
Integrating security intoIntegrating security into
a development processa development process

BlackHat Windows 2004

IntroductionIntroduction

__ my name is Matt Hargettmy name is Matt Hargett
__ co-founded BugScan, Inc. a year agoco-founded BugScan, Inc. a year ago
__ 7 years of experience in the trenches7 years of experience in the trenches
__ large and small companies and teamslarge and small companies and teams
__ monolithic, semi-agile, and just plainmonolithic, semi-agile, and just plain

anarchic processes with local and remoteanarchic processes with local and remote
developersdevelopers

Topic SummaryTopic Summary

__ RequirementsRequirements
__ DesignDesign
__ DevelopmentDevelopment
__ QAQA
__ DeploymentDeployment

Sub-topicsSub-topics

__ what usually happenswhat usually happens
__ problems that resultproblems that result
__ proposed solutionproposed solution

Requirements: UsuallyRequirements: Usually……

__ we only get positive stories and use caseswe only get positive stories and use cases
__ use cases specify multiple featuresuse cases specify multiple features
__ security requirements do not surface until asecurity requirements do not surface until a

consultant is brought in later in the cycleconsultant is brought in later in the cycle

Requirements: ProblemsRequirements: Problems

__ positive-centric requirements usually resultspositive-centric requirements usually results
in positive-centric design, coding, andin positive-centric design, coding, and
testingtesting

__ negative requirements later in the cyclenegative requirements later in the cycle
result in attempts to duct tape security ontoresult in attempts to duct tape security onto
the sidethe side
§§ resulting in poor integration resulting in poor integration
§§ poor quality and testing poor quality and testing
§§ schedule slippage schedule slippage

Requirements: SolutionRequirements: Solution

__ from the start, develop at least onefrom the start, develop at least one
negative use case for every positive usenegative use case for every positive use
casecase

__ positive: User is prompted for logonpositive: User is prompted for logon
informationinformation
§§ logon information can only containlogon information can only contain

alphanumeric characters, error is reported toalphanumeric characters, error is reported to
user if those characters are present.user if those characters are present.
§§ logon information must be shorter than 50logon information must be shorter than 50

characters, error is reported to user otherwise.characters, error is reported to user otherwise.

Design: UsuallyDesign: Usually……

__ we do some textbook Analysis & Designwe do some textbook Analysis & Design
§§ Get nouns from requirements, those are our objectsGet nouns from requirements, those are our objects
§§ Get verbs, those are our methods (when it makesGet verbs, those are our methods (when it makes

sense)sense)

__ user is prompted for logon information, useruser is prompted for logon information, user
enters logon information which is securely sent toenters logon information which is securely sent to
the application.the application.
§§ User->logon(), User->logoff(), etcUser->logon(), User->logoff(), etc

__ maybe some header files are written, sometimesmaybe some header files are written, sometimes
some class diagrams are drawn, but codingsome class diagrams are drawn, but coding
basically begins immediatelybasically begins immediately

Design: ProblemsDesign: Problems

__ convoluted class structures, which in turnconvoluted class structures, which in turn
means a brittle designmeans a brittle design
§§ duplicationduplication
§§ inappropriate intimacyinappropriate intimacy

__ lack of understanding where and how datalack of understanding where and how data
flows through different objectsflows through different objects
§§ larger attack surfacelarger attack surface
§§ potential performance issues which can result inpotential performance issues which can result in

DoSDoS

Design: SolutionDesign: Solution

__ make UML class diagramsmake UML class diagrams
§§ easy to see various anti-patterns without any codeeasy to see various anti-patterns without any code

__ make UML sequence diagrams for common casesmake UML sequence diagrams for common cases
§§ how many contexts does data pass through?how many contexts does data pass through?
§§ how many times does remote data marshalling occur?how many times does remote data marshalling occur?
§§ is sensitive data encrypted during the trip?is sensitive data encrypted during the trip?

__ CASE tools arenCASE tools aren’’t necessary to modelt necessary to model
§§ agile modelingagile modeling

__ prove the design with a little codeprove the design with a little code
__ we now have a holistic view for a secure designwe now have a holistic view for a secure design

Development: UsuallyDevelopment: Usually……

__ we code in the boundaries of our designwe code in the boundaries of our design
__ …… until we think we until we think we’’re donere done
__ then we fix bugs as reportedthen we fix bugs as reported

Development: ProblemsDevelopment: Problems

__ UML makes sure youUML makes sure you’’re coloring inside there coloring inside the
lines, not that the right crayons are usedlines, not that the right crayons are used

__ we are scared to fix problems because wewe are scared to fix problems because we
““might break somethingmight break something””

__ lack of objectivity for lack of objectivity for ““donedone””

Development: SolutionDevelopment: Solution

__ Test Driven DevelopmentTest Driven Development
§§ ensures clean, testable, extensible designensures clean, testable, extensible design
§§ get functional regression testing for freeget functional regression testing for free

__ Customer advocate/project manager definesCustomer advocate/project manager defines
““donedone””

__ A true story of SQL InjectionA true story of SQL Injection
§§ example 1example 1

__ Use Mock Objects for exception testingUse Mock Objects for exception testing
§§ example 2example 2

Development: Example 1 CodeDevelopment: Example 1 Code

public void public void SQLFilterSQLFilter (string (string strstr))
{{

str.Replacestr.Replace((“’”“’”, , ””__””););
str.Replacestr.Replace((““;;””, , ””__””););
str.Replacestr.Replace((““%%””, , ““__””););

}}

Development: Example 1 TestDevelopment: Example 1 Test

[Test][Test]
public void public void testSQLFiltertestSQLFilter () ()
{{

string string strstr = = ““;%;%’”’”;;
SQLFilter(strSQLFilter(str););
Assertion.AssertEqualsAssertion.AssertEquals((

 ““Not all chars filteredNot all chars filtered””,,
strstr,,
““______””););

}}

Development: Example 1 DemoDevelopment: Example 1 Demo

Development: Example 2 CodeDevelopment: Example 2 Code
[Test][Test]
publicpublic void void testDataBaseExceptiontestDataBaseException()()
{{
 MockControlMockControl control; control;
 DB DB mockDBmockDB;;
 User User useruser;;

 control = control = EasyMock.ControlFor(typeof(DBEasyMock.ControlFor(typeof(DB));));
 mockDBmockDB = (= (DB)control.GetMockDB)control.GetMock();();
 mockDB.Auth(mockDB.Auth(““useruser””, , ““passpass””););
 mockDB.SetVoidCallablemockDB.SetVoidCallable();();
 mockDB.ChangeDBmockDB.ChangeDB();();
 mockDB.SetThrowable(newmockDB.SetThrowable(new SystemExceptionSystemException());());
 control.Activatecontrol.Activate();();

 user = new user = new User(mockDBUser(mockDB););
 user.Logon(user.Logon(““useruser””, , ““passpass””););
 Assertion.AssertEqualsAssertion.AssertEquals((
 ““database error shouldndatabase error shouldn’’t yield authenticated usert yield authenticated user””,,
 false, false,
 user.IsAuthenticateduser.IsAuthenticated());());
}}

Development: Solution (contDevelopment: Solution (cont’’d)d)

__ TDD gives us the agility to deal withTDD gives us the agility to deal with
security bugs in a timely fashionsecurity bugs in a timely fashion

__ helps us focus on independent objects andhelps us focus on independent objects and
well-defined interfaceswell-defined interfaces

__ which in turn allows us to do negativewhich in turn allows us to do negative
testing in fast, automated way in the coretesting in fast, automated way in the core
logic before a UI even exists to pen-testlogic before a UI even exists to pen-test

QA: UsuallyQA: Usually……

__ creates a large test plan documentcreates a large test plan document
__ works works ““stupid hardstupid hard””
__ has responsibility without authorityhas responsibility without authority

QA: ProblemsQA: Problems

__ duplicates use case artifacts that alreadyduplicates use case artifacts that already
exist in large, unmanageable documentsexist in large, unmanageable documents

__ cancan’’t really measure where they aret really measure where they are
__ doesndoesn’’t have the time or knowledge to sett have the time or knowledge to set

up complex environmentsup complex environments
__ functional testing gets held up by instabilityfunctional testing gets held up by instability
__ burn burn out andout and hopelessnesshopelessness

QA: SolutionsQA: Solutions

__ use a common store for use case artifacts, shared betweenuse a common store for use case artifacts, shared between
business and engineeringbusiness and engineering

__ QA should create positive and negative use case variantsQA should create positive and negative use case variants
from the beginningfrom the beginning

__ most long hours are repetitive manual testing, invest timemost long hours are repetitive manual testing, invest time
in automation up frontin automation up front

__ create a smoke test code must pass to be testedcreate a smoke test code must pass to be tested
§§ minimum code coverage by unit tests (minimum code coverage by unit tests (PureCoveragePureCoverage))
§§ no unit test runtime bugs detected (Purify, Insure++)no unit test runtime bugs detected (Purify, Insure++)
§§ static analysis (PC-Lint, BugScan, etc)static analysis (PC-Lint, BugScan, etc)
§§ integrate smoke test into automated buildintegrate smoke test into automated build

__ this gives QA time to focus on more complex and negativethis gives QA time to focus on more complex and negative
scenariosscenarios

Deployment: UsuallyDeployment: Usually……

__ install it or put it up for download and forgetinstall it or put it up for download and forget
about itabout it

__ sometimes sometimes blackboxblackbox fault injection and/or fault injection and/or
code review is donecode review is done

__ we choose one module to focus on since wewe choose one module to focus on since we
dondon’’t have enough resourcest have enough resources

Deployment: ProblemsDeployment: Problems

__ deep knowledge can be required for faultdeep knowledge can be required for fault
injection to produce any resultsinjection to produce any results

__ we canwe can’’t get source code to review due tot get source code to review due to
political problemspolitical problems

__ we canwe can’’t push our tools or process furthert push our tools or process further
into the development groupsinto the development groups

Deployment: SolutionsDeployment: Solutions

__ Do static analysis for security problems firstDo static analysis for security problems first
§§ helps direct manual reviewshelps direct manual reviews

__ Then focus on runtime analysisThen focus on runtime analysis
§§ fault injection and code coveragefault injection and code coverage

__ Use binary analysis toolsUse binary analysis tools
§§ in conjunction with source analysisin conjunction with source analysis

__ CSO/CTO is given CSO/CTO is given ““stop shipstop ship”” authority authority

ChangeLogChangeLog

__ Negative requirementsNegative requirements
__ A little additional modelingA little additional modeling
__ Unit testing via TDD and Mock ObjectsUnit testing via TDD and Mock Objects
__ Reuse of existing use case artifacts in QAReuse of existing use case artifacts in QA
__ Use of static and runtime analysisUse of static and runtime analysis
__ Give the right people the authority to do theGive the right people the authority to do the

right thingright thing

BibliographyBibliography
__ Microsoft Solutions FrameworkMicrosoft Solutions Framework

§§ www.microsoft.com/msfwww.microsoft.com/msf
§§ www.learnvisualstudio.netwww.learnvisualstudio.net

__ Extreme ProgrammingExtreme Programming
§§ www.xprogramming.comwww.xprogramming.com

__ Agile modelingAgile modeling
§§ www.agilemodeling.comwww.agilemodeling.com

__ Test-Driven DevelopmentTest-Driven Development
§§ TDD: A Practical GuideTDD: A Practical Guide

__ NUnitNUnit
§§ www.nunit.orgwww.nunit.org

__ EasyMock.NETEasyMock.NET
§§ www.easymock.netwww.easymock.net

__ BugScanBugScan
§§ www.hbgary.comwww.hbgary.com

__ PureCoveragePureCoverage
§§ www.rational.comwww.rational.com

ContactContact

__ Email:Email:
§§ matt@hbgary.commatt@hbgary.com

__ Blog:Blog:
§§ www.rootkit.comwww.rootkit.com

