Introducing Ring -3 Rootkits

Alexander Tereshkin and Rafal Wojtczuk

INVISIBLE THINGS LAB

Black Hat USA, July 29 2009
Las Vegas, NV

I Introducing Ring =3

2 there

3 Writing useful Ring =3 rootkits

A Quest to Ring -3

Rin g 3 Usermode rootkits
R|ng O rootkits

Rin g - I Hypervisor rootkits (Bluepill)

Rl ng -2 SMM rootkits

Ring -3/

What is this?

P,
» F‘g \
»
» ¢
(28 AN
p L o ‘ RA
‘ Vg ‘ D
» a5 b N :
® o H
» S K
sMTGLS M
’ O
s _ }‘
: C67. e 3 ‘ O‘ '
M :
» 3 _;;_-__:’L o A8
- | AD
a3 iy
Qr i] AF
ce6 || Al
) (W] |{oea] A%
[
. :) AF.
T3t E = /%,
- et A ™ :
=1 ::I; X 7 AYé_
1 BB,
0 .

:
.
)
.
.
i

2 4 6 810121416 18 20 22 24 26 28 30 32 3436384042
1 35.79 11 131517 19 2123 25 27 29 31 33 3373941 43

V

o
i

n
=T==m==m =

"

c112

| TS E BERE
— — c—
— — —

Cilé Ci115

)

!
i
r
¥
}
'%i

.
.

L
LR 3

Yes, it is a chipset (MCH)

(More precisely Intel Q35 on this picture)

Did you know it's also a standalone web server?

Many (all?) vPro chipsets (MCHs) have:

v

< N S

An Independent CPU (not |1A32!)

Access to dedicated DRAM memory

Special interface to the Network Card (NIC)

Execution environment called Management Engine (ME)

Your chipset is a little computer. It can execute programs in
parallel and independently from the main CPU!

Where is the software for the chipset kept!?

On the SPI-flash chip (the same one used for the BIOS code)

It is a separate chip on a motherboard:

Of course one cannot reflash the SPI chip at will!
vPro-compatible systems do not allow unsigned updates to its firmware (e.g. BIOS reflash).

But see our talk tomorrow about breaking into the Intel BIOS ;)

Attacking Intel® BIOS

Rafal Woijtczuk and Alexander Tereshkin

INVISIBLE THINGS LAB

Black Hat USA, July 30 2009
Las Vegas, NV

Anyway:
@ The chipset runs programs.
@ The programs are stored in the (well protected) flash
memory, together with BIOS firmware.

S0, what programs run on the chipset?

Intel Active Management Technology (AMT)

http://www.intel.com/technology/platform-technology/intel-amt/

@ Intel® Active Management Technology - Mozilla Firefox

<
>
X

File Edit View History Bookmarks Tools Help

‘ v z 4 \|§'| http://192.168.0.22:16992/hw-proc.htm v| Qv o

Czesto odwiedz... v [)Smart Bookmarksv g2 Release Notes [7]Fedora Projectv [JRed Hatv [)Free Contentwv

Intel®Active Management Technology

Computer: iDBO

System Status Processor Information
Hardware Information
System Processor1l
,'f{:,%%srf,or Manufacturer Intel(R) Corporation
Disk Family Intel® Pentium® D Processor
Event Log Socket JIPR
pemote Comtrol Version Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz
Network Settings D 13829424153406539386
User Accounts Maximum socket speed 4000 MHz
Speed 3000 MHz
Status Enabled
Upgrade method Unknown
Populated? Yes

Done

@ Intel® Active Management Technology - Mozilla Firefox

File Edit View History Bookmarks Tools Help

<

(>

) v £ | [©) http://192.168.0.22:16992/remote htm

v @]

Czesto odwiedz... v [)Smart Bookmarksv §2 Release Notes [7)Fedora Projectv [JRed Hatwv

Intel®Active Management Technology

Computer: iDBO

System Status Remote Control
Hardware Information
g?’gg’:sor Power state: On
Memory Send a command to this computer:
. tDli sk " Turn power off* Selecta ot option:
vent Log * Normal boot 4
Remote control) g):;l:t.power ofanden Boot from local hard drive

Network Settings
User Accounts

*Caution: These commands may cause user application data loss.

~ Send Command |

Done

] Free Content v

@Manageabilit\r Commander Tool
File Edit View Help

=l | Network

7 192.168.0.22 / admin
9 192168.0.66 / admin

€ Intel® AMT Certificate Store - 192.168.0.22

Certificates | Trusted Roots | Revocation |

— Stored Certificates

Certificate

Hemove

Manageability Commander Tool - v0.6.0937.2

Connect & Control

In this window, you can connect to an Intel® AMT computer.
Once connected, you can control the computer remotely,
remotely turn on or off the Intel® AMT computer you are
connected to, control network policies and filters, boot the
computer to a remote drive, view the hardware asset inventory,
and read the computer's event log.

Connection | Remote Control ~ Intel® Management Engine | Networking |

— Intel® Management Engine

Computer Hosthame / Domain
Intel® AMT Yersion

Intel® Management Engine P
User Accounts

Interaction Type

Certificate & CRL Store
Kerberos™ Setup

Remote Access

IDBO.somedomain.org
BIOS Version JOO3510).864.0933.2008.0707.2248
2 User Accounts
EOQI (SOAP) only

0 certificate(s), 0 trusted root(s)

Unsupported

=

/Bl ElE

+)

File Edit

MNetwork
. 1192.168.0.22 / admin
.1 192.168.0.66 / admin

Yiew Help

QManageability Terminal Tool - 192.168.0.22

Terminal Edit | Remote Command | Disk Redirect Serial Agent

Serial-over-LAN Normal Reboot

Power Down

Remote Reboot

Remote Reboot to BIOS Setup
Remote Reboot to Redirect Floppy
Remote Reboot to Redirect CD

Agent Commands

Custom Command...

TCP Redirect IDE Redirect
No Mapping =

Ok/0k = 4

v0.6.0937.2

f4.img
fc9.iso

Floppy
COROM

Connect & Control

In this window, you can connect to an Intel® AMT computer.
Once qonnected, you can con{ro.l _th_e computer remotely,

Full power (S0)

- | MNetworking |

IDE Redirect Active: 0 bytes Sent / 0 bytes Received

IDBO.somedomain.org

3.2.1
JOQ3510).864.0333.2008.0707.2248
ON in SO

2 User Accounts

EOQI [SOAP) only

0 certificate(s), O trusted root(s)
Disabled

Unsupported

=

S ElENENEE

[;ﬂ,‘|}’i'{!T_‘_T_':;':j;;:;’_-‘:f_.';:'Iv Commander Tool

File Edit

= MNetwork

-1 8 192.168.0.22 / admin Connect & Control

.9 132.168.0.66 / admin

Once connected, you can control the computer remotely,
QManageability Terminal Tool - 192.168.0.22

Terminal Edit Remote Command Disk Redirect Serial Agent

Serial-over-LAN - Connected Full power (S0)

Ieatecbeteddel Security Power B

Peripheral Configuration
Drive Configuration
Event Log Configuration
Video Configuration

Fan Control

Hardware Monitoring
Chipset Configuration
USE Configuration

Setup Warning:

Setting items on this Screen to incorrect values
may cause system to malfunction! <>=Select Screen
t1=5elect Item
Enter=3elect Submenu
FO9=%etup Defaults
Fl0=5ave and Exit
Esc=Prewvious Page

TCP Redirect IDE Redirect | Floppy f4.img
No Mapping CDROM fc9.iso
Ok./0k. - IDE Redirect Disabled

v0.6.0937.2

In this window, you can connect to an Intel® AMT computer.

= I Networking I

IDBO.somedomain.org

3.2.1
JOO3510).864.0933.2008.0707.2248
ON in SO

2 User Accounts

EOQI [SOAP) only

0 certificate(s), 0 trusted root(s)
Disabled

Unsupported

=

HENEE S E

v
File Edit View Help
MNetwork,

| 192.168.0.22 / admin Connect & Control

1 132.168.0.66 / admin

In this window, you can connect to an Intel® AMT computer.
Once qonnected, you can cor)[ro'I .th_e computer remotely,

€ Manageability Terminal Tool - 192.168.0.22
Terminal Edit Remote Command Disk Redirect Serial Agent

Serial-over-LAN - Connected Full power (S0)

ISOLINUX 3.61 2008-02-03 Copyright (C) 1994-2008 H. Peter Anvin

- | Networking |

[1] Rescuesystem
[2] RescuelSystem - load cd into RAM

[3] memtestdo

=

IDBO.somedomain.org

3.2.1
JOQ3510).864,0333.2008.0707.2248
Loading /isolinux/vmlim ONin SO
Loading initrdx 2 User Accounts
EOI [SOAP] only

0 certificate(s), O trusted root(s)
Disabled

Unsupported

S{EIENE]EE

TCP Redirect IDE Redirect Floppy f4.img
No Mapping = CDROM fc9.iso
0k./0k. _5", IDE Redirect Active: 9663504 bytes Sent / 0 bytes Received

v0.6.0937.2

If abused, AMT offers powerful backdoor capability:
it can survive OS reinstall or other OS change!

But AMT is turned off by default...

OIL

g |
Jy

BURNER
0]\ 'Z: l

I - o

EMERGENCY

/""..‘
J

SWITCH

Q © @ Q

There are a few methods to enable AMT...

... but most require physical presence during the BIOS boot
We do have ideas how to do it remotely,

But let's skip it and talk about something better...

But turns out that some AMT code is executed regardless of

whether AMT is enabled in BIOS or not!
And we can hook this code (see later)!

Injecting Code into AMT/ME

Ok, so how we get our code executed inside AMT/ME environment?

< Top Of Memory (TOM), e.g. 2GB

< TOM - 16MB

Memory Remapping on Q35 chipset

REMAPLIMIT ey

REMAPBASE ~g,
4GB ...

MIMI[®

This DRAM now accessible from

CPU at physical addresses:
<REMAPBASE, REMAPLIMIT>

Otherwise it would be wasted!

Processor’s View DRAM

Applying this to AMT case

remap base 0x100000000 (4G)
remap limit Ox183ffffff
touud = 0x184000000
reclaim mapped to 0x7c000000

AMT normally at: 0x7£000000,
Now remapped to :0x103000000 (and freely accessible by the OS!)

(Offsets for a system with 2GB of DRAM)

Fixed? No problem - just revert to the older BIOS!

(turns out no user consent is needed to downgrade Intel BIOS to an earlier version - malware can
perfectly use this technique, it only introduces one additional reboot)

How about other chipsets!?

This attack doesn't work against the Intel Q45-based boards.
The AMT region seems to be additionally protected.

(We are investigating how to get access to it...)

Writing Useful Ring -3 Rootkits

Justifying the "Ring -3" name

©Q 0 Qe @

©

Independent of main CPU

Can access host memory via DMA (with restrictions)
Dedicated link to NIC, and its filtering capabilities

Can force host OS to reboot at any time (and boot the
system from the emulated CDROM)

Active even in S3 sleep!

Unified execution environment

A few words about the ARC4 processor (integrated in the MCH)

D

Q © @

RISC architecture

32-bit general purpose registers and memory space
"Auxiliary” registers space, which is used to access hardware
On Q35 boards, the 0x01000000-0x02000000 memory

range (of the ARC4 processor) is mapped to the top 16MB of
host DRAM

The ARC compiler suite (arc-gnu-tools) used to be freely available (a
few months ago)...
Now it seems to be a commercial product only:
http://www.arc.com/software/gnutools/

(we were luckily enough to download it when it was still free)

Better portability between different hardware than SMM rootkits

(Unified ARC4 execution environment)

Getting our code periodically executed

Executable modules found in the AMT memory dump:
(names and numbers taken from their headers)

LOADER
KERNEL
PMHWSEQ
QST

0S

ADMIN CM
AMT CM
ASF CM

0x000000..0x0122B8,
0x0122D0..0x28979C,
0x2897B0..0x28DDFO0,
0x28DE00O0..0x2A79ES,
0x2A7A00..0x88EE28,
0x88EE40..0x98CCF8,
0x98CD10..0xAA35FC,
0xAA3610..0xAB4DEC,

code:
code:
code:
code:
code:
code:
code:
code:

0x000050.
0x012320.
0x289800.
0x28DE50.
O0x2A7A50.
0x88EE90.
0x98CD60.
0xAA3660.

.0x0013E0,
.0x05F068,
.0x28CADS,
.0x29B3F4,
.0x5ADA48,
.0x91A810,
.0xA2089C,
. 0XAAD59C,

entry:
entry:
entry:
entry:
entry:
entry:
entry:
entry:

0x000050
0x031A10
0x28A170
0x291B48
0x4ECC58
0x8B2994
0x9BB964
OxAABCS58

01012E60 mov.f lp count, r2

01012E64 or r4, r0, rl

01012E68 jz.f [blink]

01012E6C and.f 0, r4, 3

01012E70 shr r4, r2, 3

01012E74 bnz loc 1012EFC

01012E78 lsr.f 1lp count, r4

01012E7C sub rl, rl, 4

01012E80 sub r3, r0, 4

01012E84 lpnz loc 1012EAS

01012E88 ld.a r4, [rl+4]

01012E8C l1d.a r5, [rl+4]

01012E90 ld.a r6, [rl+4]

01012E94 ld.a r7, [rl+4] This function from the KERNEL
01012E98 st.a r4, [r3+4] module is called quite often probably
ULOLZBRIe st.a r>, [r3+4] by a timer interrupt handler.
01012EAQ st.a r6, [r3+4]

01012EA4 st.a r7, [r3+4]

01012EAS bc.d loc 1012EDS8

Accessing the host memory

PROGRAMMING uC DMA WITH BARE HANDS

Y SILIEICIEIE
LRI -

al+t -

[rdu:EEt

2 H0BR-1@ :
ElE'EElHFj'E ik
SPTITIL LA S
MMM

dump

dmadl .
o B4
'.1'. nt s |

|:!||1-r!+1 SISILIS
EIE IR
CRUR LR RAR AT

HaanaEan

. PEEEOEEd
M E!II:!HH‘ L=
HZ HAMHGEY -

B2 80087 -

LG
ARG
HRARER0E

fFa 55
89 4d
45 c4
He 4%
BE
e ad

B e
B

8h
[V s
Bd
o4
(55
515

515
kAL

ke 2 R EE

ol B ::II'II r'.'|-.-'|

s Fiaifoa

73088 .8,

B of

(ETSTSTSTETLIEIE
HFEE I
i
SRS LA TRIEIE
(SISTS TS IS TEIEIE
BRI
HibE A
LSS LA TRIENE

data

89
L9
i
515
i
M

(S]]
515
i

Hl-:lﬂ lecH1

S1AJ
Pkl
Gl
Sl
HEL

Programming internal DMA
hardware in JTAG debugger to
copy 64 bytes from 0x73000 host
phys addr to internal memory

BHBRARAT

FIHERLAEAT
51915
B=2000000 . 64>

from Hozt Bx<BB087 30600

Ba i

B
“ord BRRAAAEGH

HA
Fi
B2
K
55
515
518
K

HH
CC
4
i
H#
515
515
K

515
B9
E1E |
eH .
(51%5]
545
HE

45 b4 8%
dld Bf 28
8 b3 BE
. 1

Sd b8
ddé 89
HE HH
Ml -1!:-

45 H'”!IHHH

source: Yuriy Bulygin, Intel, Black Hat USA 2008

AMT code can access host memory via DMA

But how to program it! Of course this is not documented
anywhere...

(And the rootkit can't just use ARC4 JTAG debugger, of course)

|ldea of how to learn how AMT code does DMA to host memory

We know that AMT emulates "Virtual CDROM" that

might be used by remote admin to boot system into
OS installer...

...we can also debug the AMT code using function hooking and
counters...

An AMT Our debugging stubs

function X... (The counter_ * variables are also located in
_ the AMT memory -- we read them using the
remapping trick)

C O Car (+1 . . :
CoUnterm) Most of the functions can be spotted by looking for the following

prologue signature:

An AMT 04 3E OE 10 st blink, [sp+4]
function_Y...

So we can boot off AMT CDROM e.g.a Linux OS and try to access
the AMT virtual CDROM...

...at the same time we trace which AMT code has been executed.

Q: How is the AMT CDROM presented to BIOS/OS!?
A: As a PCl device...

A root@domO:~

[rootRg3S ~]#|lspeci -s 00:03.2 -w
00:03.2 IDE interface: Intel Corporation PT IDER Controll
er (rev 02) (prog-if 85 [Master SecO PrioO])
Subsystem: Intel Corporation Unknown device 4f4a
Flags: bus master, 66MHz, fast devsel, latency 0,

IRQ 9

I/0 ports at 2480 [size=8]
I/0 ports at 24a4d [size=4]
I/0 ports at 2478 [size=8]
I/0 ports at 24a0 [size=4]
I/0 ports at 2440 [size=16]

Capabilities: [c8] Power Management version 3
Capabilities: [d0] Message Signalled Interrupts:

Mask—- 64bit+ Queue=0/0 Enable-

N[root@g35 ~]#

We have traced BIOS accesses to AMT CDROM during boot; it
turned out that BIOS did not use DMA transfers, it used PIO data
transfers :(

Fortunately, the above PCI device fully conforms to ATAPI
specifications; as a result, it is properly handled by the Linux
ata generic.ko driver

(if loaded with all generic_ ide flag)

A root@f9q35:~

kernel: ACPI: PCI Interrupt 0000:00:03.2[C] -> GSI 18 (level, lo
IRQ 18
kernel: scsib6 : ata_generic
kernel: scsi7 : ata_generic
q kernel: ata7: PATA max UDMA/100 cmd 0x2480 ctl 0x24a4 bmdma 0x24
40 irg 18
f9g35 kernel: ata8: PATA max UDMA/100 cmd 0x2478 ctl 0x24a0 bmdma 0x24
48 irqg 18
f9g35 kernel: ata7.00: ATAPI: Intel Virtual LS-120 Floppy UHD Floppy
, 1.00, max UD
f9g35 kernel: ata7.0l1l: |ATAPI: Intel Virtual CD,|1.00, max UDMA/100
f9g35 kernel: ata7.00: configured for UDMA/100
f9g35 kernel: ata7.0l: configured for UDMA/100
f9g35 kernel: scsi 6:0:0:0: Direct-Access Intel Virtual Floppy
1.00 PQ: 0 A
f9g35 kernel: sd 6:

:0:0: [sdb] Attached SCSI removable disk
f9g35 kernel: sd 6:0:0:0: Attached scsi generic sg2 type O
. . 1

f9g35 kernel: scsi :0: CD-ROM Intel Virtual CD
1.00 PQ: 0 A

[rootRf9g35 ~]#

[rootRf9g35 ~]#

[rootRf9g35 ~]#

[root@f9g35 ~]#

We can instruct ata generic.ko whether to use or not DMA

for the virtual CDROM accesses
_}

we can do the diffing between two traces and find out which AMT
code is responsible for DMA :)

This way we found (at least one) way to do DMA from AMT to the
host memory

struct dmadesc t {
unsigned int src lo;
unsigned int src hi;
unsigned int dst lo;

unsigned int dst_hi; _ . - |
unsigned int count; // SR instruction: Store to Auxiliary Register

unsigned int resl; Vvoid sr(unsigned int addr, unsigned int value) {

unsigned int res2; asm("sr rl, [xr0]");
unsigned int res3; |}

} dmadesc[NUMBER OF DMA ENGINES]; |

void dma amt2host(unsigned int idx, /* the id of DMA engine */
unsigned int amt source addr,
unsigned int host dest addr,
unsigned int transfer length)

unsigned int srbase = 0x5010 + 4 * idx;

memset (&dmadesc[idx], 0, sizeof dmadesc[idx]);
dmadesc[idx].src lo = amt source addr;
dmadesc[idx].dst lo = host dest addr;
dmadesc[1dx].count = transfer length;

sr(srbase + 1, &dmadesc[idx]);
sr(srbase + 2, 0);

sr(srbase + 3, 0);

sr(srbase + 0, 0x189);

CMD—Command Register

B/D/F/Type: 0/3/2/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

Reset: Host System reset or D3->D0 transition of function.

This register provides basic control over the device's ability to respond to and perform
Host system related acesses.

o e
l n tel Intel” Manageability Engine Subsystem Registers

Access RST/ PWR Description

Bus Master Enable (BME): This bit controls the PT
function's ability to act as a master for data transfers. This
bit does not impact the generation of completions for split
transaction commands.

Memory Space Enable (MSE): PT function does not
contain target memory space.

Core

. 1/ O Space enable (I10OSE): This bit controls access to the

Core PT function's target | /O space.

source: intel.com

Unfortunately, upon reboot, the BME bit for IDER device is
cleared, which prevents DMA transfers...

However: rootkit can detect that a
host reboot is in progress (because
DMA transfers fail to work), and

force reboot to AMT CDROM, that
will set BME bit and resume OS
boot

Possibly, using other ME PCI device bypasses the BME
limitation!?

(there is nothing about BME bit in Yuriy Bulygin's talk on
DeepWatch from BH US 2008)

This would allow for SRTM bypass (AMT could inject/replace
already-measured code while it's executing)

But we haven't found any other way to do DMA without BME
so far...

Putting it all together

Hooked AMT
function that is
executed periodically
(regardless of
whether AMT is

enabled or not in the
BIOS)

DMA access

Host OS (e.g. Windows)

Chipset ME/AMT:
All code executed by
the chipset's ARC4
processor, even if the
host in sleep mode!

Host Memory:

all code executed
on the host CPU(s)

What about VT-d? Can the OS protect itself against AMT rootkit?

DMA REMAPPING

VT-d capable chipsets have one or more DMA-remapping
engines virtualizing Directed I/0 access [12]

Internal devices are also a subject to DMA-remapping

Chipset has dedicated register-set for each DMA-remap unit
accessible by software as MMIO range which software can use
to protect certain memory regions from certain I/0 devices

Rootkit can create DMA-remapping page tables to translate
addresses of DMA reguests issued by embedded uC (identified
by its PCI B/D/F) to different host physical addresses

or read,/write protect entries in DMAr pages tables

or mark context-entry as not Present to cause translation fault

or enable PLME/PHMRE DMA-protected regions to prevent any DMA

And relocate code/data (VMExit handler, VMCS ..) to memory
protected by DMAr page tables or to PMR regions

source: Yuriy Bulygin, Intel, Black Hat USA 2008

SO WHAT CAN WE DO ABOUT THIS ??

* DMA-remapping unit can distinguish DMA requests
issued by DeepWatch internal device function inside

embedded uC

* by its requester id from DMA regquests issued by
other internal functions

* and not translate them

* Or disable and lock DMA-remapping of DeepWatch
device function if DeepWatch is used

* And allow only trusted software like SMX
authenticated code modules (Intel® TXT) to enable

and program DMA-remap engine for DeepWatch

source: Yuriy Bulygin, Intel, Black Hat USA 2008

So, if Intel allowed its AMT/ME code to bypass VI-d (in order to allow
rootkit detectors in the chipset), then our AMT rootkit would
automatically gain ability to bypass V1-d as well!

We have verified that Xen 3.3+ uses VI-d in order to protect its own
hypervisor and consequently our AMT rootkit is not able to access
this memory of Xen hypervisor

(But still, if ME PCI devices are not delegated to a driver domain, then we can access dom0O memory)

Powerful it is, the V1-d

Still, an AMT rootkit can, if detected that it has an

opponent that uses V1-d for protection, do the following:

@ Force OS reboot

@ Force booting from Virtual CDROM

@ Use its own image for the CDROM that would infect
the OS kernel (e.g. xen.gz) and disable the VT-d there

How to protect against such scenario?

Via Trusted Boot, e.g. SRTM or DRTM (Intel TXT)

(Keep in mind that we can bypass TXT though, if used without STM, and there is still no
STM available as of now)

Final Thoughts

We do like many of the new Intel technologies (V1-x,V1-d, TXT),...

But AMT is different in that it can potentially be greatly

abused by the attacker
(VT-d or TXT can potentially be bypassed, but they cannot help the attacker!)

But keep in mind that our attack doesn't work on the latest Q45
chipsets - a sign that Intel treats the security seriously...

You do not want this privileged code to fall into enemy's hand, do you?

source: http://freemasonry.bcy.ca/anti-masonry/

INVISIBLE THINGS LAB

http://invisiblethingslab.com
http://invisiblethingslab.com

