
FAST & FURIOUS REVERSE

ENGINEERING WITH TITANENGINE

Mario Vuksan & Tomislav Peričin,

ReversingLabs Corporation

Agenda

� Obligatory Scare Talk

� Why should you care?

� What is the problem?

� How can TitanEngine change the world?

� Show ME!

� Show ME!

� Show ME!

� How can I help?

ReversingLabs Corporation

Fighting Malware:

Old Problem

ReversingLabs Corporation

Old Problem

Inadequate Infrastructure:

New Problem

Exponential

Growth inGrowth in

Malware

ReversingLabs Corporation

YIELDSYIELDS

ReversingLabs Corporation

Exponential Growth in Signatures

ReversingLabs Corporation

DEMANDINGDEMANDING

ReversingLabs Corporation

ReversingLabs Corporation

RESULTINGRESULTING

IN

ReversingLabs Corporation

Denial of Service on

Threat Response Teams

ReversingLabs Corporation

So What?So What?

ReversingLabs Corporation

Security Industry is a Security Industry is a

For-Profit Entity

ReversingLabs Corporation

We’ll Simply Hire MoreWe’ll Simply Hire More

Bodies

ReversingLabs Corporation

But Could We

Get EnoughGet Enough

Bodies?

ReversingLabs Corporation

Can’t Hire Enough?

Combine those we have

into one Worldwideinto one Worldwide

Non-profit Entity
(Bwa-ha-ha!)

ReversingLabs Corporation

OR…

We couldWe could

simply overload them…

ReversingLabs Corporation

Is an overloaded

anti-malwareanti-malware

analyst an asset

or a liability?

ReversingLabs Corporation

Henry Ford

� Anti-Malware labs are factories

� 100-200+ Analyst teams

� Advanced workflows

� Multiple levels of management

� Modern labor laws apply: No 20+ hour days

� Productivity can be improved

� Work process can be studied

� Improvements COULD be devised…

ReversingLabs Corporation

So how can Labs do more?

� Charge more, Hire more

� Invest in automation, Invest in heuristics

� Deploy proactive modules, Buy competitors

� All the usual stuff

� … and they could revise their processes

ReversingLabs Corporation

So how can Labs do more?

� 1,000s of OllyDBG and IDAPro scripts can

better be reused; could be generalized

� Sample analysis, OEP discovery could benefit

all team membersall team members

� Reversing should be a team effort

ReversingLabs Corporation

We have to do it better…We have to do it better…

ReversingLabs Corporation

� Bad guys

� Rise of $$ motivated custom attacks

� Resourceful crime syndicates

Competition is tough

ReversingLabs Corporation

$$

$$

Protection is lacking

� Signatures only “important” for threats

� Need for other types of protection

� Behavioral & HIPS tools that work� Behavioral & HIPS tools that work

ReversingLabs Corporation

Yet manual analysis is still

the only certain bet!the only certain bet!

ReversingLabs Corporation

Passion for binary protection

� Meatiest task today is dealing with

protection techniques

� Task repetition, Error prone, Not

reusablereusable

� Large number of file formats can be

infected and used for malware

ReversingLabs Corporation

� Executable files == most significant threat

� Executables == the “usual suspect” for malware

� 85% of malware samples are packed

� Packing hides malware, hardens its detection

Passion for binary protection

Packing hides malware, hardens its detection

� Packed or protected doesn’t mean bad!

� 10% of legitimate software is packed

ReversingLabs Corporation

� Legit use for packers & protectors:

� Compressed binaries decrease bandwidth usage

� Protect intellectual property

� Protect from code theft

Passion for binary protection

� Anti-tampering in multi-player games

� Safeguard licensing code

� Successfully used by malware authors

� For all the same reasons

ReversingLabs Corporation

Analyzing Malware

� Malware File Analysis Requires:

� In-depth knowledge of how PE works

� In-depth knowledge of how Windows works

� Various tools to make you reach your goal

� Understanding of Basic Shell Divisions:� Understanding of Basic Shell Divisions:

� Packers, Protectors, Crypters, Bundlers & Hybrids

� Custom malware-specific packers & protectors

ReversingLabs Corporation

/*408160*/ PUSHAD

/*408161*/ MOV ESI,crackme_.00406000

/*408166*/ LEA EDI,DWORD PTR DS:[ESI+FFFFB000]

/*40816C*/ PUSH EDI

/*40816D*/ OR EBP,FFFFFFFF

/*408170*/ JMP SHORT crackme_.00408182

/*408172*/ NOP

/*408173*/ NOP

/*408174*/ NOP

/*408175*/ NOP

/*408176*/ NOP

/*408177*/ NOP
What’s the Reversing What’s the Reversing

ReversingLabs Corporation

/*408177*/ NOP

/*408178*/ MOV AL,BYTE PTR DS:[ESI]

/*40817A*/ INC ESI

/*40817B*/ MOV BYTE PTR DS:[EDI],AL

/*40817D*/ INC EDI

/*40817E*/ ADD EBX,EBX

/*408180*/ JNZ SHORT crackme_.00408189

/*408182*/ MOV EBX,DWORD PTR DS:[ESI]

/*408184*/ SUB ESI,-4

/*408187*/ ADC EBX,EBX

What’s the Reversing

Process Today?

What’s the Reversing

Process Today?

Reversing in action|Today

� Inspect the Sample

� Identify the packing shell or compiler

ReversingLabs Corporation

PEiD

Reversing in action|Today

� Unpack the Sample

� Execute it to the original entry point

ReversingLabs Corporation

OllyDbg

Reversing in action|Today

� Unpack the Sample

� Execute it to the original entry point

ReversingLabs Corporation

OllyDbg

Reversing in action|Today

� Unpack the Sample

� Execute it to the original entry point

ReversingLabs Corporation

OllyDbg

Reversing in action|Today

� Unpack the Sample

� Dump the process memory

ReversingLabs Corporation
LordPE

Reversing in action|Today

� Unpack the Sample

� Fix the import table

ReversingLabs Corporation

ImpRec

Problems with File analysis

� File analysis takes time

� Identifying requires keeping up with shells

� Shells evolve & have different forms

� Analysts get more samples then they can handle

File unpacking takes even more time

ReversingLabs Corporation

� File unpacking takes even more time

� Protection “tricks” continue to evolve

� Yet, this process can be automated!

TitanEngineTitanEngine
ReversingLabs Corporation

Fast Reversing|Tomorrow

� TitanEngine key features:

� Framework designed to work with PE files

� 250 documented functions

� Easy automation of all reversing tools

� Supports both x86 and x64

ReversingLabs Corporation

� Supports both x86 and x64

� Can create:

� Static, Dynamic & Generic unpackers

� New file analysis tools

� Tested on over 150 unpackers

� Its free and open source!

Furious Reversing|Tomorrow

� Engine simulates reverse engineer’s presence

� Unpacking process has the same steps:

� Debugs until entry point

� Dumps memory to disk

� Collects data for import fixing

ReversingLabs Corporation

� Collects data for import fixing

� Collects data for relocation fixing

� Custom fixes (Code splices, Entry point, …)

TitanEngine|Content

� SDK Contains:

� Integrated x86/x64 debugger

� Integrated x86/x64 disassembler

� Integrated memory dumper

� Integrated import tracer & fixer

ReversingLabs Corporation

� Integrated import tracer & fixer

� Integrated relocation fixer

� Integrated file realigner

� TLS, Resources, Exports...

TitanEngine|Debugger

� Integrated x86/x64 Debugger
� Attach / Detach

� Trace, including single stepping

� Set several types of breakpoints:

� Software (INT3)

ReversingLabs Corporation

� Software (INT3)

� Hardware

� Memory

� Flexible

� API

� Access debugged file’s context

TitanEngine|Debugger

� Integrated x86/x64 Debugger
� Disassembly instructions

� Disassemble a length

� Full disassemble

� Memory manipulation

ReversingLabs Corporation

� Memory manipulation

� Find, Replace, Patch, Fill…

� Get call/jump destination

� Check if the jump will execute or not

� Thread module for thread manipulation

� Librarian module for module manipulation

TitanEngine|Dumper

� Integrated Memory Dumper

� Dump memory

� Process, regions or modules

� Paste PE header from disk to memory

� Manipulate file sections

ReversingLabs Corporation

� Manipulate file sections

� Extract, resort, add, delete & resize

� Manipulate file overlay

� Find, extract, add, copy & remove

TitanEngine|Dumper

� Integrated Memory Dumper

� Convert addresses

� From relative to physical, and vice-versa

� Get section number from address

� PE header data

ReversingLabs Corporation

� PE header data

� Get and set PE header values

TitanEngine|Importer

� Integrated Import Fixer

� Build new import tables on the fly

� Get API information

� API address in both your & debugged process

� DLL to hold API from API address

ReversingLabs Corporation

� DLL to hold API from API address

� Remote & local DLL loaded base

� API name from address

� API Forwarders

TitanEngine|Importer

� Integrated Import Fixer

� Automatic import table functions:

� Locate import table in the memory

� Fix the import table automatically

� Fix import eliminations, automatically

ReversingLabs Corporation

� Fix import eliminations, automatically

� Enumerate and handle import table data

� Move import table from one file to another

� Load import table from any PE file

TitanEngine|Tracer

� Integrated Import Tracer

� Identify import redirections and eliminations

� Fix known import protections

� Use integrated tracers to resolve imports

� Static disassembly tracer

ReversingLabs Corporation

� Static disassembly tracer

� Static hasher disassembly tracer

� Use ImpRec modules to fix redirections

TitanEngine|Relocater

� Integrated Relocation Fixer

� Build new relocation table on the fly

� Resolve relocation table

� Grab relocation table directly from the process

� Make & compare memory snapshots

ReversingLabs Corporation

� Make & compare memory snapshots

� Remove relocation table from the file

� Relocate file to new image base

TitanEngine|Realigner

� Integrated File Realigner

� Validate PE files

� Fix broken PE files

� Realign files: reduce size & validate

� Fix header checksum

ReversingLabs Corporation

� Fix header checksum

� Wipe sections

TitanEngine|The Rest…

� TLS

� Remove callbacks

� Break at callbacks

� Exporter

ReversingLabs Corporation

� Build export tables on the fly

� Handler

� Close remote handles

� Get file lock handles

� Find open mutexes

TitanEngine|The Rest…

� Resource

� Extract resource

� Remote

� Load & Free libraries into running process

ReversingLabs Corporation

� OEP Finder

� Get OEP location generically

� Static

� Unpack files statically

Back to Basics:
Shell Modifier Types

� Shell Division

� Crypters

� Packers

ReversingLabs Corporation

� Packers

� Protectors

� Bundlers

� Data bundlers

� Overlay/Resource bundlers

� Hybrids

Packed File Layout

DOS

PE

Internal data

decompression

Section

decompression

Relocation to

Execution layout

Packed file layout

ReversingLabs Corporation

Sections

STUB

Overlay

Relocation to

new base

Import resolving

TLS callback

emulation

Entry point jump

Unpacker Types…

� Basic Unpacker Division
� Static unpackers:

� Pro: simple, fast & supported by TitanEngine

� Con: don’t work if internal shell mechanisms change

� Dynamic unpackers:

ReversingLabs Corporation

� Dynamic unpackers:

� Pro: “simple”, fast & supported by TitanEngine

� Con: carry a certain risk of file execution!

� Generic unpackers:

� Pro: Can support large number of similar shells

� Con: Can be highly inaccurate!

Writing an Unpacker…

� Analyze the Packing Shell

� Step 1

� Determine protection types

� Design ways to avoid them

� Determine method to resolve custom protections

ReversingLabs Corporation

� Determine method to resolve custom protections

� Determine method to skip entry point layer protection

� Determine if we can automate file identification

Writing an Unpacker…

� Analyze the Packing Shell
� Step 2

� Locate packing shell’s important parts

� Where does it fill import table?

� Where does it relocate the file?

ReversingLabs Corporation

� How does it jump to OEP?

� Identify byte patterns, using lots of samples!

� Proper patterns contain wild cards

� Proper patterns work on all samples

� Proper patterns are based on multiple compiler cases!

Writing an Unpacker…

� Writing the Unpacking Code

� Step 3

� Select the best platform for unpacker creation

� Select framework

� Write a custom one, or select existing

ReversingLabs Corporation

� Write a custom one, or select existing

� Select programming language

� Step 4

� Write and test it

� Test on as many samples as you can get your hands on!

Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point

ReversingLabs Corporation

DebugLoop

SetBPX

StopDebug

Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point

Import Data Gathering

LoadLibrary ImporterAddNewDll

ReversingLabs Corporation

DebugLoop

SetBPX

StopDebug

GetProcAddress

Packer segment

ImporterAddNewAPI

Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point

Reloc Data Gathering

Code just before RelocaterMakeSnapshot

ReversingLabs Corporation

DebugLoop

SetBPX

StopDebug

Code just after

Packer segment

Relocation code RelocaterMakeSnapshot

CompareTwoSnapshots

ExportRelocation

Dynamic Unpacker Layout

GetPEdata

InitDebug

SetBPX

Import fix Reloc fix Entry point

Entry Point

DumpProcess

PastePEHeader

ReversingLabs Corporation

DebugLoop

SetBPX

StopDebug

PastePEHeader

AddNewSection

ImporterExportIAT

AddNewSection

RelocaterExportRelocation

RealignPE

File -> New Unpacker…

� Creating a Dynamic Unpacker for UPX:

� Gathering info on the packer

� Free & open source

� Can pack DLL & EXE files

� Multiple platforms supported

ReversingLabs Corporation

� Multiple platforms supported

� DEP supported but no x64 support

� Multiple unpackers exist

� UPX can decompress itself!

� Multiple signatures available

UPX | Analysis

� Packer Code Points of Interest

� Point of interest #1:

� Import table filling (string case)

/*40826C*/ MOV EAX,DWORD PTR DS:[EDI]
/*40826E*/ OR EAX,EAX
/*408270*/ JE SHORT crackme_.004082AE

ReversingLabs Corporation

/*408270*/ JE SHORT crackme_.004082AE
/*408272*/ MOV EBX,DWORD PTR DS:[EDI+4]
/*408275*/ LEA EAX,DWORD PTR DS:[EAX+ESI+8510]
/*40827C*/ ADD EBX,ESI
/*40827E*/ PUSH EAX
/*40827F*/ ADD EDI,8
/*408282*/ CALL NEAR DWORD PTR DS:[ESI+854C]
/*408288*/ XCHG EAX,EBP

Bytes: 50 83 C7 08 FF 96 4C 85 00 00

BPX

UPX | Analysis

� Packer Code Points of Interest

� Point of interest #1:

� Import table filling (ordinal case)

/*40C304*/ MOVZX EAX,WORD PTR DS:[EDI]
/*40C307*/ INC EDI
/*40C308*/ PUSH EAX

ReversingLabs Corporation

/*40C308*/ PUSH EAX
/*40C309*/ INC EDI
/*40C30A*/ DB B9
/*40C30B*/ PUSH EDI
/*40C30C*/ DEC EAX
/*40C30D*/ REPNE SCAS BYTE PTR ES:[EDI]
/*40C30F*/ PUSH EBP
/*40C310*/ CALL NEAR DWORD PTR DS:[ESI+CBF8]
/*40C316*/ OR EAX,EAX

Bytes: 50 47 ?? 57 48 F2 AE (BPX)

Bytes: 57 48 F2 AE ??FF96 F8 CB 00 00

BPX

UPX | Analysis

� Packer Code Points of Interest

� Point of interest #2:

� Relocating file to loaded base
/*3D2C4A*/ ADD EDI,4
/*3D2C4D*/ LEA EBX,DWORD PTR DS:[ESI-4]

/*3D2C50*/ XOR EAX,EAX
/*3D2C52*/ MOV AL,BYTE PTR DS:[EDI]

Snapshot

ReversingLabs Corporation

/*3D2C52*/ MOV AL,BYTE PTR DS:[EDI]
/*3D2C54*/ INC EDI
/*3D2C55*/ OR EAX,EAX
/*3D2C57*/ JE SHORT iPackage.003D2C7B
/*3D2C59*/ CMP AL,0EF
/*3D2C5B*/ JA SHORT iPackage.003D2C6E
/*3D2C5D*/ ADD EBX,EAX
/*3D2C5F*/ MOV EAX,DWORD PTR DS:[EBX]
/*3D2C61*/ XCHG AH,AL
/*3D2C63*/ ROL EAX,10
/*3D2C66*/ XCHG AH,AL
/*3D2C68*/ ADD EAX,ESI
/*3D2C6A*/ MOV DWORD PTR DS:[EBX],EAX
/*3D2C6C*/ JMP SHORT iPackage.003D2C50
/*3D2C6E*/ AND AL,0F
/*3D2C70*/ SHL EAX,10
/*3D2C73*/ MOV AX,WORD PTR DS:[EDI]
/*3D2C76*/ ADD EDI,2
/*3D2C79*/ JMP SHORT iPackage.003D2C5D

UPX | Analysis

� Packer Code Points of Interest

� Point of interest #3:

� Entry point jump (old method)

/*4082A1*/ MOV DWORD PTR DS:[EBX],EAX
/*4082A3*/ ADD EBX,4
/*4082A6*/ JMP SHORT crackme_.00408289

ReversingLabs Corporation

/*4082A6*/ JMP SHORT crackme_.00408289
/*4082A8*/ CALL NEAR DWORD PTR DS:[ESI+8554]
/*4082AE*/ POPAD
/*4082AF*/ JMP crackme_.004012C0

Bytes: 61 E9 0C 90 FF FF

BPX

UPX | Analysis

� Packer Code Points of Interest

� Point of interest #3:

� Entry point jump (new method)

/*45F5F5*/ POPAD
/*45F5F6*/ LEA EAX,DWORD PTR SS:[ESP-80]
/*45F5FA*/ PUSH 0

ReversingLabs Corporation

/*45F5FA*/ PUSH 0
/*45F5FC*/ CMP ESP,EAX
/*45F5FE*/ JNZ SHORT dELPHI_u.0045F5FA
/*45F600*/ SUB ESP,-80
/*45F603*/ JMP dELPHI_u.0044CF38

Bytes: 83 EC ?? E9 30 D9 FE FF

BPX

UPX | Unpacker

� Starting the “Engine”

� Read interesting file data

� ImageBase, AddressOfEntryPoint, …

� Initialize the debugger

� InitDebugEx for executables

ReversingLabs Corporation

� InitDebugEx for executables

� InitDLLDebug for libraries

� Set initial breakpoint at packer EP

� DebugLoop();

UPX | Unpacker EP Callback

� Finding Our Points of Interest

� Find import filling code

� Set breakpoints pointing to import handle code

� There are one or two breakpoints here

� Find “relocate to new base” code

ReversingLabs Corporation

� Find “relocate to new base” code

� Set breakpoints pointing to snapshot code

� There is one breakpoint here (optional)

� Find entry point jump

� Set breakpoints pointing to unpack finalization

� There is one breakpoint here (but two patterns!)

UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Import fixing callback

� Breakpoint #1; Loading new library

� In this callback call ImporterAddNewDLL

� Data: EAX holds the pointer to string in remote process

ReversingLabs Corporation

� Data: EAX holds the pointer to string in remote process

UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Import fixing callback

� Breakpoint #2: Getting API address (string case)

� In this callback call ImporterAddNewAPI

� Data: EAX holds the pointer to string in remote process

ReversingLabs Corporation

� Data: EAX holds the pointer to string in remote process

� Data: EBX holds the data write address

� Breakpoint #3: Getting API address (ordinal case)

� In this callback call ImporterAddNewAPI

� Data: EDI holds the ordinal number

� Data: EBX holds the data write address

UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Relocation fixing callback

� Breakpoint #4; Snapshot #1

� This is optional breakpoint, present only if file is DLL

� In this callback we create a snapshot file

ReversingLabs Corporation

� In this callback we create a snapshot file

� Function RelocaterMakeSnapshoot

� Memory which will be snapshot is first PE section

UPX | Unpacker Breakpoints

� Assign Callbacks to Our Breakpoints

� Original entry point callback

� Breakpoint #5

� Dump the process with DumpProcess

� Fix (possibly broken) PE header with PastePEHeader

� Make second relocation snapshot & compare them

ReversingLabs Corporation

� Make second relocation snapshot & compare them

� Add new section for IAT and export IAT to it

� ImporterExportIAT

� Add new section for relocations and export them

� RelocaterExportRelocation / RelocaterChangeFileBase

� Realign the file with RealignPE

� Move overlay from original to unpacked file

� StopDebug();

UPX | DEMO

� DEMO - UPX Unpacker

� But does it actually work?

ReversingLabs Corporation

File -> New Unpacker…

� Create a Generic Executable Unpacker

� No signatures, no patterns, no problem…

� Generically determine OEP location

� EP can not be fixed without getting into specifics

� Automatically fix imports

ReversingLabs Corporation

� Automatically fix imports

� Fix redirections & import eliminations

� No hassle with relocations

� But generic DLL unpacker is possible!

� Dual process dilemma?

Generic OEP finder blueprint

� Creating a generic entry point finder

GetPEdata

ReversingLabs Corporation

SetMemoryBPX

Your code

SetMemoryBPX

SetMemoryBPX

Finalize unpack StopDebug

Code sections

Hash test

1. EIP inside sections

2. Already written to

3. Hash has changed

4. Not a simple redirection

Generic Unpacker | DEMO

� RL!dePacker 2.0

� But does it actually work?

ReversingLabs Corporation

AlexProtector | DEMO

� ImportStudio 2.0

� Tool similar to ImpRec used to fix imports

� Demo: fixing import eliminations

ReversingLabs Corporation

tELock | DEMO

� ImportStudio 2.0

� Tool similar to ImpRec used to fix imports

� Demo: using ImpRec plugins

ReversingLabs Corporation

TitanEngine | What’s Next?

� Extend Framework

� File function analysis

� Plugins, modules and scripts

� Integrated file identification

� Extend SDK to Delphi and MASM

ReversingLabs Corporation

� Extend SDK to Delphi and MASM

� Extend SDK to python and ruby

� More Samples of Usage

� One unpacker per week project

� More Analysis Tools Built Around It

� UnpackStudio, MFK…

TitanEngine – How to Help?

� http://titan.reversinglabs.com

� Open Source Project

� Contribute Solutions

� Help others with tutorials� Help others with tutorials

� Contribute Code

� Forums

ReversingLabs Corporation

Questions?

Questions?
(What Would You Like to Know)

ReversingLabs Corporation

ReversingLabs Corporation

