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Agenda

� Obligatory Scare Talk

� Why should you  care?

� What is the problem?

� How can TitanEngine change the world?

� Show ME!

� Show ME!

� Show ME!

� How can I help?
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Fighting Malware: 

Old Problem
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Old Problem

Inadequate Infrastructure:

New Problem



Exponential

Growth inGrowth in

Malware
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YIELDSYIELDS
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Exponential Growth in Signatures
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DEMANDINGDEMANDING

ReversingLabs Corporation



ReversingLabs Corporation



RESULTINGRESULTING

IN
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Denial of Service on

Threat Response Teams
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So What?So What?
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Security Industry is a Security Industry is a 

For-Profit Entity
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We’ll Simply Hire MoreWe’ll Simply Hire More

Bodies
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But Could We

Get EnoughGet Enough

Bodies?
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Can’t Hire Enough?

Combine those we have

into one Worldwideinto one Worldwide

Non-profit Entity
(Bwa-ha-ha!)
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OR…

We couldWe could

simply overload them…
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Is an overloaded

anti-malwareanti-malware

analyst an asset

or a liability?
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Henry Ford

� Anti-Malware labs are factories

� 100-200+ Analyst teams

� Advanced workflows

� Multiple levels of management

� Modern labor laws apply: No 20+ hour days

� Productivity can be improved

� Work process can be studied

� Improvements COULD be devised…

ReversingLabs Corporation



So how can Labs do more?

� Charge more, Hire more

� Invest in automation, Invest in heuristics

� Deploy proactive modules, Buy competitors

� All the usual stuff

� … and they could revise their processes
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So how can Labs do more?

� 1,000s of OllyDBG and IDAPro scripts can 

better be reused; could be generalized

� Sample analysis, OEP discovery could benefit 

all team membersall team members

� Reversing should be a team effort
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We have to do it better…We have to do it better…
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� Bad guys

� Rise of $$ motivated custom attacks

� Resourceful crime syndicates

Competition is tough
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$$

$$



Protection is lacking

� Signatures only “important” for threats

� Need for other types of protection

� Behavioral & HIPS tools that work� Behavioral & HIPS tools that work
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Yet manual analysis is still 

the only certain bet!the only certain bet!
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Passion for binary protection

� Meatiest task today is dealing with 

protection techniques

� Task repetition, Error prone, Not 

reusablereusable

� Large number of file formats can be 

infected and used for malware
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� Executable files == most significant threat

� Executables == the “usual suspect” for malware

� 85% of malware samples are packed

� Packing hides malware, hardens its detection

Passion for binary protection

Packing hides malware, hardens its detection

� Packed or protected doesn’t mean bad!

� 10% of legitimate software is packed
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� Legit use for packers & protectors:

� Compressed binaries decrease bandwidth usage

� Protect intellectual property 

� Protect from code theft

Passion for binary protection

� Anti-tampering in multi-player games

� Safeguard licensing code

� Successfully used by malware authors 

� For all the same reasons
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Analyzing Malware

� Malware File Analysis Requires:

� In-depth knowledge of how PE works

� In-depth knowledge of how Windows works

� Various tools to make you reach your goal

� Understanding of Basic Shell Divisions:� Understanding of Basic Shell Divisions:

� Packers, Protectors, Crypters, Bundlers & Hybrids

� Custom malware-specific packers & protectors
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/*408160*/  PUSHAD

/*408161*/  MOV ESI,crackme_.00406000

/*408166*/  LEA EDI,DWORD PTR DS:[ESI+FFFFB000]

/*40816C*/  PUSH EDI

/*40816D*/  OR EBP,FFFFFFFF

/*408170*/  JMP SHORT crackme_.00408182

/*408172*/  NOP

/*408173*/  NOP

/*408174*/  NOP

/*408175*/  NOP

/*408176*/  NOP

/*408177*/  NOP
What’s the Reversing What’s the Reversing 
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/*408177*/  NOP

/*408178*/  MOV AL,BYTE PTR DS:[ESI]

/*40817A*/  INC ESI

/*40817B*/  MOV BYTE PTR DS:[EDI],AL

/*40817D*/  INC EDI

/*40817E*/  ADD EBX,EBX

/*408180*/  JNZ SHORT crackme_.00408189

/*408182*/  MOV EBX,DWORD PTR DS:[ESI]

/*408184*/  SUB ESI,-4

/*408187*/  ADC EBX,EBX

What’s the Reversing 

Process Today?

What’s the Reversing 

Process Today?



Reversing in action|Today

� Inspect the Sample

� Identify the packing shell or compiler
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PEiD



Reversing in action|Today

� Unpack the Sample

� Execute it to the original entry point
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OllyDbg



Reversing in action|Today

� Unpack the Sample

� Execute it to the original entry point
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OllyDbg



Reversing in action|Today

� Unpack the Sample

� Execute it to the original entry point
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OllyDbg



Reversing in action|Today

� Unpack the Sample

� Dump the process memory
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LordPE



Reversing in action|Today

� Unpack the Sample

� Fix the import table

ReversingLabs Corporation

ImpRec



Problems with File analysis

� File analysis takes time

� Identifying requires keeping up with shells

� Shells evolve & have different forms

� Analysts get more samples then they can handle

File unpacking takes even more time
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� File unpacking takes even more time

� Protection “tricks” continue to evolve

� Yet, this process can be automated!



TitanEngineTitanEngine
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Fast Reversing|Tomorrow

� TitanEngine key features:

� Framework designed to work with PE files

� 250 documented functions

� Easy automation of all reversing tools

� Supports both x86 and x64
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� Supports both x86 and x64

� Can create:

� Static, Dynamic & Generic unpackers

� New file analysis tools

� Tested on over 150 unpackers

� Its free and open source!



Furious Reversing|Tomorrow

� Engine simulates reverse engineer’s presence

� Unpacking process has the same steps:

� Debugs until entry point

� Dumps memory to disk

� Collects data for import fixing
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� Collects data for import fixing

� Collects data for relocation fixing

� Custom fixes (Code splices, Entry point, …)



TitanEngine|Content

� SDK Contains:

� Integrated x86/x64 debugger

� Integrated x86/x64 disassembler

� Integrated memory dumper

� Integrated import tracer & fixer
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� Integrated import tracer & fixer

� Integrated relocation fixer

� Integrated file realigner

� TLS, Resources, Exports...



TitanEngine|Debugger

� Integrated x86/x64 Debugger
� Attach / Detach

� Trace, including single stepping

� Set several types of breakpoints:

� Software (INT3)
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� Software (INT3)

� Hardware

� Memory

� Flexible

� API

� Access debugged file’s context



TitanEngine|Debugger

� Integrated x86/x64 Debugger
� Disassembly instructions

� Disassemble a length

� Full disassemble

� Memory manipulation
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� Memory manipulation

� Find, Replace, Patch, Fill…

� Get call/jump destination

� Check if the jump will execute or not

� Thread module for thread manipulation 

� Librarian module for module manipulation



TitanEngine|Dumper

� Integrated Memory Dumper

� Dump memory

� Process, regions or modules

� Paste PE header from disk to memory

� Manipulate file sections
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� Manipulate file sections

� Extract, resort, add, delete & resize

� Manipulate file overlay

� Find, extract, add, copy & remove



TitanEngine|Dumper

� Integrated Memory Dumper

� Convert addresses

� From relative to physical, and vice-versa

� Get section number from address

� PE header data
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� PE header data

� Get and set PE header values



TitanEngine|Importer

� Integrated Import Fixer

� Build new import tables on the fly

� Get API information

� API address in both your & debugged process

� DLL to hold API from API address
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� DLL to hold API from API address

� Remote & local DLL loaded base

� API name from address

� API Forwarders



TitanEngine|Importer

� Integrated Import Fixer

� Automatic import table functions:

� Locate import table in the memory

� Fix the import table automatically

� Fix import eliminations, automatically
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� Fix import eliminations, automatically

� Enumerate and handle import table data

� Move import table from one file to another

� Load import table from any PE file



TitanEngine|Tracer

� Integrated Import Tracer

� Identify import redirections and eliminations

� Fix known import protections

� Use integrated tracers to resolve imports

� Static disassembly tracer
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� Static disassembly tracer

� Static hasher disassembly tracer

� Use ImpRec modules to fix redirections



TitanEngine|Relocater

� Integrated Relocation Fixer

� Build new relocation table on the fly

� Resolve relocation table

� Grab relocation table directly from the process

� Make & compare memory snapshots
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� Make & compare memory snapshots

� Remove relocation table from the file

� Relocate file to new image base



TitanEngine|Realigner

� Integrated File Realigner

� Validate PE files

� Fix broken PE files

� Realign files: reduce size & validate

� Fix header checksum
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� Fix header checksum

� Wipe sections



TitanEngine|The Rest…

� TLS

� Remove callbacks

� Break at callbacks

� Exporter
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� Build export tables on the fly

� Handler

� Close remote handles

� Get file lock handles

� Find open mutexes



TitanEngine|The Rest…

� Resource

� Extract resource

� Remote

� Load & Free libraries into running process
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� OEP Finder

� Get OEP location generically

� Static

� Unpack files statically



Back to Basics:
Shell Modifier Types

� Shell Division

� Crypters

� Packers
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� Packers

� Protectors

� Bundlers

� Data bundlers

� Overlay/Resource bundlers

� Hybrids



Packed File Layout

DOS

PE

Internal data 

decompression

Section 

decompression

Relocation to 

Execution layout

Packed file layout
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Sections

STUB

Overlay

Relocation to 

new base

Import resolving

TLS callback 

emulation

Entry point jump



Unpacker Types…

� Basic Unpacker Division
� Static unpackers:

� Pro: simple, fast & supported by TitanEngine

� Con: don’t work if internal shell mechanisms change

� Dynamic unpackers:
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� Dynamic unpackers:

� Pro: “simple”, fast & supported by TitanEngine

� Con: carry a certain risk of file execution!

� Generic unpackers:

� Pro: Can support large number of similar shells

� Con: Can be highly inaccurate!



Writing an Unpacker…

� Analyze the Packing Shell

� Step 1

� Determine protection types

� Design ways to avoid them

� Determine method to resolve custom protections
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� Determine method to resolve custom protections

� Determine method to skip entry point layer protection

� Determine if we can automate file identification



Writing an Unpacker…

� Analyze the Packing Shell
� Step 2

� Locate packing shell’s important parts

� Where does it fill import table?

� Where does it relocate the file?
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� How does it jump to OEP?

� Identify byte patterns, using lots of samples!

� Proper patterns contain wild cards

� Proper patterns work on all samples

� Proper patterns are based on multiple compiler cases!



Writing an Unpacker…

� Writing the Unpacking Code

� Step 3

� Select the best platform for unpacker creation

� Select framework

� Write a custom one, or select existing
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� Write a custom one, or select existing

� Select programming language

� Step 4

� Write and test it

� Test on as many samples as you can get your hands on!



Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point
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DebugLoop

SetBPX

StopDebug



Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point

Import Data Gathering

LoadLibrary ImporterAddNewDll
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DebugLoop

SetBPX

StopDebug

GetProcAddress

Packer segment

ImporterAddNewAPI



Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point

Reloc Data Gathering

Code just before RelocaterMakeSnapshot
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DebugLoop

SetBPX

StopDebug

Code just after

Packer segment

Relocation code RelocaterMakeSnapshot

CompareTwoSnapshots

ExportRelocation



Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point

Entry Point

DumpProcess

PastePEHeader
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DebugLoop

SetBPX

StopDebug

PastePEHeader

AddNewSection

ImporterExportIAT

AddNewSection

RelocaterExportRelocation

RealignPE



File -> New Unpacker…

� Creating a Dynamic Unpacker for UPX:

� Gathering info on the packer

� Free & open source

� Can pack DLL & EXE files

� Multiple platforms supported
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� Multiple platforms supported

� DEP supported but no x64 support

� Multiple unpackers exist

� UPX can decompress itself!

� Multiple signatures available



UPX | Analysis

� Packer Code Points of Interest

� Point of interest #1:

� Import table filling (string case)

/*40826C*/  MOV EAX,DWORD PTR DS:[EDI]
/*40826E*/  OR EAX,EAX
/*408270*/  JE SHORT crackme_.004082AE
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/*408270*/  JE SHORT crackme_.004082AE
/*408272*/  MOV EBX,DWORD PTR DS:[EDI+4]
/*408275*/  LEA EAX,DWORD PTR DS:[EAX+ESI+8510]
/*40827C*/  ADD EBX,ESI
/*40827E*/  PUSH EAX
/*40827F*/  ADD EDI,8
/*408282*/  CALL NEAR DWORD PTR DS:[ESI+854C]
/*408288*/  XCHG EAX,EBP

Bytes:       50 83 C7 08 FF 96 4C 85 00 00

BPX



UPX | Analysis

� Packer Code Points of Interest

� Point of interest #1:

� Import table filling (ordinal case)

/*40C304*/  MOVZX EAX,WORD PTR DS:[EDI]
/*40C307*/  INC EDI
/*40C308*/  PUSH EAX
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/*40C308*/  PUSH EAX
/*40C309*/  INC EDI
/*40C30A*/  DB B9
/*40C30B*/  PUSH EDI
/*40C30C*/  DEC EAX
/*40C30D*/  REPNE SCAS BYTE PTR ES:[EDI]
/*40C30F*/  PUSH EBP
/*40C310*/  CALL NEAR DWORD PTR DS:[ESI+CBF8]
/*40C316*/  OR EAX,EAX

Bytes:       50 47 ?? 57 48 F2 AE (BPX)

Bytes: 57 48 F2 AE ??FF96 F8 CB 00 00

BPX



UPX | Analysis

� Packer Code Points of Interest

� Point of interest #2:

� Relocating file to loaded base
/*3D2C4A*/  ADD EDI,4
/*3D2C4D*/  LEA EBX,DWORD PTR DS:[ESI-4]

/*3D2C50*/  XOR EAX,EAX
/*3D2C52*/  MOV AL,BYTE PTR DS:[EDI]

Snapshot
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/*3D2C52*/  MOV AL,BYTE PTR DS:[EDI]
/*3D2C54*/  INC EDI
/*3D2C55*/  OR EAX,EAX
/*3D2C57*/  JE SHORT iPackage.003D2C7B
/*3D2C59*/  CMP AL,0EF
/*3D2C5B*/  JA SHORT iPackage.003D2C6E
/*3D2C5D*/  ADD EBX,EAX
/*3D2C5F*/  MOV EAX,DWORD PTR DS:[EBX]
/*3D2C61*/  XCHG AH,AL
/*3D2C63*/  ROL EAX,10
/*3D2C66*/  XCHG AH,AL
/*3D2C68*/  ADD EAX,ESI
/*3D2C6A*/  MOV DWORD PTR DS:[EBX],EAX
/*3D2C6C*/  JMP SHORT iPackage.003D2C50
/*3D2C6E*/  AND AL,0F
/*3D2C70*/  SHL EAX,10
/*3D2C73*/  MOV AX,WORD PTR DS:[EDI]
/*3D2C76*/  ADD EDI,2
/*3D2C79*/  JMP SHORT iPackage.003D2C5D



UPX | Analysis

� Packer Code Points of Interest

� Point of interest #3:

� Entry point jump (old method)

/*4082A1*/  MOV DWORD PTR DS:[EBX],EAX
/*4082A3*/  ADD EBX,4
/*4082A6*/  JMP SHORT crackme_.00408289
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/*4082A6*/  JMP SHORT crackme_.00408289
/*4082A8*/  CALL NEAR DWORD PTR DS:[ESI+8554]
/*4082AE*/  POPAD
/*4082AF*/  JMP crackme_.004012C0

Bytes:       61 E9 0C 90 FF FF

BPX



UPX | Analysis

� Packer Code Points of Interest

� Point of interest #3:

� Entry point jump (new method)

/*45F5F5*/  POPAD
/*45F5F6*/  LEA EAX,DWORD PTR SS:[ESP-80]
/*45F5FA*/  PUSH 0
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/*45F5FA*/  PUSH 0
/*45F5FC*/  CMP ESP,EAX
/*45F5FE*/  JNZ SHORT dELPHI_u.0045F5FA
/*45F600*/  SUB ESP,-80
/*45F603*/  JMP dELPHI_u.0044CF38

Bytes:       83 EC ?? E9 30 D9 FE FF

BPX



UPX | Unpacker

� Starting the “Engine”

� Read interesting file data

� ImageBase, AddressOfEntryPoint, …

� Initialize the debugger

� InitDebugEx for executables
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� InitDebugEx for executables

� InitDLLDebug for libraries

� Set initial breakpoint at packer EP

� DebugLoop();



UPX | Unpacker EP Callback

� Finding Our Points of Interest

� Find import filling code

� Set breakpoints pointing to import handle code

� There are one or two breakpoints here

� Find “relocate to new base” code
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� Find “relocate to new base” code

� Set breakpoints pointing to snapshot code

� There is one breakpoint here (optional)

� Find entry point jump

� Set breakpoints pointing to unpack finalization

� There is one breakpoint here (but two patterns!)



UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Import fixing callback

� Breakpoint #1; Loading new library

� In this callback call ImporterAddNewDLL

� Data: EAX holds the pointer to string in remote process
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� Data: EAX holds the pointer to string in remote process



UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Import fixing callback

� Breakpoint #2: Getting API address (string case)

� In this callback call ImporterAddNewAPI

� Data: EAX holds the pointer to string in remote process
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� Data: EAX holds the pointer to string in remote process

� Data: EBX holds the data write address

� Breakpoint #3: Getting API address (ordinal case)

� In this callback call ImporterAddNewAPI

� Data: EDI holds the ordinal number

� Data: EBX holds the data write address



UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Relocation fixing callback

� Breakpoint #4; Snapshot #1

� This is optional breakpoint, present only if file is DLL

� In this callback we create a snapshot file
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� In this callback we create a snapshot file

� Function RelocaterMakeSnapshoot

� Memory which will be snapshot is first PE section



UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Original entry point callback

� Breakpoint #5

� Dump the process with DumpProcess

� Fix (possibly broken) PE header with PastePEHeader

� Make second relocation snapshot & compare them
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� Make second relocation snapshot & compare them

� Add new section for IAT and export IAT to it

� ImporterExportIAT

� Add new section for relocations and export them

� RelocaterExportRelocation / RelocaterChangeFileBase

� Realign the file with RealignPE

� Move overlay from original to unpacked file

� StopDebug();



UPX | DEMO

� DEMO - UPX Unpacker

� But does it actually work?
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File -> New Unpacker…

� Create a Generic Executable Unpacker

� No signatures, no patterns, no problem…

� Generically determine OEP location

� EP can not be fixed without getting into specifics

� Automatically fix imports
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� Automatically fix imports

� Fix redirections & import eliminations

� No hassle with relocations

� But generic DLL unpacker is possible!

� Dual process dilemma?



Generic OEP finder blueprint

� Creating a generic entry point finder

GetPEdata
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SetMemoryBPX

Your code

SetMemoryBPX

SetMemoryBPX

Finalize unpack StopDebug

Code sections

Hash test

1. EIP inside sections

2. Already written to

3. Hash has changed

4. Not a simple redirection



Generic Unpacker | DEMO

� RL!dePacker 2.0

� But does it actually work?
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AlexProtector | DEMO

� ImportStudio 2.0

� Tool similar to ImpRec used to fix imports

� Demo: fixing import eliminations
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tELock | DEMO

� ImportStudio 2.0

� Tool similar to ImpRec used to fix imports

� Demo: using ImpRec plugins
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TitanEngine | What’s Next?

� Extend Framework

� File function analysis

� Plugins, modules and scripts

� Integrated file identification

� Extend SDK to Delphi and MASM
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� Extend SDK to Delphi and MASM

� Extend SDK to python and ruby

� More Samples of Usage

� One unpacker per week project

� More Analysis Tools Built Around It

� UnpackStudio, MFK…



TitanEngine – How to Help?

� http://titan.reversinglabs.com

� Open Source Project

� Contribute Solutions

� Help others with tutorials� Help others with tutorials

� Contribute Code

� Forums
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Questions?

Questions?
(What Would You Like to Know)
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