MANDIANT®

Reconstructing the Scene of the Crime

METASPLOIT AUTOPSY

Who are they?

STEVE DAVIS

Security Consultant / Researcher at MANDIANT

PETER SILBERMAN

Engineer / Researcher at MANDIANT

Agenda

- ½ Demo
 - Pop it like its hotttt
- Problem / Solution
- Process Acquisition
- Metasploit
- Meterpreter Communication
- Metasploit Forensic Framework (MSFF)
- ½ Demo
 - Reconstructing it like its hottt

Demo Part 1

- Box Windows XP Fresh SP3
 Same box that our slides are running from...
 Oh noes!
- MS08-067 meterpreter bind tcp

Back to our regularly scheduled slides...

Problem

- Meterpreter
 - Traditional disk forensics is helpless
 - Attack vector may never touch disk
 - No way to determine what happened
- Goal
 - Reconstruct attacker's Meterpreter sessions with as much reliability as possible

Solution

- Acquire exploited processes' address space
- Parse out meterpreter protocol from acquired memory sections
 - Reconstruct meterpreter sessions

MANDIANT Memoryze

ENUMERATION

- All running processes
 - Handle table
 - Memory sections
 - Ports
 - Strings
- Drivers
 - Including layered ones
- Certain kernel hooks

ACQUISITION

- Physical memory image
- Running process's memory space
 - Binary
 - Loaded DLL's
 - Stacks
 - Heaps
 - Data sections
- Drivers

MANDIANT Memoryze

- Can analyze memory live, or from image
 - Live analysis can use paging file for a more complete picture of memory
- Supported platforms
 - 32-bit Windows 2000, XP, 2003 Server
 - Beta support for Vista
- Download at
 - <u>http://www.mandiant.com/</u>

Why Process Acquisition?

- Acquisition was originally used mostly for malware analysis
 - Acquire packed binaries running in memory
 - Usually utilized debuggers
 - Can defeat most packers
- Acquisition has other uses:
 - Acquire unknown binaries for Virustotal
 - Acquire memory to look for protocol strings
 - Encrypted strings are unecrypted in memory

Classic Process Acquisition

- Current Methodology
 - Open handle to process, OR
 - Attach to process
 - ReadProcessMemory(hProc, ImageBase, buffer, ImageSize, BytesRead)
- Current drawbacks
 - Requires "touching" a process
 - Detecting debuggers is trivial
 - Gives an incomplete picture of memory

Process Acquisition: Memoryze

RELIES ON

- Physical memory access
- Virtual to physical address translation

DOES NOT RELY ON

- Attaching to a process with a debugger
- Opening handles to processes or threads
- API calls
- The OS's Virtual Memory Manager

Memoryze: Process Acquisition

- Accessing Physical Memory
 - Live analysis
 - Acquisition
- \Device\PhysicalMemory
 - Section object exposed by Windows
 - Reading from handle allows application to read physical memory
 - Every virtual address must be translated to a physical offset within the section object

Memoryze: Process Acquisition

- Map physical memory into buffer
- Acquisition:
 - Write buffer to disk (dd)
- Analysis:
 - Scan buffer for known signatures of kernel structures, e.g. EPROCESS

New Process Acquisition

- Find all processes (EPROCESS) in physical memory
 - VadRoot within the EPROCESS structure
 - The VadRoot is the top node of a tree of Memory Manager Virtual Address Descriptor (MMVAD) entries
 - MMVAD entries contain the virtual start address and size of each memory section within a process
 - MMVAD entries containing mapped DLL's or EXE's will have a pointer to the path of the binary
 - Helps manage process' virtual address space

Memoryze: Process Acquisition

 OllyDbg's memory map view shows the different sections

Address	Size	Owner	Section	Contains	Type	Access	Initial
00010000 00020000 00030000 00078000 0007C000 00080000 00080000 00080000 00180000	00001000 00001000 00001000 00001000 00004000 00003000 00002000 00010000			stack of ma	Priv Priv Priv Priv Map Priv Priv Map	RW RW	RW RW RW RW

- Each address range is an entry in VadRoot, represented by a MMVAD structure
- Enumeration of VadRoot allows access to heaps, stacks, and binary images

Indicates EPROCESS, DISPATCH_HEADER, further checks are needed

Kernel Address Space

Parsing MMVAD

For each VAD write to disk:
StartVPN to
StartVPN+EndingVPN

- 🔰 976_%5cWINDOW5%5csystem32%5cws2_32.dll
- 🔰 976_%5cWINDOWS%5csystem32%5cws2help.dll
- 🔰 976_%5cWINDOWS%5csystem32%5cwshtcpip.dll
- 🔰 976_%5cWINDOW5%5csystem32%5cwsock32.dll
- 🔰 976_%5cWINDOW5%5csystem32%5cwtsapi32.dll
- 🔰 976_%5cWINDOW5%5csystem32%5cwuaueng.dll
- 🔰 976_%5cWINDOWS%5csystem32%5cwuauserv.dll
- 🔰 976_%5cWINDOWS%5csystem32%5cwups2.dll
- 🛂 976_%5cWINDOW5%5csystem32%5cwups.dll
- 🔰 976 %5cWINDOW5%5csystem32%5cwzcsyc.dll
- 🔰 976_%5cWINDOWS%5csystem32%5cxactsrv.dll
- 🗐 976_%5cWINDOW5%5cWinSxS%5cx86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.10.0_x-ww_f7fb5805%5ccomctl32.dll
- BatchResult.xml
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00a00000-0x00a3ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00a40000-0x00a7ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00a80000-0x00a81fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00a90000-0x00a95fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00aa0000-0x00aaffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00ab0000-0x00ab0fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00ac0000-0x00ac1fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00ad0000-0x00b0ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00b10000-0x00b1ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00b20000-0x00b21fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00b30000-0x00c2ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00c30000-0x00caffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00cb0000-0x00ceffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00cf0000-0x00d2ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00d30000-0x00d3ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00d40000-0x00d41fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00d50000-0x00e4ffff.VAD
- C%3a%5cWINDOWS%5cSystem32%5c976_0x00e50000-0x00e8ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00e90000-0x00ecffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00ed0000-0x00f0ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00f10000-0x00f4ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00f50000-0x00f8ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00f90000-0x00fcffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x00fd0000-0x00fe7fff.VAD
- C%3a%5cWINDOWS%5cSystem32%5c976_0x00ff0000-0x00ff0fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x001a0000-0x001b5fff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x01a10000-0x01a4ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x01a50000-0x01a5ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x01a60000-0x01a6ffff.VAD
- C%3a%5cWINDOW5%5cSystem32%5c976_0x01a70000-0x01a7ffff.VAD

- C%3a%5cWINDOWS%5cSystem32%5c976_0x01a80
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01a90
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01aa0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01ac0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01ad0
- C%3a%5cWINDOW5%5cSystem32%5c976_0x01ae0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01af00
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01b00
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01b10
- C%3a%5cWINDOW5%5cSystem32%5c976 0x01b20
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01b30
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01bb0
- C%3a%5cWINDOW5%5cSystem32%5c976_0x01cd0 C%3a%5cWINDOWS%5cSystem32%5c976_0x01cf00
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01d00
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01d40
- C%3a%5cWINDOW5%5cSystem32%5c976_0x01e40
- C%3a%5cWINDOWS%5cSystem32%5c976 0x01e80
- C%3a%5cWINDOWS%5cSystem32%5c976_0x01ec0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x03cf00
- C%3a%5cWINDOWS%5cSystem32%5c976_0x03df0
- C%3a%5cWINDOW5%5cSystem32%5c976_0x03f500
- C%3a%5cWINDOWS%5cSystem32%5c976_0x004d0
- C%3a%5cWINDOW5%5cSystem32%5c976_0x004e0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x005a0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x005e0
- C%3a%5cWINDOW5%5cSystem32%5c976 0x006b0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x006f0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7f6f00
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7b0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7c0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7d0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7e0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7f0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff8aC
- C%3a%5cWINDOW5%5cSystem32%5c976_0x7ff8c0
- C%3a%5cWINDOW5%5cSystem32%5c976_0x7ff8dC
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff8e0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9aC
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9b0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9c0
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9dC
- C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9e0

New Process Acquisition

- Allows dumping of full address space
- Overcomes most binary packing
- Captures communication protocol strings
- Bypasses any anti-debugging techniques
- Acquire(s):
 - DLL's that are only in memory
 - Code corresponding to injected threads or shellcode

Metasploit

Have YOU read the developer docs?

Metasploit

- Open source exploit framework originally developed in Perl (1.x, 2.x) by HD Moore et al.
 - Currently Ruby (3.x)
- Platform independent
- Multiple payloads

Meterpreter

- The next generation of post-exploitation payloads
 - Forget /bin/sh and cmd.exe
 - Limited to stdin, stderr, stdout
 - Non-interactive
- Full functioning client → server interpreter
 - File upload / download
 - Key logging
 - Simple extension addition
- Can be completely memory resident

Under the Meterpreter Hood

- DLL gets injected into exploited process
- Hooks LoadLibrary (on Windows)
 - Applies hook to Win32 API LoadLibrary
 - Changes lower level API's behavior to allow LoadLibrary to load a DLL from memory
- Hooked API's to allow loading of metsrv.dll from memory
 - NtOpenSection, NtCreateSection
 - NtQueryAttributesFile
 - NtOpenFile, NtMapViewOfSection

- TLV (really LTV) Structures
 - Provide communication protocol for meterpreter server and client
 - 32 bit Length and Type Fields
 - n bits Value Field

Attacker

Sends Exploit

Payload Meterpreter bind_tcp

Victim

Meterpreter Communication

Meterpreter Communication

Response Packet Structure (1 of

'			
Response Packet			
Length	sizeof(Response Packet)		
Type	PACKET_TLV_TYPE_PLAIN_RESPONSE		
Value	Length	sizeof(this tlv)	
	Туре	TLV_TYPE_METHOD	
	Value	stdapi_sys_process_getpid	

Response Packet Structure (2 of

Response Packet			
Length	sizeof(Response Packet)		
Туре	PACKET_TLV_TYPE_PLAIN_RESPONSE		
Value			

Length	sizeof(this tlv)
Type	TLV_TYPE_REQUEST_ID
Value	3164813846702899128916537536399

Response Packet Structure (3 of

Response Packet			
Length	<pre>sizeof(Response Packet)</pre>		
Type	PACKET_TLV_TYPE_PLAIN_RESPONSE		
Value			

Length	sizeof(this tlv)
Туре	TLV_TYPE_PID
Value	0x000003EC

Response Packet Structure (4 of

		Response Packet
Length	<pre>sizeof(Response Packet)</pre>	
Type	PACKET_TLV_TYPE_PLAIN_RESPONSE	
Value		
	Length	sizeof(this tlv)
	Туре	TLV_TYPE_RESULT
	Value	0x0000000

Response Packet Structure

Response Packet		
Length	<pre>sizeof(Response Packet)</pre>	
Type	PACKET_1	TLV_TYPE_PLAIN_RESPONSE
Value	Length	sizeof(this tlv)
	Туре	TLV_TYPE_METHOD
	Value	stdapi_sys_process_getpid
	Length sizeof(this tlv)	
	Type	TLV_TYPE_REQUEST_ID
	Value 3164813846702899128916537536399	
Length sizeof(this tlv)		sizeof(this tlv)
	Туре	TLV_TYPE_PID
	Value	0x000003EC
	Length	sizeof(this tlv)
	Туре	TLV_TYPE_RESULT
	Value	0x0000000

TLV Packet			
Length	Doesn't exist do to free()		
Type:	TLV_TYPE_METHOD 0x00010001		
Value:	stdapi_sys_process_getpid		

TLV Packet			
Length	0x29		
Type:	TLV_TYPE_REQUEST_ID	0x00010002	
Value:	3164813846702899128916537536399		

TLV Packet			
Length	0x0C		
Type:	TLV_TYPE_PID	0x000208FC	
Value:	0x000003EC		


```
08 74 04 06 00 01 00 01 73 74 64 61 70 69 5F 73 ; .t....stdapi_s
79 73 5F 70 72 6F 63 65 73 73 5F 67 65 74 70 69 ; ys_process_getpi
64 00 00 00 00 29 00 01 00 02 33 31 36 34 38 31 ; d....)....316481
33 38 34 36 37 30 32 38 39 39 31 32 38 39 31 36 ; 3846702899128916
35 33 37 35 33 36 33 39 39 34 00 00 00 00 00 00 ; 5375363994.....
02 08 FC 00 00 01 48 05 98 01 08 00 0E 00 C7 01 0E 00 ; ....H."....Ç...
```

TLV Packet			
Length	0x0C		
Type:	TLV_TYPE_RESULT	0x00020004	
Value:	0×00000000		

Meterpreter Communication

- The response packet is freed by meterpreter
- However...
- When Windows' memory manager frees memory, it is not immediately reused.
 - It can take hours for memory to be reclaimed after it has been freed.

Metasploit Forensic Framework

Finding one pwned system at a time

Metasploit Forensic Framework

- Scan acquired VADs looking for:
 - Strings containing meterpreter methods
 - This indicates a TLV response to a specific method
 - Parsing out the response TLV gives analysts the data attackers received
 - Also indicates what commands were executed on the machine

Conclusion

- Windows memory manager gives analysts a chance to see artifact memory
- Large impact for forensics
 - Not so large on Metasploit project
- Combining memory analysis with further research will lead to better and more effective projects

Demo Part 3

- Acquire svchost.exe
 - Remember attacker terminated connection roughly 30 minutes ago
 - Run Metasploit Forensic Framework (msff)

Questions???

- <u>stephen.davis@mandiant.com</u>
- peter.silberman@mandiant.com

