
Attacking Intel® BIOS

Rafal Wojtczuk and Alexander Tereshkin

Black Hat USA, July 30 2009
Las Vegas, NV

BIOS Reflashing Background

Attacking and Reflashing the Intel BIOS

Consequences

1

2

3

BIOS Reflashing Background

Have others done it before us?

ACPI tables infection by John Heasman

ACPI tables are stored in BIOS image, so reflash capability is
required to alter them!
But most of the recent systems do not allow arbitrary
(unsigned) reflashing...

"Generic" BIOS infection by Core

!"#$%&'()*+!,*-../*0"%1*21!3%&)$*41!(5"6"'&178

!"#$%&'(")*+",-"&*,./"012#

!"#$%!&'()*+(,!,-.-/*0!&1-&2,34,

!5(6!4'7+8+&*)+'(!0-*7,!)'!*(!3(9'')*90-!,6,)-4:

!;-!3,-7!)<'!)-&1(+=3-,>
?@!A,-!*!"#$%!93+07+(B!)''0!CD+(&E*22'F,!4-)1'7@
G@!D*)&1!*(7!&'4H-(,*)-!)1-!IJ9+)!&1-&2,34

!K1/--!-*,6!,)-H,>
?@!L34H!"#$%!3,+(B!80*,1/'4
G@!D*)&1!*(7!&'4H-(,*)-
M@!N-J80*,1

source: http://www.coresecurity.com/content/Persistent-Bios-Infection

Did somebody say simple?

!"#$%&'()*+!,*-../*0"%1*21!3%&)$*41!(5"6"'&178

!

!"#$%&'(#)%"

!"#$%&'%$(!$))#*$%+!&*!,-.-#'%!/!#-('$0(-!1234!%*5-!
'.6-%&'*.

!7#8-!"-#9'9&-.%:

!;**&<'&='9+>!0-+$?'*#

!34!'.5-)-.5$.&

source: http://www.coresecurity.com/content/Persistent-Bios-Infection

Did somebody say generic?

So, what the heck are we doing here today? ;)

Why malware can not reflash a BIOS on most systems?

Source: intel.com

Source: intel.com

So, what about those programs that can reflash the BIOS from
Windows?

They only schedule a reflash, which itself takes place during an early
stage of BIOS boot, when the flash locks are not applied yet

So far there has been no public presentation about how to reflash a
BIOS that makes use of the reflashing locks and requires digitally

signed updates...

... up until today...

We can (potentially) exploit some coding error in the BIOS
code (say, buffer overflow) to get control of early BIOS
execution...
Problem: early BIOS code usually takes no external [potentially
malicious] input;
PXE boot code happens too late (all interesting chipset locks,
e.g. reflashing locks, are already applied)
...

...with an exception of a flash update process! It processes user
provided data - the update!

Attacking the Intel® BIOS

Intel BIOS Updates Background

A BIO update contains "firmware volumes", described in UEFI
specifications

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 4 (0x4)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=Fixed Product Certificate, OU=OPSD BIOS, O=Intel
 Corporation,
+L=Hillsboro, ST=OR, C=US
 Validity
 Not Before: Jan 1 00:00:00 1998 GMT
 Not After : Dec 31 23:59:59 2035 GMT
 Subject: CN=Fixed Flashing Certificate, OU=OPSD BIOS, O=Intel
+Corporation, L=Hillsboro, ST=OR, C=US
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1022 bit)
 Modulus (1022 bit):
 <snip>
 Exponent: 12173543 (0xb9c0e7)
 X509v3 extensions:
 2.16.840.1.113741.3.1.1.2.1.1.1.1: critical
 1............
 Signature Algorithm: sha1WithRSAEncryption
 <snip>

There are a few PE modules inside BIO that are not packed
with anything. One of them happens to contain a code from:

Edk\Sample\Universal\DxeIpl\Pei\DxeLoad.c,

function PeiProcessFile(), which is responsible for
unpacking BIO sections. The GUID of this file is:

86D70125-BAA3-4296-A62F-602BEBBB9081

EFI_STATUS PeiProcessFile ()
{
...
 DecompressProtocol = NULL;

 switch (CompressionSection->CompressionType) {
 case EFI_STANDARD_COMPRESSION:
 Status = InstallTianoDecompress (&DecompressProtocol);
 break;

 case EFI_CUSTOMIZED_COMPRESSION:
 //
 // Load user customized compression protocol.
 //
 Status = InstallCustomizedDecompress
((EFI_CUSTOMIZED_DECOMPRESS_PROTOCOL **) &DecompressProtocol);
 break;
...

 Status = DecompressProtocol->Decompress (
...
);

Many of the BIO modules are compressed with a
customized algorithm which is not opensourced in the
EDK,
Only the standard Tiano compression algorithm is open
sourced there.

Edk\Foundation\Library\Pei\PeiLib
\Decompress.c:
EFI_STATUS InstallTianoDecompress (
 EFI_TIANO_DECOMPRESS_PROTOCOL
**This
)
{
 *This = &mTianoDecompress;
 return EFI_SUCCESS;
}

EFI_TIANO_DECOMPRESS_PROTOCOL
mTianoDecompress = {
 TianoGetInfo,
 TianoDecompress
};

EFI_STATUS EFIAPI TianoDecompress ()
{
 return Decompress (
...
);
}

Edk\Foundation\Library\CustomizedDecompress
\CustomizedDecompress.c
EFI_STATUS
InstallCustomizedDecompress (
 EFI_CUSTOMIZED_DECOMPRESS_PROTOCOL
**This
)
{
 *This = &mCustomizedDecompress;
 return EFI_SUCCESS;
}

EFI_CUSTOMIZED_DECOMPRESS_PROTOCOL
mCustomizedDecompress = {
 CustomizedGetInfo,
 CustomizedDecompress
};

EFI_STATUS EFIAPI
CustomizedDecompress ()
{
 return EFI_UNSUPPORTED;
}

So, we had to look at the PeiProcessFile() implementation to
locate the decompressor code...

FFFF98CE movzx eax, [eax+EFI_COMPRESSION_SECTION.CompressionType]
FFFF98D2 sub eax, 0
FFFF98D5 jz EFI_UNSUPPORTED
FFFF98DB dec eax
FFFF98DC jz short EFI_STANDARD_COMPRESSION
FFFF98DE dec eax
FFFF98DF jnz EFI_UNSUPPORTED
FFFF98E5 mov edi, offset mCustomizedDecompress
FFFF98EA jmp short loc_FFFF98F1
FFFF98EC
FFFF98EC EFI_STANDARD_COMPRESSION:
FFFF98EC mov edi, offset mTianoDecompress
...

FFFF929C mTianoDecompress dd offset EfiTianoGetInfo
FFFF92A0 dd offset TianoDecompress
...
FFFF92F4 mCustomizedDecompress dd offset CustomizedGetInfo
FFFF92F8 dd offset CustomizedDecompress

FFFFBAE7 CustomizedDecompress proc
FFFFBAE7 push ebp
FFFFBAE8 mov ebp, esp
FFFFBAEA mov ecx, [ebp+arg_4]
FFFFBAED cmp byte ptr [ecx+3], 0
FFFFBAF1 push esi
FFFFBAF2 jnz short loc_FFFFBB25
FFFFBAF4 mov eax, [ebp+arg_18]
FFFFBAF7 mov esi, [ebp+arg_14]
FFFFBAFA shr eax, 1
FFFFBAFC push eax
FFFFBAFD lea edx, [eax+esi]
 ...

Does not look like "return EFI_UNSUPPORTED"! ;)

Possible Attack Vectors

Obviously, we cannot insert arbitrary code into .BIO update, as
the code is signed (and the signature is verified before reflash
is allowed by the BIOS)
But still, the update process must parse "envelope" of the
update (firmware volume format), and perform crypto
operations; some potential for a vulnerability here...
(Although we don't exploit this today)

Does the update contain some unsigned fragments?
Yes, it contains the picture with boot splash logo (which can be
changed by e.g. an OEM)

Intel Integrator Toolkit lets you integrate your logo into the BIOS...

The BIOS displays the logo when booting
(this is at the very early stage of the boot)

The BMP image that is embedded into the *.BIO doesn't need to be
signed in any way (of course)

Where is The Bug?

https://edk.tianocore.org/

EFI_STATUS ConvertBmpToGopBlt ()
{
...
 if (BmpHeader->CharB != 'B' || BmpHeader->CharM != 'M') {
 return EFI_UNSUPPORTED;
 }

 BltBufferSize = BmpHeader->PixelWidth * BmpHeader->PixelHeight

 * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL);
 IsAllocated = FALSE;
 if (*GopBlt == NULL) {
 *GopBltSize = BltBufferSize;
 *GopBlt = EfiLibAllocatePool (*GopBltSize);

tiano_edk/source/Foundation/Library/Dxe/Graphics/Graphics.c:

In order to exploit the vulnerability we need to find an actual code
for this function...

There is only one caller of the vulnerable function -
EnableQuietBootEx(), which is located in the same source file
EnableQuietBootEx() begins with a few references to protocol
GUIDs which can help spotting the binary module

 Status = gBS->LocateProtocol (
 &gEfiConsoleControlProtocolGuid,
 NULL,
 (VOID**)&ConsoleControl);

 ...
 Status = gBS->HandleProtocol (

gST->ConsoleOutHandle,
&gEfiGraphicsOutputProtocolGuid,
(VOID**)&GraphicsOutput);

 ...
 Status = gBS->HandleProtocol (

gST->ConsoleOutHandle,
&gEfiUgaDrawProtocolGuid,
(VOID**)&UgaDraw);

 ...
 Status = gBS->LocateProtocol (

&gEfiOEMBadgingProtocolGuid,
NULL,
(VOID**)&Badging);

These GUIDs are defined in the EDK. By searching for
their values, the following (packed) file has been found:

A6F691AC-31C8-4444-854C-E2C1A6950F92

and it turns out it contains vulnerable
ConvertBmpToGopBlt() implementation.

.text:000000001000D2C9 sub rsp, 28h

.text:000000001000D2CD cmp byte ptr [rcx], 42h ; 'B'

.text:000000001000D2D0 mov rsi, r8

.text:000000001000D2D3 mov rbx, rcx

.text:000000001000D2D6 jnz loc_1000D518

.text:000000001000D2DC cmp byte ptr [rcx+1], 4Dh ; 'M'

.text:000000001000D2E0 jnz loc_1000D518

.text:000000001000D2E6 xor r13d, r13d

.text:000000001000D2E9 cmp [rcx+1Eh], r13d

.text:000000001000D2ED jnz loc_1000D518

.text:000000001000D2F3 mov edi, [rcx+0Ah]

.text:000000001000D2F6 add rdi, rcx

.text:000000001000D2F9 mov ecx, [rcx+12h] ; PixelWidth

.text:000000001000D2FC mov r12, rdi

.text:000000001000D2FF imul ecx, [rbx+16h] ; PixelHeight

.text:000000001000D303 shl rcx, 2 ; sizeof
(EFI_GRAPHICS_OUTPUT_BLT_PIXEL)
.text:000000001000D307 cmp [r8], r13
.text:000000001000D30A jnz short loc_1000D32B
.text:000000001000D30C mov [r9], rcx
.text:000000001000D30F call sub_1000C6A0 ; alloc wrapper

Although the source for this function is publicly available, the
ability to unpack the .BIO update and view the actual assembly
was crucial for the future exploitation;
Particularly, e.g. GCC would produce code different to the one
actually used
Also, we could retrieve the assembly for the JPEG parser and
look for vulnerabilities there, even though its source code is
not available in Tiano SDK

A 64-bit code in BIOS?
Aren't all BIOSes execute in 16-bit real mode?

What happens if we use BMP with weird Width and Heigh?
e.g. W=64k, H=64k+1?

W*H*4 in 32bit arithmetics is only
256k (and the output buffer will have
this size); yet, the parser will try to

write over 16G of data there!

We want more the just DoS...

But what for? What can we gain from code execution here?

Keep in mind the BMP processing code executes at the very early
stage of the boot, when the reflashing locks are not applied.

(So we can reflash with any code we want!)

No reflashing locks means our shellcode can reflash the SPI chip!

parser code

BMP file

0

outbuf

IDT

#PF handler

GDT

PDE/PTEs

4G

source

source

The for loop that
does the buffer

overwrite

Unmapped memory
Diagram not in scale!

typedef struct {
 UINT8 Blue;
 UINT8 Green;
 UINT8 Red;
 UINT8 Reserved;
} EFI_GRAPHICS_OUTPUT_BLT_PIXEL;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL *BltBuffer;

for (Height = 0;
Height < BmpHeader->PixelHeight;
Height++) {

 Blt = &BltBuffer[(BmpHeader->PixelHeight-Height-1)*
BmpHeader->PixelWidth];

 for (Width = 0; Width < BmpHeader->PixelWidth;
Width++, Image++, Blt++) {

 /* 24bit bmp case */
 Blt->Blue = *Image++;
 Blt->Green = *Image++;
 Blt->Red = *Image;
 }

The idea of exploitation

The write starts at: (char*)BltBuffer + 4*(W-1)*H
We want to use it to overwrite some interesting data/code at
this address,
The allocation of BltBuffer must succeed, so that W*H,
computed in 32-bits arithmetics, must be reasonably small

How about trying to overwrite the body of the parser itself?
Bad news: suitable W and H do not exist :(
So, inevitably, the parser will raise #PF...

parser code

BMP file

0

outbuf

GDT

PDE/PTEs

4G

source

source

The for loop that does
the buffer overwrite

Unmapped memory

We control this
memory via our

overflow

IDT

#PF handler

#PF exception raised
(access to unmapped

memory)

Diagram not in scale!

Triggering the overflow

W*H is small (computed in 32 bits)
[WRITESTART=BltBuffer+4*(W-1)*H]<=IDT_BASE
(computed in 64bits)
WRITESTART+8*64k >= HIGHEST_ADDR
(computed in 64bits)

the relevant data structure
(PDE) with highest address

Some numbers

#define WRITESTART 0x7b918994
#define IDT 0x7b952018
#define PF_HANDLER 0x7b9540f8
#define PML4 0x7b98a000
#define PDPT0 (PML4+0x1000)
#define PDE01c0

 0x7B98C070
#define PDE0140

 0x7B98C050
#define PDE7b80

 0x7B98DEE0
#define PDE0000

 0x7B98C000
#define GDT38 0x7B958F58

#define BMP_WIDTH
 0xe192a103
#define BMP_HEIGHT
0x48a20476

Intel DQ45, 2GB DRAM, BIOS version: CB0075

W
 = 0xe192a103
H
 = 0x48a20476

(int)(W*H) = 17250

This is the size for which
the buffer will be allocated

Taking care of details

parser code

BMP file

0

outbuf

IDT

#PF handler

GDT

PDE/PTEs

4G

source

source

The for loop that does
the buffer overwrite

Unmapped memory
Diagram not in scale!

We must preserve IDT[0xe] -- the #PF handler address

We will overwrite it with a JMP to our shellcode

We must preserve the CS entry in GDT

We must preserve a few PTEs as well
(e.g. the one for the stack)

#PF handler

JMP RBX

BMP file

The first two bytes of a BMP image are: "BM"
-- luckily this resolves to two REX prefixes on
x86_64, which allows the execution to
smoothly reach our shellcode (just need to
choose the first bytes of the shellcode to make
a valid instruction together with those two
REX prefixes).

shellcode

"BM"

Putting it all together

User experience

Two (2) reboots: one to trigger update processing,
second, after reflashing, to resume infected bios.
It is enough to reflash only small region of a flash, so
reflashing is quick.
No physical access to the machine is needed!

Looks easy, but how we got all the info about how does the BIOS
memory map looks like? How we performed debugging?

But what about finding offsets for different motherboards/different
memory configurations?

The relevant BIOS data structures (say, IDT, page tables) are
not wiped before handing control to OS; so if OS takes care
not to trash them, all the required offsets can be found in
memory.
So, we can create a small "Stub-OS", infect MBR with it,
reboot the system, and gather the offsets.
We have not implemented this.

Preparing a "development" board

Extra socket soldered to the
motherboard (special thanks

to Piotr Witczak, AVT
Polska)

The SPI-flash chip

The SPI-flash chip

EEPROM Programmer

Where the SPI-flash is
originally soldered in
(normally there is no

socket)

Intel Q45 Board

Still, keep in mind that our exploit is software-only!
(This hardware was only necessary to develop the exploit)

Consequences of BIOS Reflash

Malware persistence

SMM rootkits

BIOS reflash
attack

SMM
compromise

reflash &
reboot

SMM attack

Drawbacks

Very firmware-specific

Very offset-dependent

Very complex debugging

Still, we showed it is possible to bypass the firmware protection on
one of the most secure and latest hardware

BIOS code holds the keys to important system capabilities;
therefore, it is important to code it safely!

Yet-Another-On-The-Fly
SMM Attack

BIOS Reflashing Attacks vs. SMM Attacks

BIOS reflash
attack

SMM
compromise

reflash &
reboot

SMM attack

SMM research quick history

2006: Loic Duflot
(not an attack against SMM, SMM unprotected < 2006)

2008: Sherri Sparks, Shawn Embleton
(SMM rooktis, but not attacks on SMM!)

2008: Invisible Things Lab (Memory Remapping bug in Q35 BIOS)

2009: Invisible Things Lab (CERT VU#127284, TBA)

2009: ITL and Duflot (independently!): (Caching attacks on SMM)

(checked box means new SMM attack presented; unchecked means no attack on SMM presented)

Note: the two previously presented SMM attacks (remapping attack,
and caching attack) did not rely on the vulnerabilities present in the

SMM code itself, but rather in different mechanisms, that just
happened to allow also an access to the SMM

 VU#127284 is different...

We discovered it in December 2008 and used in our TXT bypassing
attack presented at Black Hat DC in February 2009

Until yesterday there was no patch...

We analyzed fragments of the SMM code used by Intel BIOS

mov 0x407d(%rip),%rax #TSEG+0x4608
callq *0x18(%rax)

The TSEG+0x4608 locations holds a value OUTSIDE of
SMRAM namely in ACPI NV storage, which is a DRAM
location freely accessible by OS...

Exploitation: overwrite ACPI NV storage memory with a pointer of
your choice, then trigger SMI in a way that results in reaching the

above code.

SMRAM

ACPINV

call [ACPINV+x]

This memory is not protected
by the chipset! OS (and
attacker) can modify it at will!

Shellcode

http://invisiblethingslab.com

http://invisiblethingslab.com
http://invisiblethingslab.com

