
DKOM
(Direct Kernel Object Manipulation)

Jamie Butler

Director of Engineering
HBGary, LLC

http://www.hbgary.com

Jamie Butler

Director of Engineering
HBGary, LLC

http://www.hbgary.com

Operating System Design

• User Land
– Operating system provides common API for
developers to use
• Kernel32.dll
• Ntdll.dll

• Kernel Mode
– The low level kernel functions that implement
the services needed in user land

– Protected memory containing objects such as
those for processes, tokens, ports, etc.

Operating System Design

• Intel has four
privilege
levels or rings

• Microsoft and
many other
OS vendors
use only two
rings

Operating System Design

• By only using two privilege levels, there is
no separation between the kernel itself and
third party drivers or loadable kernel
modules (LKM’s)

• Drivers can modify the memory associated
with kernel objects such as those that
represent a process’s token

Consumers demand more…

• Corporations and many private consumers
see the need for more security
– Personal firewalls

– Host based intrusion prevention systems

Current HIDS/HIPS Functions

• To detect or prevent:
– Processes running
– Files that are created/deleted/modified
– Network connections made
– Privilege escalation

• Trusts the operating system to report these
activities.

• If the underlying operating system is compromised,
the HIDS/HIPS fails.

What Makes HIDS/HIPS
Possible?

• Querying kernel reporting functions

• Hooking user land API functions
– Kernel32.dll

– Ntdll.dll

• Hooking the System Call Table

• Registering OS provided call-back
functions

Attack Scenario

• Attacker gains elevated access to computer system
• Attacker installs a Rootkit
• Rootkit’s functions

– Hide processes
– Hide files
– Hide network connections
– Install a backdoor for future access to the system

• Rootkits act as a part of the operating system so
they have access to kernel memory.

State of Current Rootkits

• Until recently, rootkits were nothing more than
Trojan programs such as ps, ls, top, du, and netstat

• Advanced rootkits filter data
– Hook the System Call Table of the operating system
(the functions exported by the kernel)

– Hook the Interrupt Descriptor Table (IDT)
• Interrupts are used to signal to the kernel that it has work to
perform.

• By hooking one interrupt, a clever rootkit can filter all
exported kernel functions.

Control Flow … aka Places to
Hook

Kernel32

CreateFileW

NTDLL

NtCreateFile

User Land Kernel

Control Flow … aka Places to
Hook

User
Land Kernel

IDT

2E

&NtCreateFile

NtCreateFile
{

push ebp

mov ebp, esp

xor eax, eax

push eax

…

}

System Call Table

Next Generation Rootkit Techniques

• Direct Kernel Object Manipulation
(DKOM) in memory
– A device driver or loadable kernel module has
access to kernel memory

– A sophisticated rootkit can modify the objects
directly in memory in a relatively reliable
fashion to hide.

– Recall the goal of rootkits is to hide things:
processes, files, and network connections.

• DKOM Uses
– Hide Processes

– Add Privileges to Tokens

– Add Groups to Tokens

– Manipulate the Token to Fool the Windows
Event Viewer

– Hide Ports

The Implication of Hidden
Processes

• The intruder has full control of the system.

• Defeats a Host Based IDS/IPS that depends
upon the underlying operating system.

• Will skew the results of forensic
examinations.

Hiding Processes - WindowsHiding Processes - Windows
KPRCB

 *CurrentThread
 *NextThread
 *IdleThread

ETHREAD

KTHREAD

ApcState

EPROCESS

KPROCESS

LIST_ENTRY {
 FLINK
BLINK }

EPROCESS

KPROCESS

LIST_ENTRY {
 FLINK
BLINK }

EPROCESS

KPROCESS

LIST_ENTRY {
 FLINK
BLINK }

Hiding Processes - Windows

• Locate the Processor Control Block
(KPRCB)
– Located at 0xffdff120
– fs register in kernel mode points to 0xffdff000

• Within the KPRCB is a pointer to the
Current Thread block (ETHREAD)
– Located at fs:[124] or 0xffdff124
– An ETHREAD contains a KTHREAD structure

Hiding Processes - Windows

• The KTHREAD structure contains a pointer
to the EPROCESS block of the current
process

• The EPROCESS block contains a LIST
structure, which has a forward and
backward pointer to active processes
– This creates the doubly linked list of active
processes in Windows

Hiding Processes - Windows

• To hide a process
– Locate the EPROCESS block of the process to
hide

– Change the process behind it to point to the
process after the process you are hiding

– Change the process after it to point to the
process before the one you are trying to hide

Essentially, the list of active now processes points “around” the hidden
process
Essentially, the list of active now processes points “around” the hidden
process

Hiding Processes - Windows

KPRCB

 *CurrentThread
 *NextThread
 *IdleThread

ETHREAD

KTHREAD

ApcState

EPROCESS

KPROCESS

LIST_ENTRY {
 FLINK
BLINK }

EPROCESS

KPROCESS

LIST_ENTRY {
 FLINK
BLINK }

EPROCESS

KPROCESS

LIST_ENTRY {
 FLINK
BLINK }

Hiding Processes - Windows

• Why does the process continue to run?
– Scheduling in the Windows kernel is thread based and
not process based.

• Although scheduling code to run is based upon
threads, when the kernel reports what is running
on the system, it reports based upon EPROCESS
blocks which can be modified with no adverse
affect. This is what current tools (IDS/IPS’s) rely
upon to discover what is running on the system.

Hiding Processes – LINUX

• The LINUX kernel contains an array of
task_struct’s.

• A task_struct is similar to an EPROCESS block in
Windows

• task_struct contains pointers to the prev_task and
next_task

• task_struct also contains pointers to the prev_run
and next_run for the running processes

Hiding Processes – LINUX

• To hide a process, remove the process from
the list of prev_task and next_task

• Leave next_run and prev_run alone

Hiding Processes - LINUX
task_array

PID
Process 0

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 (null)

 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID
1901

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

Hiding Processes – LINUX
task_array

PID
1901

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID
Process 0

State

*next_task
*prev_task

*next_run
*prev_run

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

Hiding Processes - LINUX

• To prevent the process from freezing

– The LINUX scheduler walks the list of task_struct’s to
calculate the goodness value of the process to decide
rather to schedule it or not.

– The LINUX scheduler must be modified to allocate
time quantums to the parent of process of PID 0

Token Manipulation

• Add Privileges to Token

• Add Groups to Token

• Make the Owner of the Token Any User

• Make Any Actions Taken by the Process
Appear to be Someone else such as System
– Makes forensics difficult

– Totally fakes out the Windows Event Viewer

Tokens

• Static Part
– TOKEN SOURCE

– TokenId

– AuthenticationId

– ParentTokenId

– ExpirationTime

– TokenLock

– ModifiedId
– SessionId

– UserAndGroupCount

– RestrictedSidCount

– PrivilegeCount

– VariableLength

– Etc…

Tokens

• Variable Part
– Privileges

• LUID
• Attribute

– User and Groups
• Pointer to SID
• Attribute

– Restricted SID’s
• Pointer to SID
• Attribute

Manipulating Tokens

• Difficult to just grow the token because you
are not sure what is after the variable part in
memory

• Although static portion has pointers to the
privileges and groups, just changing these to
point to newly allocated memory does not
work due to crazy math in a
SepDuplicateToken() function

Manipulating Tokens

• There are a lot of Privileges in a token that
are disabled

• We can discard these since they are disabled
anyway and free up space for new
privileges and groups
– The “in-line” method

Adding Privileges to Tokens with
DKOM
Static Portion

LUID

LUID 0x00000000

0x00000000

0x00000001

0x00000001

LUID

LUID

SID’s

Restricted SID’s

0x00000001
0x00000001

LUID

LUID

0x00000001LUID

0x00000001LUID

Disabled Priv’s
Enabled Priv’s
Added Priv’s

Adding Groups to Tokens with
DKOM
Static Portion

LUID

LUID 0x00000000

0x00000000

0x00000001

0x00000001

LUID

LUID

SID’s

Restricted SID’s

0x00000001
0x00000001

LUID

LUID

Disabled Priv’s
Enabled Priv’s
Added SID’s

pSID 0x00000007

SID

SID

pSID 0x00000007

Faking Out the Windows Event
Viewer using DKOM

• Change one DWORD in Static Portion of
Token
– SYSTEM_LUID = 0x000003E7

• Make FIRST SID in Token the System SID
• All logging of the Process now appears as
System

• Useful if Detailed Process Tracking is
Enabled

Detecting Hidden Processes in
Windows

• Methodology: Examine each thread to
ensure its corresponding process descriptor
(EPROCESS) is appropriately linked.

• This requires patching the kernel in memory,
in particular the SwapContext function.

• Hunt and Brubacher introduced Detours for
intercepting Win32 binary functions.

Detours
• Overwrite beginning of target function
(SwapContext) with an unconditional jump to a
Detour function

• Detour function eventually calls a Trampoline
function

• The Trampoline function contains the overwritten
bytes of the target (SwapContext) function and
calls the target (SwapContext) function

• The Target function returns to the Detour function
• The Detour function returns to the source caller
(kernel dispatcher)

Detours

Source
Function

Detour
Function

Trampoline
Function

Target
Function

1 2 3

45

Patching the Windows kernel

• SwapContext function does context switching
between threads in Windows

• Overwrite the first seven bytes of SwapContext
with a jump to our Detour function

• The EDI register points to the KTHREAD of the
thread to be scheduled to run

• Our Detour function follows the KTHREAD to
the EPROCESS block and determines if it is still
appropriately linked in the list of active processes.

Other Ways to Detect Hidden
Processes

• Klister by Joanna Rutkowska
– Presented at Black Hat Las Vegas 2003

– Looks at Thread Queues since threads must be
in one of four queues to be scheduled

– Problem: Queue addresses are not exported so
the addresses must be hard coded for each
version of the OS

Detecting Hidden Processes in
LINUX

• Injectso is a library similar to Detours
except for LINUX

• When process state is Task_Running and it
is placed in the LINUX run queue by setting
the prev_run and next_run pointers
appropriately, make sure it is properly
linked by testing the next_task and
prev_task of its neighbors.

Tool Demonstration: Process Hiding

Tool Demonstration: Gaining System
Privilege

Conclusion

• We have shown the evolution of rootkit
technology
– No longer trojanized programs

– No longer use hooking, which is easy to detect

– Now act as a part of the Trusted Computing
Base (TCB)

– DKOM … what will it be used for next?

Questions?

Thank you.
Email: james.butler@hbgary.com

Attend the Black Hat Training
“Aspects of Offensive Root-kit

Technology”

