Ruby For Pentesters @

Mike Tracy, Chris Rohlf, Eric Monti

Mike Tracy

¢ Chris Rohlf

Yr Eric Monti

Y Why Ruby
Y Scripted Pen-Testing

Y Reversing

Y Fuzzing

+ Integrating Ruby

Y See a nail? Ruby is the Hammer
* \Versatile
* Robust standard library
 Extend existing classes to meet new needs
* Hook existing libraries with Ruby/DL or FFI

* Rubify anything by embedding Ruby
* Generally easy to write and understand

 Language structure lends itself to DSL
creation

* |IRB makes a great general-purpose console
* Blocks, mixins and monkey patching

Friday, July 24, 2009

+ Java is ugly

* ... requires Java. Gross!

Use JRuby!

e A full Ruby runtime inside a JVM
e Ok... So what?

* Seamless access to pure Java classes
* Ruby-style introspection applied to Java

Bounce between Ruby and Java based
on need

More later...

Friday, July 24, 2009

And We're Not Alone

v Lots of great security tools in Ruby
Metasploit
* Huge!

ldaRub
Ronin

More ...

... but why isn't this list longer?

Friday, July 24, 2009

% Our approach to Ruby

* Use and extend what is already available to you
* Monkey Patches
e Luckily this isn't a Ruby conference ;)

* Don't reinvent the wheel

* Take tools and techniques that work and
make them better

* For example ...

Friday, July 24, 2009

¥ RBKB - Ruby Black Bag

* A ruby clone of the original Matasano Blackbag
written in C
Extensions to existing Ruby classes and general
purpose pen-testing tools

Great for pen testing and reversing
* Example: extending the String class
* "rubyisgreat” {xor, bb4, dé4, urlenc,
urldec, hexdump, hexity, unhexity, blit,
entropy, bgrep, crc32}

Friday, July 24, 2009

Scripted Pen-Testing @

The Engagement

Threat modeling / situational awareness
Logistics challenges

Everything is a webapp (even thick clients)
Must find the bread and butter vulnerabilities

More subtle vulnerabilities might take a back seat

Friday, July 24, 2009

Tools You Know and Love

Friday, July 24, 2009

Burp Proxy
WebScarab
Fiddler

Paros

@Stake Proxy
w3af

Weblnspect
AppScan
Acunetix
Hailstorm
Grendel-Scan
Sentinel

browser plug-ins
curl + sh

[sorry if | left you out]

Why Something New?

Friday, July 24, 2009

Previous success using scrapers and fuzzers to test
web applications

Wanted fine-grained ability to manipulate any input
(surgical fuzzing) in any part of the request and
detect specific responses
* Need a console for fuzz prototyping

Turn fuzz prototypes into automated scripts

‘esting thick client apps that use HTTP for transport
Test custom form submissions

Smarter spidering

Quickly move the test focus from the bread and
butter to more difficult and devastating attacks

Why Ruby?

slides[4].call

Awesome core libraries being developed in an
active community

We're a Ruby shop and | didn’t have a clue

Friday, July 24, 2009

What Ruby Brings

* Transport

e Curb
e Net/HTTP
e EventMachine

* OpenSSL

* Parsing
* Nokogiri
* Hpricot

e URI module WWMD Utf7
def to _utf7

O En(de)cod”']g self.scan(/./m).map { |b]

"+" + [b.toutfl6].pack("m").strip[0..2] + "-"

o Built-ins }join("")
en

* Standard Library end
* Easy to mixin custom

[XPath searching an HTML DOM is incredibly useful]

class String
include WWMD Utf7
end

Friday, July 24, 2009

WWMD Classes

Page: all the heavy lifting
Scrape: pull useful goo from pages
Spider: find where everything is

Form*: manipulate and submit HTML forms
* and GET parameters and other things

UrlParse: re-inventing the wheel
ViewState: deserializer / serializer / fuzzer

Lots of utilities for everyday tasks
Parse, cut and paste from and use burp/webscarab logs
* FormFuzzer templates

* URLlists / Fuzzlists
* Convenience methods to make fuzzing web services easier

Friday, July 24, 2009

What Can | Do With It?

A tool like scapy but for webapp pen-testing
Integrate with the tools you already use

Manipulate the entire request from a shell prompt

* POST and GET parameters
* headers, bodies and bespoke request types

Easy shift between character encodings

Focused customization of attack strings and wordlists
* orfuzz using generators

XPath searches of response bodies to create a smart fuzzer
Instantaneous (almost) testing of exploits and concept proofs
Trivial to automate spidering, scraping and exploit generation
Find something new, mixin a method and it’s yours forever

Friday, July 24, 2009

Walkthrough

And now... some code

Friday, July 24, 2009

A

welcome to example.com

example.com

providing examples since 1992

Friday, July 24, 2009

let’s figure out how to login

> wwmd

wwmd> OPTS = { :base_url => "http://www.example.com/example” }
=> {:base_url=>"http://www.example.com/example"}
wwmd> page = Page.new(OPTS)

=> ..

wwmd> page.get "http://www.example.com/example"”
=> [200, 663]

wwmd> page.now

=> "http://www.example.com/example/login.php"
wwmd> form = page.get_ form

=> [["username", nil], ["password"”, nil]]

wwmd> form.type

=> "post™

wwmd> form.action

=> "http://www.example.com/example/login_handler.php"

Friday, July 24, 2009

login method example

module WWMD
class Page
attr_reader :logged_in
def login(url,uname,passwd)
self.get(url) ;# GET the login page
form = self.get_form s;# get the login form
s# did we actually get a form?
return (self.logged in = false) unless form
form["username"] = uname ;# set form username
form["password"”] = passwd ;# set form password
self.submit(form) ;# submit the form

naively check for password fields to see if we're still on login page
self.logged in = (self.search("//input[@type='password']").size == 0)
end
end

end

Friday, July 24, 2009

login method test

#!/usr/bin/env ruby
require 'wwmd'’

require 'example_mixins’
include WWMD

opts = { :base_url => "http://www.example.com” }

page = Page.new(opts)

page.login((page.base_url + "/example"),"jgpublic","password")
raise "not logged in" unless page.logged in

puts page.search("//div[@class="loggedin']").first.text

>./login_test.rb

you are logged in as jqpublic [logout]

Friday, July 24, 2009

what’s in here?

exa m p I e . C O m you are logged in as jqpublic

providing examples since 1992

your user profile

First Name: John Middle Initial: Q Last Name: Public Things To Do:
Address: 3501 S. Shields Apt: Apt. 301 view profile
City: Chicago State: IL Zip: 60616 D
Phone: 312-744-1000
Email: jgpublic@example.com
SSN: ###-##-####

edit profile

Friday, July 24, 2009

simple spider

#!/usr/bin/env ruby
require 'wwmd'

require 'example mixins'
include WWMD

opts = { :base_url => "http://www.example.com" }

page = Page.new(opts)

spider = page.spider ;# use page's spider object

spider.set_ignore([/logout/i, /login/i]) ;# ignore login and logout

page.login((page.base _url + "/example"),"jgpublic”, "password")

raise "not logged in" unless page.logged in

while (url = spider.next) ;# shift from collected urls
code,size = page.get(url) ;# get the shifted url
page.summary s# report on the page

end

>./spider_example.rb

XXXX[LjfC
XXXX[LjFC
XXXX[1jfc
XXXX[LjfC

Friday, July 24, 2009

1 | http://www.example.com/example/generate_report.php?userid=1045 | 818

1 | http://www.example.com/example/edit profile.php?userid=1045 | 2740

1 | http://www.example.com/example/downloads/TEMP1053623.pdf?userid=1045 | 21741
1 | http://www.example.com/example/edit_profile handler.php?userid=1045 | 2039

simple xss fuzzer

fuzz = File.read("xss_fuzzlist.txt").split("\n")
while (url = spider.next)
code,size = page.get(url)

next unless (form = page.get_form) page has a form?

A" X}

oform = form.clone copy the original form

oo

form.each do |k,v| each key=value in the form

oo

fuzz.each do |f|
form[k] = f

r = Regexp.new(Regexp.escape(f),"i")

each entry in the fuzzlist

e

set value to our fuzz string

create regexp to match

ve

page.submit(form) submit the form

oo

form = oform.clone reset the form

A" X}

next unless page.body data.match(r)
puts "XSS in #{k} | #{form.action}"
end

is our string reflected?

A" X}

e
H H H H H O H H H H H

yes

AV X

end

page.submit(oform) ;# leave things as we found them

end

Friday, July 24, 2009

found some XSS

http:/ /www.example.com

providing examples since 1992

PHPSESSID=687dupc4i5t68ffvpm529jdv74

your user profile

First Name: John Middle Initial: Q Last Name: Public Things To Do:
Address: 3501 S. Shields Apt: Apt. 301 view profile
City: Chicago State: IL Zip: 60616 IO
Phone: 312-744-1000
Email:
SSN: ###-HH-HHHH#

> ./form_fuzzer_example.rb

XSS in address 2 | http://www.example.com/example/edit_profile handler.php?userid=1045
XSS in email | http://www.example.com/example/edit profile handler.php?userid=1045

Friday, July 24, 2009

viewstate example

wwmd> page = Page.new()
wwmd> vs = ViewState.new()
wwmd> page.get "http://www.example.com/vstest/test.html”
=> [200, 287]
wwmd> vs.debug = true
wwmd> page.get "http://www.example.com/vstest/test.html”
=> [200, 287]
wwmd> vs.deserialize(page.get_form['__VIEWSTATE'])
00000002 [Ox0f] pair: next = string
00000003 [0x05] string: wwmd viewstate
00000013 [0x05] string: decoder
wwmd> puts vs.to_xml.pp
<ViewState version_string='ff01' version='/wE='>
<VSPair>
<VSString>wwmd viewstate</VSString>
<VSString>decoder</VSString>
</VSPair>
</ViewState>

Friday, July 24, 2009

viewstate example

#!/usr/bin/env ruby
require 'wwmd'
include WWMD

OPTS = { :base url => "http://www.example.com/example" }
page = Page.new(OPTS)

vs = ViewState.new()

page.get(page.base_url + "/binary serialized test.html")
vs.deserialize(page.get form[" VIEWSTATE"])
vs.to_xml.search("//VSBinarySerialized").each do |node]

puts "====[#{node.text.size}"
puts node.text.b64d.hexdump

end

Friday, July 24, 2009

Y Java Remote Method Invocation

e Translates:

* Transparent network serialization of
objects between clients and servers

* Been around 10+ years.

* But it crops up all over enterprise apps
* We see this stuff everywhere by now

* Examples:

e JMX rides on RMI
e grep ‘extends UnicastRemoteObiject’

Friday, July 24, 2009

Y Risks

* A4 - Insecure Direct Object Reference
 ...and how

* An RMI client program will often tell you:
e AUTHENTICATION REQUIRED
* oh really?

* But where are the JRMI security testing tools?

Friday, July 24, 2009

+ JRMI From JRuby - a primer

Friday, July 24, 2009

Fire up JIRB and load RMI stub classes

e JRMI needs the client to have ‘Stubs’ for remote endpoints

* In Ruby, this usually just comes down to this:
Dir["*.jar"].each {|jarfile| require jarfile }

Get a remote JRMI registry reference to walk the endpoints
and their exposed methods:

import java.rmi.Naming # reads just like it does in Java

registry = Naming.lookup("//victimhost:1099")

registry.list.each do |[remote_name| # walk the remote endpoints
remote = registry.lookup(remote_name)
walk its instance methods
remote.java_class.declared_instance_methods.each do |meth|

puts "#{meth.to_s}" # produce a Java method prototype

end

end

Scripted Pen-Testing

Y JRMI - Remote Method Invocation cont...

* Next, don't be shocked to type things like

e remote.getSystemConfiguration()
e remote.getUserPassword('admin’)
e remote.executeCommand(‘/bin/pwn’)

* We've beaten numerous enterprise Java apps
using little more than ‘jirb’ and a jar file.

* ... and we didn't write a single line of Java

Friday, July 24, 2009

Reversing @

Reversing

¥ Reverse Engineering

* Having a dynamic language for reversing is a
must

* Ruby excels in this role

e Many of the built-ins feel like they were
made for reversing

* What isnt built is easily added

Friday, July 24, 2009

Reversing

Y Network Protocols

* You have to start somewhere

* Plugboards
* Blit, Plug, Telson

* Using IRB to get inline

* More advanced ...

e Protocol awareness
* Ruckus

Friday, July 24, 2009

Reversing

Y Network Protocols

* Blit

* A simple OOB IPC mechanism for
sending messages to blit enabled tools

* Plug

* A reverse TCP proxy between one or
more network connections

elson

* Sets up a network connection and listens
for messages from a blit client

Friday, July 24, 2009

Reversing

Y Network Protocols

* Reversing a proprietary network protocol

We capture a session and use Black Bag's cap2files
to extract the TCP payloads

* capZ2files will dump each payload as a small binary
file with ordered file names

* We will need these files later

Read in each payload file to an array

pl_ary = Array.new

d = Dir.entries('./saved_packets/')
d.delete_if do |x| x =="." end

d.delete_if do |x| x ==".." end

d.each do [x| pl_ary.push(File.read(x)) end

Friday, July 24, 2009

Reversing

Y Network Protocols
* ... continued

Lets try a replay attack with some modified fields
* modify a length field in each payload at offset 5

* pl_ary.each do |[x| x[5] = rand(256); end

connect to target with Telson

* telson -r 192.168.1.1:1234

start up a conversation from within IRB

* pl_ary[0].blit

or automate it with Black Bag's feed utility

o feed --from-files=* -r 192.168.1.1:1234

* capZ2files names them in order for a reason!

Friday, July 24, 2009

Reversing

Y Network Protocols

Friday, July 24, 2009

* Ruckus
* A DOM-Inspired Ruby Smart Fuzzer

Declare structures like your writing C
Detine network protocol headers
Built in mutators for fuzzing

No giant XML configuration files

Detine your protocol in code

class Foo < Ruckus::Structure
byte
byte
str
relate_size:string,
relate _value

r = Foo.new
r.capture (some_packet)
pp r.to_human

Reversing

Y Network Protocols

Ruckus

e Capture a packetin IRB
e Define your Ruckus structure on the fly
* |nspect the packet

Modify the packet

Print the packet

puts r.to_human

Foo
id = 49 (0x31)
len = 48 (0x30)
string =
%%
00000000 31 30 31 6c 6b 73 6a 64 6b 6c 73 61 6a 64 00 00 |101lksjdklsajd..|
00000010 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 |
00000020 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00 |

%%

Friday, July 24, 2009

Reversing

Y Static analysis

* Extracting embedded data using Black Bag

* deezee
* Yah we ported it from the original blackbag
* Extract embedded Zlib compressed images

°* magicripper
* Qo through binary blobs looking for magic
numbers with libmagic

* Other handy things in Black Bag for your
Strings
* hexify, dedump, rstrings, bgrep, ...

Friday, July 24, 2009

Reversing

¥ A Disassembler For Your Scripts

°* Frasm
* Distorm wrapped with Ruby
* Distorm is a 32/64bit x86 disassembler
ibrary written in C
* Wrapped in a Ruby extension, and now
we have frasm

require

d = Frasm::DistormDecoder.new
f = File.read()

d.decode(f).each do |1]
puts "#{l.mnem} #{1.size} #{1l.offset} #{1l.raw}

Friday, July 24, 2009

Reversing

+ Static Analysis

* Ruckus
* We mentioned Ruckus earlier
e |t can be used for file formats too

 Define structures like PE/ELF and parse
up binaries just like network packets

Fuzz file formats with Ruckus mutators
Dump file format structures on the fly

Friday, July 24, 2009

Reversing

+ Static Analysis

* Thereis no point in disassembling all of /bin/Is
* We need file format awareness

* Ruckus Examples
o rElf
* Parse ELF structures with Ruckus

e ruPe
o Parse PE structures with Ruckus

Friday, July 24, 2009

Reversing

Y Dynamic Analysis

Ragweed

Sort of like ‘PyDBG’ except in Ruby
Support for Windows, OSX and Linux

Run Ruby blocks when breakpoints are hit
Write hit tracers in minutes

Example:

require

pid = Ragweed::Debuggertux.find_by regex(/gcalctool/)
d = Ragweed::Debuggertux.new(pid.to_1)

d.attach

d.continue

d.loop

Friday, July 24, 2009

Reversing

¥ Dynamic Java Analysis

* Java Debugging Interface (JDI)
e "jdi_hook"” drives JDI via JRuby
* Think kernel32 debugging API for the JVM
* Next, think PyDBG for Java

* Why?
e JAD/JODE are an incomplete solution

e Obtfuscated Java code!
Have YOU used “jdb"?

Friday, July 24, 2009

Demo:

Hit-tracing with “jdi_hook”

Reversing

¥ JRuby for other dynamic Java tasks

* Use the target against itself

* Hook right into its proprietary network
protocols

* ... and proprietary crypto algorithms?

e Bonus

* Divide and conquer the debugged target
e "jirb" as your debuggee for class steering

Friday, July 24, 2009

Friday, July 24, 2009

Fuzzing

Y Start Somewhere
* Dumb fuzzers in Seconds

9..255).m
1..

irb(main)> random_string.unpack("H*")

=> ["c9064583d92e2598"]

irb(main)> random_string(16).unpack("H*")

=> ["ced4074302ce90fcc8049b58e77dab7bc"]

irb(main)> random_string(32).unpack("H*")

=> ["7d21ladcc67f36d349d8470a4c2279347861175e25d6548e6e774de8876c3f0bc"]

16

.0-.

irb(main)> gen = power_A()
irb(main)> gen.next

= "A"

irb(main)> gen.next

=> "AA"

irb(main)> gen.next

=> "AAAA"

irb(main)> gen.next

=> "AAAAAAAA™

irb(main)> gen.next

=> "AAAAAAAAAAAAAAAA™
irb(main)> gen.next

=> " AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT

HHEHHHAHATHRTHRTERERR"ERSR

Friday, July 24, 2009

Fuzzing

¥ Pretty Soon, Desigh Something Cleaner

* DFuzz

strs = DFuzz::5tring.new()
while strs.next?

target.send(strs.next)
end

Thanks Dino!

Friday, July 24, 2009

Fuzzing

+ Intelligent Fuzzing: Structure Awareness
* Mutation based fuzzing

e Start with a structure (using ruckus)

class DataField < Ruckus::Structure

byte :id

byte :len

str :string

relate_size :string, :to => :len

relate_value :len, :to => :string, :through => :size
end

Now lets fuzz the ‘info’ field

dat = DataField.new

dat.id = Oxff

dat.len =5

dat.string.value = Ruckus::Mutator::Str.new 'A’, [Ruckus::Mutator::Multiplier]
dat.string.permute => “"AA”

send(dat)

dat.string.permute => “"AAAA"

send(dat)

dat.string.permute => “AAAAAAAA"

send(dat)

Friday, July 24, 2009

Fuzzing

Y win32ole
ActiveX controls are historically ripe with bugs
COM can be awkward to work with
WIN320LE is Ruby’s native COM API

Plenty to work with for writing ActiveX and
COM fuzzers

Friday, July 24, 2009

Fuzzing

Y win32ole

* We need something a bit more automated ...
* AxRub is our ActiveX Ruby fuzzer

e Uses win32ole to:
* Enumerate methods and arguments

°* Enumerate properties

* Uses Ruby to:
* Setup a fake web server

* Serve up HTML with fuzzed ActiveX stuff

a = AxRub.new(clsid, ‘blacklist.txt’)
a.fuzz

e Just sit back and wait for the bugs

Friday, July 24, 2009

Demo:

ActiveX fuzzing with “axrub”

Friday, July 24, 2009

Integrating Ruby @

Integrating Ruby

¥ Your old tools suck. Give them Ruby!

* Ruby Extensions

* Wrap C libraries and expose them in
Ruby

* JRuby
* Java classes are all just “there” in JRuby

* Embedded Ruby and JRuby
* Ruby runtimes piggy-backing other apps

Friday, July 24, 2009

Integrating Ruby

* gqRub

* libnetfilter_queue C code with embedded Ruby
* Was an existing tool called QueFuzz
* |t sucked, but had a lot of useful code

We ditched all the C fuzzing code and
embedded Ruby instead

Easily intercept and modify packets
Drop into IRB for quick modifications
Hook into Ruby Black Bag

Reverse network protocols inline

Friday, July 24, 2009

Integrating Ruby

+ LeafRub

Friday, July 24, 2009

Leaf is an extendable ELF analysis and
disassembly tool written in C

LeafRub is a Leaf plugin that embeds Ruby
* Analyze disassembly output using Ruby

* Use Ruby extensions for different output

* There are gems for SQL, XML, HTML
and just about anything else you want

* Write plugins to implement your ideas in
half the time

Demo:

Using “LeafRub”

Friday, July 24, 2009

Integrating Ruby

+ Buby

Portswigger BurpSuite is our 3rd-party web
nesting tool of choice

° ... butit needs more Ruby

* Burp + JRuby = Buby
* Burp’'s APl exposed fully to Ruby

Friday, July 24, 2009

) ¢ Questions?

