine the EMR structures in the crafted EMF.

3. Save the crafted EMF PoC file.

4. Push for printing.

5. On host, deploy a monitoring engine to monitor vprintproxy.exe for crash.

6. Go to step 1.

 Found a couple of interesting issues.
#BHEU / @BLACKHATEVENTS

ATTACK SURFACE: GRAPHICS COMPONENTS

(SVGA – II)

#BHEU / @BLACKHATEVENTS

VMware SVGA II

 VMware SVGA II is virtual graphics card.

 It’s completely virtual PCI device; no real

hardware device exists.

 Supports basic 2D frame buffer & 3D

Acceleration .

 Provides few memory ranges that the

guest OS can use to communicate with

the emulated device (SVGA II

Virtual GPU).

With vmtools

installed

Without vmtools

installed

#BHEU / @BLACKHATEVENTS

VMware SVGA II Device Architecture

 We are mainly interested in following:

 Frame Buffer: Used only to draw two-
dimensional content on screen.

 First in first out (FIFO) memory queue: Using
this FIFO memory queue, the guest directs

GPU to process 2D/3D commands.

 These memory ranges mapped in

vmware_vmx.exe in host.

 Diagram source:

https://github.com/prepare/vmware-

svga/blob/master/doc/gpu-wiov.pdf

#BHEU / @BLACKHATEVENTS

FIFO

2D Framebuffer

vmware-vmx.exe

https://github.com/prepare/vmware-svga/blob/master/doc/gpu-wiov.pdf

SVGA FIFO Commands

SVGA 2D Commands SVGA 3D Commands (svga3d_reg.h)

#BHEU / @BLACKHATEVENTS

History of Security Bugs in FIFO Commands:

Cloudburst by Kostya Kortchinsky

 Bug was present in SVGA_CMD_RECT_COPY.

 This command copies a rectangle
(source) to a given destination inside frame buffer.

 Guest frame buffer is mapped in host process
vmware_vmx.exe.

 First from guest we resolve address of frame buffer.

 When source rectangle address
is out of the frame buffer of guest, we can read
arbitrary memory from vmware_vmx.exe in frame
buffer.

 When destination rectangle is out of the frame
buffer, we can achieve arbitrary overwrite in
vmware_vmx.exe.

#BHEU / @BLACKHATEVENTS

SRC DST

What Has Changed Now?

 2D and 3D commands were well audited in the past. (We are not saying there
are no bugs.☺)

 Our recent VMware security patch analysis reveals attackers/vulnerability

researchers shifted their focus to more complex graphics components, for

example graphics shaders.

 Shaders under VMware are a huge attack surface because of their complexity.

#BHEU / @BLACKHATEVENTS

What Are Shaders?

#BHEU / @BLACKHATEVENTS

Shaders

 A shader is a special type of computer

program that is used for graphics special

effects.

 Usually written in HLSL (Microsoft for the

Direct3D) or GLSL (OpenGL standard)

shading language.

 Shaders written in HLSL can be compiled

using Shader compiler

D3DCompiler_47!D3DCompileFromFile
Output:

#BHEU / @BLACKHATEVENTS

Input:

Life of a Shader

Shader

Compiler Render

#BHEU / @BLACKHATEVENTS

Intermediate

shader assembly

language

Shader
Bytecode

Shader inside VMware Workstation

App.

Guest Operating System (User) Host (OS)

vmware_

vmx.exe

Guest OS (Kernel)

d3d11.dll

vm3dum_**.dll

VMware

Virtual SVGA

Device
SVGA 3D

CMD Buffer

#BHEU / @BLACKHATEVENTS

Host GPU

Driver
FIFO

Guest shader

to Host

shader

translation

Shader
Bytecode

Passing Shader bytecode from guest to

host via ‘SVGA3D’ Protocol

#BHEU / @BLACKHATEVENTS

Shader Bytecode handling in Host

 Compiled shader byte-code received at

the host OS (vmware-vmx).

 Guest Shader byte code is parsed and

translated into host Shader byte code.

 Remember when there is parser, there is
bugs. ☺

 A list of SM4 instructions:

https://msdn.microsoft.com/en-

us/library/windows/desktop/bb943976(v=vs.

85).aspx

#BHEU / @BLACKHATEVENTS

https://msdn.microsoft.com/en-us/library/windows/desktop/bb943976(v=vs.85).aspx

Vulnerabilities in Virtual GPU

 Several advisories for SVGA components have been published in recent months.

 Makes it obvious SVGA attack surface is pretty hot among vulnerability researchers. ☺

#BHEU / @BLACKHATEVENTS

VMware Advisory Patched Version Unpatched Version

VMSA-2016-0019 12.5.2 12.5.3

VMSA-2017-0006 12.5.4 12.5.5

VMSA-2017-0015.2 12.5.6 12.5.7

SVGA Patch 1(Workstation 12.5.4 -> 12.5.5):

#BHEU / @BLACKHATEVENTS

0x69 is opcode for

dcl_indexableTemp

Instruction

Heap OOB Write

#BHEU / @BLACKHATEVENTS

OOB

Write

#BHEU / @BLACKHATEVENTS

Demo: SVGA Memory Corruption

SM4 ‘dcl_constantbuffer’ Instruction

Parsing (0x59) Bug

#BHEU / @BLACKHATEVENTS

OOB Write

Fixed In 12.5.5

Other SVGA Issues fixed in 12.5.5

#BHEU / @BLACKHATEVENTS

SM4

dcl_immediateConstantBuffer

Security Patch

Possible Security Issue fixed in SM1 ‘op_call’

instruction parser in version 12.5.3?

#BHEU / @BLACKHATEVENTS

What Could be Next?

 More Bug(s) in SVGA II graphics implementation.

 Unity feature in Workstation and Fusion are quite complex & can have bugs helping G2H

escape.

 Virtual Machine Communication Interface (VMCI).

 Every virtual (emulated) device.

#BHEU / @BLACKHATEVENTS

Black Hat Sound Bytes

 VM escapes are real! We cannot feel safe while executing untrusted code inside

virtualization software.

 As with other software (for example, Internet Explorer), when virtualization

software was developed, VM escapes were not seen as a problem. This is the

perfect time to make security improvements in core virtualization tools—keeping

in mind the attack surface, overall virtualization security, and escapes.

 In terms of the exploitation mitigation/prevention, VMware is relatively weak, for

example it’s still lack of CFG protection, but we believe VMware will improve in

this aspect very soon.

 Start focusing on Virtual Machine attack surface minimization by detaching

unused/unimportant virtualization components from virtual machines.

#BHEU / @BLACKHATEVENTS

Other Works and Recommended Reads

 VMware SVGA II documentation

 “Wandering through the Shady Corners of VMware Workstation/Fusion,” by comsecuris

 “50 Shades of Fuzzing,” by Peter Hlavaty and Marco Grassi

 “Cloudburst: Hacking 3D (and Breaking Out of VMware),” by Kostya Kortchinsky

 “VMware Escapology: How to Houdini the Hypervisor,” by ZDI

 MS-EMF documentation

 “Escaping VMware Workstation through COM1,” by Kostya Kortchinsky

 “An Analysis of the EMF Attack Surface & Recent Vulnerabilities,” by Mateusz “j00ru” Jurczyk

 Analyzing a Patch of a Virtual Machine Escape on VMware – McAfee Labs

 Vmware security advisories : https://www.vmware.com/in/security/advisories.html

#BHEU / @BLACKHATEVENTS

Questions?

 Thanks for your valuable time and attention.

 We would like to thank Bing Sun and the entire IDT Research team.

 Send questions to:

 Debasish Mandal (Debasish_Mandal@McAfee.com)

 Yakun Zhang (Yakun_Zhang@McAfee.com)

#BHEU / @BLACKHATEVENTS

mailto:Debasish_Mandal@McAfee.com
mailto:Yakun_Zhang@McAfee.com

