Writing Secure and
Hack Resistant Code

David LeBlanc
dleblanc@microsoft.com

Trustworthy Computing Initiative
Microsoft Corporation

Michael Howard
mikehow@microsoft.com
Secure Windows Initiative

Microsoft Corporation

Agenda

¢ Changing the process
¢ Threat modeling

¢ Common Security Mistakes

> WIin32 & Web
> Based on real world mistakes

¢ Security Testing

This session isn’t about security
features — it’s about writing
secure features

Secure Product
Development Timeline

Security push & audit

Secure questions B reat. 0 Learn &
EREWSE :
Refine

during interviews
0 External
0 review 0
| | | | |
| |

Concept Designs Test plans Code
Complete Complete Complete

Team member 0

training 0 Review old defects

Data mutation ,
Security & Least Priv Check-ins checked

Secure coding guidelines
Review Tests g8

Use tools

A Security Framework

SD3 + Communications

Secure
by Design

Secure
by Default

Secureiin

Communications

Secure architecture
Improved process
Reduce vulnerabilities infthe code

¢ Reduce attack surface area

Unused features off' by default
Only require minimum privilege

, fecover, [rzlrlzlge

1 . i [1 X -
35, Arcnltzcilrs Juldss

Clear security commitment
Fulllmember of the security community.
Microsoft Security Response Center

Sampling of Progress To Date

SD3 + Communications

SecuritystrainingifornMSiengineers
Improved process

Security' code reviews
hreat'modeling

Office XP: Scripting| off by default
Nosample code installed by defauit
SQL/IIS offi by default in VSINET

Secure
by Design

Secure
by Default

Secure in DepJTJyme'nt 'EQIOJS (VIISISYAY .“S LQrI;KLJQWIJ)
Crazitad STPP to rasoorid to custornsrs

'V PAG for Windows 2000 Sacurity Oos
Microsoft Security Response Center
severity rating system
MSDNi security guidance for developers
Organization for Internet Safety formed

Communications

Educate!

¢ What you don’t know will bite you In the
*(@#!

¢ More eyes != more secure software

¢ We teach the wrong things In school!
> Security features != secure features

¢ Raises awareness

¢ Mandatory security training for all
engineers

Design Requirements

4 Defense in depth

¢ Least privilege

¢ Learn from Past Mistakes
¢ Security is a Feature

& Secure Defaults

Threat Modeling

¢ You cannot build secure applications
unless you understand threats

> “We use SSL!”

¢ Find different issues than code review
and testing

~ Implementation bugs vs higher-level
design Issues

& Approx 50% of issues come from threat
models

The Threat Modeling
Process

¢ Create model of app (DFD, UML etc)

¢ Categorize threats to each attack target node
with STRIDE

> Spoofing, Tampering, Repudiation,
Info Disclosure, Denial of Service, Elevation of
Privilege

¢ Build threat tree

¢ Rank threats with DREAD

> Damage potential, Reproducibility, Exploitability,
Affected Users, Discoverability

STRIDE
Threat (Goal)

STRIDE

Threat (Goal)

Threat (Goal)

Subthreat Subthreat Subthreat B
Condition Subthreat

Condition Condition B

Questions to ask from the
application model

¢

Is this item susceptible to spoofing?
Can this item be tampered with?

Can an attacker repudiate this action?
Can an attacker view this item?

Can an attacker deny service to this
process or data flow?

Can an attacker elevate their privilege
by attacking this process?

DFDs and STRIDE

Threat Type Affects Processes Affect Data Affects Affects Data
Stores Interactors Flows

Y

Applying STRIDE to threat
trees

¢ STRIDE applies primarily to threat
goals

¢ Subthreats may also use STRIDE

> Info Disclosure cailgaigad to Spoofing
Replay TRID
User Creds

Access
on-wire
Creds

Basic auth

One Step Further - Pruning

Threat (Goal)

-
-

Subthreat Subthreat Subthreat
) DREAD = 90 DREAD = 100

Designing to a Threat
Model

¢ Spoofing

> Authentication, good credential storage
¢ Tampering

> Authorization, MAC, signing

¢ Repudiation
> Authn, Authz, signhing, logging, trusted third party

¢ Info Disclosure

> Authorization, encryption
¢ Denial of Service o

> Filtering, Authn, Authz /%/\‘}
o Elev of Priv Lo

> Don’t run with elevated privs

Coding to a Threat Model

¢ Threat models help you determine the
most ‘dangerous’ portions of the
application
> Prioritize security push efforts
> Prioritize on-going code reviews

> Help determine the defense mechanisms
fo use

Testing to a Threat Model

¢ Testers are now part of the end-to-end
process

¢ Each threat in the model must have a test
plan

¢ The threat model helps drive testing
concepts

¢ Allows for Whitehat and Blackhat testing
> Testers should prove the mitigation works
> Testers should prove they don’t work :-)

Testing to a Threat Model

¢ Spoofing
> Authentication

> Brute force creds, cred replay, downgrade to
less secure authn, view creds on wire

> Good credential storage
> Use Information Disclosure attacks
¢ Tampering
> Authorization

> Attempt authz bypass
> MAC, signing
> Tamper and re-hash?
> Create invalid hash data

Testing to a Threat Model

¢ Repudiation
> Authn & Authz
> See Spoofing and Tampering
> Signing
> See Tampering
> Logging
> Prevent auditing, spoof log entries (CR/LF)
> Trusted third party
> DoS the third party

¢ Info Disclosure
> Authorization
> See Tampering
> Encryption
> View on-the-wire data
> Kill process and scavenge for sensitive data
> Failure leads to disclosure in error messages

Testing to a Threat Model

¢ Denial of Service
> Filtering
»>Flooding, malformed data
> Authn & Authz
>See Spoofing and tampering
>Resource pressure

¢ Elev of Priv
> Don’t run with elevated privs
>Spend more time here!

Action Items

¢ Create threat models for all
components in your product

¢ You’re not done on the design phase
without a threat model

David LeBlanc

Common Win32 Mistakes

Least Privilege Errors
Buffer Overruns

Poor Crypto (applies to all apps)

Socket Issues (ok, so it’s not Win32
specific!)

NULL DACLs
ActiveX® issues

Least Privilege Errors

¢ Too much code requires administrator
or system privileges

> “If we don’t run as admin, stuff breaks!”

¢ Dangerous if you run malicious code

> Mitigated by correct Software restriction
policies and .NET Framework policy

Least Privilege Errors (Cont.)

Do you really need admin rights?
Usually an ACL or privilege issue

Windows XP and Windows .NET Server
support two new service accounts

> Network Service and Local Service
> Not admins, and few privileges

Don’t write user data to HKLM or
\Program Files

> Store it In user stores

Public Enemy #1
The Buffer Overrun

¢ Attempting to copy >n bytes into an
n-byte buffer

¢ If you'’re lucky you get an AV
¢ If you'’re unlucky you get instability

If you’re really unlucky the attacker
Injects code into your application
> And executes it!

> And the attacker is now an admin :-(

How Does It Work?

A function (foo() has just called bar())

: Return bar()
Bufferin bar() Address to foo() arguments

A Dangerous buffer

~» Assembly code Address ofistart-.

Add ‘em together (using a copy function)

Function
N anguments

Buffer Overrun Example

int Overrun(char” input)

{
WCHAR buf[256];

if(strlen(input) < sizeof(buf))

{
swprintf(buf, “%S", input);

}

;

Correct way to check character count is:
sizeof(buf)/sizeof(buf[0])

An Actual Overrun

/ 514 bytes
-TCHAR g_szComputerName[INTERNET MAX HOST NAME_LENGTH + 1;

‘BOOL GetServerName (EXTENSION_CONTROL_BLOCK *pECB)
*/l Get the server name and convert it to the unicode string.

static char c_szServerName[] = “SERVER_NAME";
DWORD dwsSize = sizeof(g__szComputerName); 4 257 bytes

char szAnsiComputerName[INTERNET MAX HOST _NAME LENGTH + 1];
BOOL bRet=FALSE; —_

if (pECB->GetServerVariable (pECB->ConnlD,
c_szServerName,
Twice thesize off ¥y &dwSize)) {

c_szServerName

GET /foo.printer HTTP/1.0
HOST: <malicious buffer>

Heap Overruns

¢ Just because the buffer is on the heap
doesn’t mean it isn’t exploitable

¢ A heap overrun can place 4 bytes Iin any
arbitrary location.

¢ Adjacent memory can be overwritten

¢ Example

Index Overruns

¢ Always check user input when writing
to an array

¢ Integer overflows
¢ Truncation errors
¢ Examples

Format string bugs

¢ printf(message); WRONG WAY!
¢ printf(“%s”, message); Correct!
¢ Example

Off by One Overflows

¢ But it’s only one byte!

¢ It will still get you hacked!

¢ The exploit is easier than it looks
¢ Example

Unicode overruns are
exploitable!

¢ On x86, variable instruction length can be
used to work around every other byte being
null

Buffer Overrun Solutions

¢ Be wary of trusting input

¢ Be wary of dangerous C-Runtime and
Windows APIs

» strcpy, strcat, sprintf(...,“%s”,...)
> UNICODE vs ANSI size mismatches,
> eg; MultiByteToWideChar

¢ Managed Code

Buffer Overrun Solutions

Don’t trust user input!
Write Solid Code!
Code Review
Developer Education
VC.NET -GS flag

Visual C++ .NET /GS Flag

On by default for new VS.NET C++
projects

Inserts random ‘cookie’ into stack frame

Catches the most common exploitable
buffer overrun

This isn’t a silver bullet!
> Buggy code is still buggy!
> Does not help with heap overruns

> Does not help when the stack isn’t
corrupted

> Multiple stage attacks are possible
> Virtual function pointer attacks

But then again, seat belts don’t save you
all the time, either!

Action Items

¢ DLEBLANC

Socket Security - Server
Hijacking
¢ A socket bound to INADDR_ANY can be

hijacked by one bound specifically to a
specific IP

Prevent server hijacking
> Enable SO_EXCLUSIVEADDRUSE

> Must shutdown socket cleanly when using
SO _EXCLUSIVEADDRUSE

Socket Security - Choosing
Network Interfaces

¢

Users should be able to configure where
a service Is available

> Minimum level — specify which network
interfaces

> Better — specify which IP addresses listen
> Best — allow the user to restrict client IPs

Allow your client and server to
customize the port used

IPv6 offers even more options

Writing Firewall Friendly
Applications

¢

Firewalls aren’t going away

Well-written applications make It easy to
write correct firewall rules

Poorly written applications expose your
customers to secondary attacks

Don’t embed host IP addresses In
application layer data

Writing Firewall Friendly
Applications

¢ Use one connection to do the job

¢ Don’t make connections back from the
server to the client!

> Terminal Services does it right
> FTP is an example of how not to do it

Connection-based protocols are easier
fo secure

> UDP is very spoofable

Avoiding Spoofing

Host-based trust is inherently weak
> Port-based trust is even worse

Don’t trust DNS names
> DNS has a number of security weaknesses

If you need to know who a client is,
require a shared secret, certificate, or
other cryptographically strong methods

Defeating Denial of Service

¢ Application or OS crashes are almost
always a code quality problem
¢ Examples —
> UDP bomb
> Ping of Death
> OOB Crash (Winnuke)
Solution — do not trust user input, and

don’t trust anything that comes across
the network

Defeating Denial of Service
- CPU starvation attacks

¢ Typically due to inefficient code

¢ Overcome by thorough testing and
profiling

¢ Make sure you test for pathological
inputs — or the hackers will do it for you!

Defeating Denial of Service
- Memory starvation attacks

¢ Don’t pre-allocate large structures until
you’re sure you have a valid client

¢ Place bounds on the amount of input
you’ll accept from users

Defeating Denial of Service
- Resource starvation
attacks

¢ First line of defense is quotas
¢ Consider using different quotas for

authenticated and non-authenticated
users

You can code your app to change
behavior based on whether it is under

attack
Cookies are one common technique

Impersonation Foibles

¢ What wrong with this code?

> Assume this is running In a privileged
service

Impersonatel.oggedOnUser(hToken);
If (UserlsAdmin(hToken)) {
DeleteEile(szEile,...);

)

RevertloSelf();
! What happens;if‘the

Impersonation/ function fails?

Impersonation Foibles
(Cont.)

¢ Be wary of clients which can
impersonate you if you are a privileged
process

> COM and RPC callbacks

Impersonation Solutions

¢ Always check return value from any
impersonation failure

> Follow access denied path

¢ Look for
> Any impersonation function
> SetThreadToken

¢ Allow only identify (not impersonate)
on outbound RPC/COM calls

CoSetProxyBlanket (.., RPC_C IMP LEVEL IDENTIFY,..)

Action Items

¢ DLEBLANC

Michael Howard

“Encraption”

¢ Do not roll your own crypto functions!

¢ XOR is NOT your friend
> Use CryptoAPI
> Use System.Security.Cryptography

> Use CAPICOM

¢ Do not store secrets in code or config
files

> They will not be secret for long
> Use DPAPI on Windows® 2000 and later
> Wrap DPAPI in .NET Frameworks

Determining Access
Controls

Use principle of least privilege

Pay attention to sensitive information
> Everyone:R isn’t always appropriate

Establish your own ACLs during app
installation

Don’t depend on inheriting secure
defaults!

NULL DACLs

¢ All objects in Windows NT® and
later are secured using ACLs

¢ Important last line of defense
¢ NULL DACL == No Defense

¢ ANYONE can do ANYTHING to the
object

> Including deny access to the object

SetSecurityDescriptorDACL(...,...,NULL,...);

ActiveX Controls

Is your control really Safe for Scripting?

Remember, they can be called by
anyone!

Consider binding the control
to your site

> Q196016: HOWTO: Tie ActiveX Controls to
a Specific Domain

Managed Code!

Web Application Issues

¢ “All input is evil, until proven otherwise”

¢ Good guys provide well-formed input,
bad guys don’t!

¢ Be wary of data that crosses
untrusted > trusted boundaries

& Examples
> Canonicalization Issues
> Cross-Site Scripting
> SQL Injection

What’s Wrong with this
code?

void func(char *strName) ({
char buff[64];
strcpy (buff, "My name is: “);
strcat (buff, strName) ;

o

These APls IRIStER

are not ‘insecure

A safe version using ‘insecure’ APls

void func (char *strName) {
char buff[64];
Untrusted if (isValid(strName)) {
Trusted strcpy (buff, "My name is: “);
strcat (buff, strName) ;

Canonicalization

¢ Never make a decision based on the
name of something

> You will get it wrong!
nttp://www.foo.com/default.asp.
nttp://www.foo.com/default.asp::$DATA

nttp://www.foo.com/scripts/..%c1%1c../winnt/sy
stem32/cmd.exe

http://3472563466
http://www%2ebadcode%2ecom

Canonicalization Solutions

Canonicalize ONCE

Perform checking and canonicalization
in the same place

Base decisions on object attributes,
not hames

XSS Issues

¢ Common error in Web pages

¢ Flaw in one Web page renders client-
side data tied to that domain insecure

> Issue is trusting input!

2 My Insecure Web Site - Microsoft Internet Explorer
File Edit Wiew Favorites Tools Help

S Fay
Address .insecuresite, col elcome. asp?name=Ela
Hello, Blake

Welcome. asp
Hello,
<%= request.querystring(‘name’) %>

What happens if you click on
this...

Your cookie for this domain

=

Is sent to here

SQL Injection (C#)

string Status = "No";
string sqlstring ="";
try {

SglConnection sql= new SglConnection (

@"data source=localhost;" +

» "user id=sa;password=password;") ;
sqgl.Open() ; e
sgqlstring="SELECT HasShipped" +

" FROM detail WHERE ID='" + Id + "'";

SglCommand cmd = new SglCommand(sglstring,sql);
if ((int)cmd.ExecuteScalar() '= 0)

Status = "Yes";
} catch (SglException se) {
Status = sqlstring + " failed\n\r";
foreach (SglError e in se.Errors) ({
Status += e.Message + "\n\r";

}
} catch (Exception e) { ‘\\\\\

Status = e.ToString() ;

}

SQL Injection Demo

Why string concat is wrong
(1/2)

Good Guy

ID: 1001
SELECT HasShipped

FROM detail
WHERE ID='1001"

Not so Good Guy

ID: 1001° or 1=1 --

SELECT HasShipped

FROM detail

WHERE ID='1001' or 1=1 -- '

Why string concat is wrong
(2/2)

Really Bad Guy

ID: 1001’ drop table orders --

SELECT HasShipped

FROM detail

WHERE ID= ‘1001' drop table orders -- '

Downright Evil Guy

ID: 1001’ exec xp_cmdshell(‘fdisk.exe’) --
SELECT HasShipped

FROM detail
WHERE ID= ‘'100l1' exec xp cmdshell(‘fdisk.exe’)--'

Action Items

¢ Don'’t trust any input

¢ Validate for correctness, reject
otherwise

> Not the other way around

¢ Use regular expressions
> SSN| = Md{3}-\d{2}-\d{4}$
>nothing else is valid

¢ HTML/URL encode output

¢ Build SQL statements with SQL
placeholders

¢ Compile with -GS

Security Testing: Data
Mutation & Threat Models

¢ A Problem: Too many “goody two
shoes” testers

> We need to teach people how to think
‘evil’

¢ The threat model can help drive the
test process

> Each threat should have at least two
tests: Whitehat & Blackhat

> STRIDE helps drive test techniques
> DREAD helps drive priority

¢ Intelligent ‘fuzz’

Analytical Security Testing

¢ Decompose the app ¢ Enumerate data
(threat model) structures

¢ ldentify interfaces C/C++ struct data

¢ Enumerate input points HTTP body

Sockets HTTP headers

Pipes
Registry HTTP header data

Files Querystrings
RPC (etc) Bit flags
Command-line args Etc.

Etc. i .
Determine valid

constructs

Mutate the data!

¢ Contents - ~_»# Length

>
>
>
>
>
>
>
>
>

Length (CI) > Long (LI)
Random (C r) > Small (Ls)
NULL (Cn) > Zero Length (Lz)

Zero (Cz) -
Wrong type (Cw) ‘iol\?at::en (e(;n)

Wrong Sign (Cs) _
Out of Bounds (Co) -~ Link to other (Ol)

Valid + Invalid (Cv) ~ Exists (Oe)
Special Chars (Cp) > Does not exist (Od)

> Script (Cps) > No access (Oa)
> HTML (Cph) > Restricted Access (Or)

> Quotes (Cpq) ¢ Network Specific

> Slashes (Cpl) ~ Replay (Nr)
. Escaped chars (Cpe) - Qut-of-sync (No)
~ Meta chars (Cpm) > High volume (Nh)

Data mutation example

*Filename too long (On:CI:LlI)
Link to another file (Ol)

| = ‘Deny access to file (Oa)
On Hand-xml Lock file (Oa)

 <?xml version="1.0" encoding=“utf-8"?>
<items>
<item name="Foo" readonly="true'>
N, <cost>13.50</\cost>
ClLz) | <lastpurch>20020903</lastpurch>
4$gﬁﬁmk <fullname>Big \Foo Thing</fullname>
</item>

</items> -Different version (Cs & Co) °‘Escaped (Cpe)

*No version (Cl:Lz) *Junk (Cr)

Action Items

¢ FiInd the ‘evil’ testers in your company
¢ Derive tests from the threat models
¢ Build libraries of mutation routines

Summary

¢ Changing the process
¢ Threat modeling

¢ Common Security Mistakes
> Win32
> Web

¢ Security Testing

More Info

Practical strategies and techniques for secure
application coding in a networked world

Questions?

Additional Slides

Microsoft

© 2001 Microsoft Corporation. All rights reserved.

