
Introducing Ring -3 Rootkits
Alexander Tereshkin and Rafal Wojtczuk

Black Hat USA, July 29 2009
Las Vegas, NV

Introducing Ring -3

Getting there

Writing useful Ring -3 rootkits

1

2

3

A Quest to Ring -3

Usermode rootkits

Kernelmode rootkits

Hypervisor rootkits (Bluepill)

SMM rootkits

Ring 3

Ring 0

Ring -1

Ring -2

Ring -3?

What is this?

Yes, it is a chipset (MCH)
(More precisely Intel Q35 on this picture)

Did you know it's also a standalone web server?

Many (all?) vPro chipsets (MCHs) have:
An Independent CPU (not IA32!)
Access to dedicated DRAM memory
Special interface to the Network Card (NIC)
Execution environment called Management Engine (ME)

Your chipset is a little computer. It can execute programs in
parallel and independently from the main CPU!

Where is the software for the chipset kept?

On the SPI-flash chip (the same one used for the BIOS code)
It is a separate chip on a motherboard:

Of course one cannot reflash the SPI chip at will!
vPro-compatible systems do not allow unsigned updates to its firmware (e.g. BIOS reflash).

But see our talk tomorrow about breaking into the Intel BIOS ;)

Attacking Intel® BIOS

Rafal Wojtczuk and Alexander Tereshkin

Black Hat USA, July 30 2009
Las Vegas, NV

Anyway:
The chipset runs programs.
The programs are stored in the (well protected) flash
memory, together with BIOS firmware.

So, what programs run on the chipset?

Intel Active Management Technology (AMT)

http://www.intel.com/technology/platform-technology/intel-amt/

If abused, AMT offers powerful backdoor capability:
it can survive OS reinstall or other OS change!

But AMT is turned off by default...

There are a few methods to enable AMT...
... but most require physical presence during the BIOS boot
We do have ideas how to do it remotely,
But let's skip it and talk about something better...

But turns out that some AMT code is executed regardless of
whether AMT is enabled in BIOS or not!

And we can hook this code (see later)!

Injecting Code into AMT/ME

Ok, so how we get our code executed inside AMT/ME environment?

AMT
TOM - 16MB

Top Of Memory (TOM), e.g. 2GB

4GB

Processor’s View DRAM

TOUUD 5GB

MMIO

REMAPBASE

REMAPLIMIT
remapping

This DRAM now accessible from
CPU at physical addresses:
 <REMAPBASE, REMAPLIMIT>
Otherwise it would be wasted!

Memory Remapping on Q35 chipset

Applying this to AMT case

remap_base = 0x100000000 (4G)
remap_limit = 0x183ffffff
touud = 0x184000000
reclaim_mapped_to = 0x7c000000

AMT normally at: 0x7f000000,
Now remapped to : 0x103000000 (and freely accessible by the OS!)

(Offsets for a system with 2GB of DRAM)

Fixed? No problem - just revert to the older BIOS!
(turns out no user consent is needed to downgrade Intel BIOS to an earlier version - malware can

perfectly use this technique, it only introduces one additional reboot)

How about other chipsets?

This attack doesn't work against the Intel Q45-based boards.
The AMT region seems to be additionally protected.

(We are investigating how to get access to it...)

Writing Useful Ring -3 Rootkits

Justifying the "Ring -3" name

Independent of main CPU
Can access host memory via DMA (with restrictions)
Dedicated link to NIC, and its filtering capabilities
Can force host OS to reboot at any time (and boot the
system from the emulated CDROM)
Active even in S3 sleep!

Unified execution environment

A few words about the ARC4 processor (integrated in the MCH)
RISC architecture
32-bit general purpose registers and memory space
"Auxiliary" registers space, which is used to access hardware
On Q35 boards, the 0x01000000-0x02000000 memory
range (of the ARC4 processor) is mapped to the top 16MB of
host DRAM

The ARC compiler suite (arc-gnu-tools) used to be freely available (a
few months ago)...

Now it seems to be a commercial product only:
http://www.arc.com/software/gnutools/

(we were luckily enough to download it when it was still free)

Better portability between different hardware than SMM rootkits
(Unified ARC4 execution environment)

Getting our code periodically executed

LOADER : 0x000000..0x0122B8, code: 0x000050..0x0013E0, entry: 0x000050
KERNEL : 0x0122D0..0x28979C, code: 0x012320..0x05F068, entry: 0x031A10
PMHWSEQ : 0x2897B0..0x28DDF0, code: 0x289800..0x28CAD8, entry: 0x28A170
QST : 0x28DE00..0x2A79E8, code: 0x28DE50..0x29B3F4, entry: 0x291B48
OS : 0x2A7A00..0x88EE28, code: 0x2A7A50..0x5ADA48, entry: 0x4ECC58
ADMIN_CM : 0x88EE40..0x98CCF8, code: 0x88EE90..0x91A810, entry: 0x8B2994
AMT_CM : 0x98CD10..0xAA35FC, code: 0x98CD60..0xA2089C, entry: 0x9BB964
ASF_CM : 0xAA3610..0xAB4DEC, code: 0xAA3660..0xAAD59C, entry: 0xAABC58

Executable modules found in the AMT memory dump:
(names and numbers taken from their headers)

01012E60
 mov.f lp_count, r2
01012E64

 or r4, r0, r1
01012E68

 jz.f [blink]
01012E6C

 and.f 0, r4, 3
01012E70

 shr r4, r2, 3
01012E74

 bnz loc_1012EFC
01012E78

 lsr.f lp_count, r4
01012E7C

 sub r1, r1, 4
01012E80

 sub r3, r0, 4
01012E84

 lpnz loc_1012EA8
01012E88

 ld.a r4, [r1+4]
01012E8C

 ld.a r5, [r1+4]
01012E90

 ld.a r6, [r1+4]
01012E94

 ld.a r7, [r1+4]
01012E98

 st.a r4, [r3+4]
01012E9C

 st.a r5, [r3+4]
01012EA0

 st.a r6, [r3+4]
01012EA4

 st.a r7, [r3+4]
01012EA8 bc.d loc_1012ED8

This function from the KERNEL
module is called quite often probably
by a timer interrupt handler.

Accessing the host memory

source: Yuriy Bulygin, Intel, Black Hat USA 2008

AMT code can access host memory via DMA

But how to program it? Of course this is not documented
anywhere...

(And the rootkit can't just use ARC4 JTAG debugger, of course)

Idea of how to learn how AMT code does DMA to host memory

We know that AMT emulates "Virtual CDROM" that
might be used by remote admin to boot system into

OS installer...

...we can also debug the AMT code using function hooking and
counters...

An AMT
function_X...

counter_X++

An AMT
function_Y...

counter_Y++

Our debugging stubs
(The counter_* variables are also located in
the AMT memory -- we read them using the
remapping trick)

Most of the functions can be spotted by looking for the following
prologue signature:

04 3E 0E 10 st blink, [sp+4]

So we can boot off AMT CDROM e.g. a Linux OS and try to access
the AMT virtual CDROM...

...at the same time we trace which AMT code has been executed.

Q: How is the AMT CDROM presented to BIOS/OS?
A: As a PCI device...

We have traced BIOS accesses to AMT CDROM during boot; it
turned out that BIOS did not use DMA transfers, it used PIO data

transfers :(

Fortunately, the above PCI device fully conforms to ATAPI
specifications; as a result, it is properly handled by the Linux

ata_generic.ko driver
(if loaded with all_generic_ide flag)

We can instruct ata_generic.ko whether to use or not DMA
for the virtual CDROM accesses

➝
 we can do the diffing between two traces and find out which AMT

code is responsible for DMA :)

This way we found (at least one) way to do DMA from AMT to the
host memory

struct dmadesc_t {

 unsigned int src_lo;

 unsigned int src_hi;

 unsigned int dst_lo;

 unsigned int dst_hi;

 unsigned int count;

 unsigned int res1;

 unsigned int res2;

 unsigned int res3;
} dmadesc[NUMBER_OF_DMA_ENGINES];

void dma_amt2host(unsigned int idx, /* the id of DMA engine */
 unsigned int amt_source_addr,
 unsigned int host_dest_addr,
 unsigned int transfer_length)
{

 unsigned int srbase = 0x5010 + 4 * idx;

 memset(&dmadesc[idx], 0, sizeof dmadesc[idx]);

 dmadesc[idx].src_lo = amt_source_addr;

 dmadesc[idx].dst_lo = host_dest_addr;

 dmadesc[idx].count = transfer_length;

 sr(srbase + 1, &dmadesc[idx]);

 sr(srbase + 2, 0);

 sr(srbase + 3, 0);

 sr(srbase + 0, 0x189);
}

// SR instruction: Store to Auxiliary Register
void sr(unsigned int addr, unsigned int value) {
asm("sr r1, [r0]");

}

source: intel.com

Unfortunately, upon reboot, the BME bit for IDER device is
cleared, which prevents DMA transfers...

However: rootkit can detect that a
host reboot is in progress (because

DMA transfers fail to work), and
force reboot to AMT CDROM, that

will set BME bit and resume OS
boot

Possibly, using other ME PCI device bypasses the BME
limitation?
(there is nothing about BME bit in Yuriy Bulygin's talk on
DeepWatch from BH US 2008)
This would allow for SRTM bypass (AMT could inject/replace
already-measured code while it's executing)
But we haven't found any other way to do DMA without BME
so far...

Putting it all together

Host OS (e.g. Windows)

Hypervisor (optional) SMM

Host Memory:
all code executed
on the host CPU(s)

Chipset ME/AMT:
All code executed by
the chipset's ARC4
processor, even if the
host in sleep mode!

AMT rootkit

DMA access

Hooked AMT
function that is

executed periodically
(regardless of

whether AMT is
enabled or not in the

BIOS)

What about VT-d? Can the OS protect itself against AMT rootkit?

source: Yuriy Bulygin, Intel, Black Hat USA 2008

source: Yuriy Bulygin, Intel, Black Hat USA 2008

So, if Intel allowed its AMT/ME code to bypass VT-d (in order to allow
rootkit detectors in the chipset), then our AMT rootkit would

automatically gain ability to bypass VT-d as well!

We have verified that Xen 3.3+ uses VT-d in order to protect its own
hypervisor and consequently our AMT rootkit is not able to access

this memory of Xen hypervisor
(But still, if ME PCI devices are not delegated to a driver domain, then we can access dom0 memory)

Powerful it is, the VT-d

Still, an AMT rootkit can, if detected that it has an
opponent that uses VT-d for protection, do the following:

Force OS reboot
Force booting from Virtual CDROM
Use its own image for the CDROM that would infect
the OS kernel (e.g. xen.gz) and disable the VT-d there

How to protect against such scenario?

Via Trusted Boot, e.g. SRTM or DRTM (Intel TXT)
(Keep in mind that we can bypass TXT though, if used without STM, and there is still no

STM available as of now)

Final Thoughts

We do like many of the new Intel technologies (VT-x, VT-d, TXT), ...

But AMT is different in that it can potentially be greatly
abused by the attacker

(VT-d or TXT can potentially be bypassed, but they cannot help the attacker!)

But keep in mind that our attack doesn't work on the latest Q45
chipsets - a sign that Intel treats the security seriously...

source: http://freemasonry.bcy.ca/anti-masonry/

You do not want this privileged code to fall into enemy's hand, do you?

http://invisiblethingslab.com

http://invisiblethingslab.com
http://invisiblethingslab.com

