
Reverse Engineering by Crayon: 

Game Changing Hypervisor and 

Visualization Analysis

Game Changing Hypervisor Based 

Malware Analysis and Visualization

Danny QuistDanny Quist

Lorie Liebrock

New Mexico Tech Computer Science Dept.

Offensive Computing, LLC

Blackhat / Defcon USA 2009



Overview

• Reverse Engineering Process

• Hypervisors and You

• Xen and Ether

• Modifying the Process• Modifying the Process

• VERA

• Real! Live! Reversing!

• Results



Danny Quist

• Offensive Computing, LLC - Founder

• Ph.D. Candidate at New Mexico Tech

• Reverse Engineer

• Instructor



Lorie Liebrock

• Computer Science Department Chair, New 

Mexico Tech

• Associate Professor• Associate Professor

• New Mexico Tech Scholarship for Service 

Principal Investigator



Overview

• Reverse Engineering Process
• Hypervisors and You

• Xen and Ether• Xen and Ether

• Modifying the Process

• VERA

• Real! Live! Reversing!

• Results



Process for Reverse Engineering

• Setup an isolated run-time environment

• Execution and initial analysis

• Deobfuscate compressed or packed code

• Disassembly / Code-level Analysis• Disassembly / Code-level Analysis

• Identify and analyze relevant and interesting 

portions of the program



Isolated Analysis Environment

• Setup an Isolated Runtime Environment

– Virtual machines: VMWare, Xen, KVM, …

– Need to protect yourself from malicious code

– Create a known-good baseline environment

– Quickly allows backtracking if something bad happens



Execution and Initial Analysis

• Goal: Quickly figure out what the program is 

doing without looking at assembly

• Look for:• Look for:

– Changes to the file system

– Changes to the behavior of the system

• Network traffic

• Overall performance

• Ads or changed browser settings



Remove Software Armoring

• Program protections to prevent reverse 

engineering

• Done via packers – Small encoder/decoder

• Self-modifying code• Self-modifying code

• Lots of research about this

– OllyBonE, Saffron, Polyunpack, Renovo, Ether, 

Azure

– My research uses Ether



Packing and Encryption

• Self-modifying code

– Small decoder stub

– Decompress the main executable

– Restore imports– Restore imports

• Play “tricks” with the executable

– OS Loader is inherently lazy (efficient)

– Hide the imports

– Obscure relocations

– Use bogus values for various unimportant fields



Software Armoring

– Compressed, obfuscated, hidden code

– Virtual machine detection– Virtual machine detection

– Debugger detection

– Shifting decode frames



Normal PE File



Packed PE File



Troublesome Protections

• Virtual Machine Detection

– Redpill, ocvmdetect, Paul Ferrie’s paper

• Debugger Detection

– IsDebuggerPresent()– IsDebuggerPresent()

– EFLAGS bitmask

• Timing Attacks

– Analyze value of RDTSC before and after

– Really effective



Thwarting Protections

Two methods for circumvention

1. Know about all the protections before hand and 

disable themdisable them

2. Make yourself “invisible”



Virtual Machine Monitoring

• Soft VM Based systems

– Renovo

– Polyunpack

– Zynamics Bochs unpacker

• Problems

– Detection of virtual machines is easy

– Intel CPU never traditionally designed for 
virtualization

– Do not emulate x86 bug-for-bug



OS Integrated Monitoring

• Saffron, OllyBonE

– Page-fault handler based debugger

– Abuses the supervisor bit on memory pages

– High-level executions per page– High-level executions per page

• Problems

– Destabilizes the system

– Need dedicated hardware

– Fine-grain monitoring not possible



Fully Hardware Virtualizations

• Ether: A. Dinaburg, P. Royal

– Xen based hypervisor system

– Base functions for monitoring

• System calls

• Instruction traces• Instruction traces

• Memory Writes

– All interactions done by memory page mapping

• Problems

– Old version of Xen hypervisor

– Requires dedicated hardware



Disassembly and Code Analysis

• Most nebulous portion of the process

• Largely depends on intuition

• Looking at assembly is tedious

• Suffers from “not seeing the forest from the • Suffers from “not seeing the forest from the 

trees” syndrome

• Analyst fatigue – Level of attention required 

yields few results



Find Interesting and Relevant Portions 

of the Executable

• Like disassembly, this relies on a lot of 
intuition and experience

• Typical starting points:

– Look for interesting strings– Look for interesting strings

– Look for API calls

– Examine the interaction with the OS

• This portion is fundamentally imprecise, 
tedious, and often frustrating for beginners 
and experts



Overview

• Reverse Engineering Process

• Hypervisors and You
• Xen and Ether• Xen and Ether

• Modifying the Process

• VERA

• Real! Live! Reversing!

• Results



Hypervisors

• Lots of hype over the past few years

• New hypervisor rootkits lead defensive tools

• Covert methods for analyzing runtime 
behavior are extremely useful

• Detection of hardware virtualization not 
widely implemented



Useful Hypervisor Technology

• VMWare ESX Server
– Commercial grade solution for VMs

– Avoids VM detection issues (mostly)

• Linux Kernel Virtual Machines (KVM)
– Separates analysis OS from target OS (slightly safer?)– Separates analysis OS from target OS (slightly safer?)

– Uses well-tested Linux algorithms for analysis

• Xen
– Excellent set of tools for introspection

– Uses standard QEMU image formats

– API Controlled via Python – Integration into tools is 
easier



Contributions

• Modifications to Ether

– Improve malware unpacking

– Enable advanced tracing mechanisms

– Automate much of the tedious portions– Automate much of the tedious portions

• Visualizing Execution for Reversing and 
Analysis (VERA)

– Speed up disassembly and finding interesting 
portions of an executable

– Faster identification of the Original Entry Point



Overview

• Reverse Engineering Process

• Hypervisors and You

• Xen and Ether• Xen and Ether
• Modifying the Process

• VERA

• Real! Live! Reversing!

• Results



What is Ether?

• Patches to the Xen Hypervisor

• Instruments a windows system

• Base modules available
– Instruction tracing

– API Tracing– API Tracing

– Unpacking

• “Ether: Malware Analysis via Hardware 
Virtualization Extensions” 
Dinaburg, Royal, Sharif, Lee

ACM CCS 2008



Ether Event Tracing

• Detects events on an instrumented system

– System call execution

– Instruction execution

– Memory writes

– Context switches



Instruction Tracing

• EFLAGS register modified for single-step 

(trap flag)

• PUSHF and POPF instructions are intercepted• PUSHF and POPF instructions are intercepted

• Modifications to this single-stepping 

effectively hidden (except



Memory and System Calls

• Memory Writes

– Tracked by manipulating the shadow page table

– Gives access to the written and read memory 
addresses

• System Calls

– Modifies the SYSENTER_EIP register to point to 
non-paged address space

– Logged, returned to ether

– Overrides 0x2e interrupt to catch older syscalls



Ether System Architecture



Extensions to Ether

• Removed unpacking code from hypervisor into 
user-space

• Better user mode analysis

• PE Repair system – Allows for disassembly of 
executables

• Added enhanced monitoring system for 
executables



User mode Unpacking

• Watch for and monitor all memory writes

• Allow program to execute

• When execution occurs in written memory, dump 
memory

• When execution occurs in written memory, dump 
memory

• Each dump is a candidate for the OEP

• Not perfect, but very close

• Scaffolding for future modifications



PE Repair

• Dumped PE files had problems

– Sections were not file aligned

– Address of Entry Point invalid

– Would not load in IDA correctly– Would not load in IDA correctly

• Ported OllyDump code to Ether user mode

– Fix section offsets to match data on disk

– Repair resources as much as possible

– Set AddressOfEntryPoint to be the candidate OEP



Results

• Close to a truly covert analysis system

– Ether is nearly invisible

– Still subject to bluepill detections

• Fine-grain resolution of program execution• Fine-grain resolution of program execution

• Application memory monitoring and full 

analysis capabilities

• Dumps from Ether can now be loaded in IDA 

Pro without modification



Ether Unpacking Demo!



Open Problems

• Unpacking process produces lots of candidate 
dump files

• Better Original Entry Point discovery method• Better Original Entry Point discovery method

• Import rebuilding is still an issue

• Now that there is a nice tool for tracing 
programs covertly, we need to do analysis



Overview

• Reverse Engineering Process

• Hypervisors and You

• Xen and Ether

• Modifying the Process
• VERA

• Real! Live! Reversing!

• Results



Modifying the Process

• Knowing what to look for is often the portion 

that most new reversers have trouble with

• Having an idea of the execution flow of a 

program is extremely usefulprogram is extremely useful

– IDA is focused on the function view

– Extend to the basic block view

• Software armoring removal made easy



Visualization of Trace Data

• Goals:

– Quickly visually subvert software armoring

– Identify modules of the program

• Initialization

• Main loops• Main loops

• End of unpacking code

– Figure out where the self-modifying code ends (OEP 
detection)

– Discover dynamic runtime program behavior

– Integrate with existing tools



Visualizing the OEP Problem

• Each block (vertex) represents a basic block 

executed in the user mode code

• Each line represents a transition• Each line represents a transition

• The thicker the line, the more it was executed

• Colors represent areas of memory execution



VERA

• Visualization of Executables for Reversing and 

Analysis

• Windows MFC Application• Windows MFC Application

• Integrates with IDA Pro

• Fast, small memory footprint



Visualizing Packers

• Memory regions marked for PE heuristics



Demo!



Netbull Virus (Not Packed)



Netbull Zoomed View



Visualizing Packers

• Memory regions marked for PE heuristics



UPX



UPX - OEP



ASPack



FSG



MEW



TeLock



User Study

• Students had just completed week long 

reverse engineering course

• Analyzed two packed samples of the Netbull

Virus with UPX and MEWVirus with UPX and MEW

• Asked to perform a series of tasks based on 

the typical reverse engineering process

• Asked about efficacy of visualization tool



User Study: Tasks Performed

• Find the original entry point (OEP) of the 

packed samples

• Execute the program to look for any 

identifying outputidentifying output

• Identify portions of the executable:

– Packer code

– Initialization

– Main loops











Selected Comments

• “Wonderful way to visualize analysis and to 

better focus on areas of interest”

• “Fantastic tool. This has the potential to • “Fantastic tool. This has the potential to 

significantly reduce analysis time.”

• “It rocks. Release ASAP.”



Recommendations for improvement

• Need better way to identify beginning and end 

of loops

• Many loops overlap and become convoluted• Many loops overlap and become convoluted

• Be able to enter memory address and see 

basic blocks that match



Future Work

• General GUI / bug fixes

• Memory access visualization

• System call integration

• Function boundaries• Function boundaries

• Interactivity with unpacking process

• Modify hypervisor to work with WinDBG, 

OllyDbg, IDA Debugger



Conclusions

• Visualizations make it easy to identify the OEP

• No statistical analysis of data needed

• Program phases readily identified

• Graphs are relatively simple• Graphs are relatively simple

• Preliminary user study shows tool holds 

promise for speeding up reverse engineering



Thanks!

• Artem Dinaburg

• Paul Royal

• Cort Dougan

• Moses Schwartz• Moses Schwartz

• Alan Erickson

• Alex Kent

• New Mexico Tech SFS Program



Closing thoughts

• Ether is awesome. Thanks Artem Dinaburg

and Paul Royal.

• Source, tools, and latest slides can be found 

at:at:

http://www.offensivecomputing.net

• If you use the tool, please give feedback

• Look for the paper at Vizsec 2009


