

Fight against 1-day exploits:
Diffing Binaries vs Anti-diffing
Binaries

Jeongwook Oh(mat@monkey.org,oh.jeongwook@gmail.com)

Jeongwook Oh works on eEye's flagship product called "Blink". He develops traffic analysis module that filters attacker's traffic. The
analysis engine identifies protocol integrity violations by protocol parsing and lowers the chances of false positives and false

negatives compared to traditional signature based IPS engines.
He's also interested in blocking ActiveX related attacks and made some special schemes to block ActiveX-based attacks without

any false positives. The implementation was integrated to the company's product and used by the customers.
He runs Korean security mailing list called Bugtruck(not bugtraq).

Blackhat USA 2009 LAS VEGAS, Jul 30

Introduction: The Problem

● Security patches are meant to fix security
vulnerabilities.
● fixing problems and protect computers and end

users from risks.
● 1-day exploits

● binary diffing technique can be used to identify the
vulnerabilities

● especially useful for Microsoft's binaries

Introduction: The Solution

● Purpose: making 1-day exploits difficult and
time-consuming
● Make binary differs' life harder
● Severe code obfuscation is not an option
● Need an efficient lightweight code obfuscation

● In-house tool to achieve this
● Hondon(meaning Chaos)

Binary Diffing: Demo

● Just grab an idea what binary diffing is.
● We will show simple process of binary diffing.

Binary Diffing: The History

● BMAP: 10 years ago
● Halvar

● Bindiff: Expensive commercial tool
● Not affordable to most non-corporate

researchers
● TODD
● eEye
● 2-3 free or opensource tools

Binary Diffing: BMAT(1999)

● Heavily depends on symbolic name matching
● Used mainly for Microsoft's binaries which

symbol they have access to.
● Auxiliary method: 64bit hashing-based

comparison for the blocks inside each
procedure
● hashing=multiple level of abstractions with opcode

and operands

Binary Diffing: Automated Reverse
Engineering(2004)

● Halvar at Blackhat 2004
● Signature of functions

● signatures=number of nodes, edges and calls
● Isomorphic comparison between functions CG

● A function is a node and calling relationship is
an edge

Binary Diffing: Comparing binaries
with graph isomorphism(2004)

● Todd Sabin
● Instructions graph's isomorphic matching
● Compares instructions not basic blocks

● Very unique
● No POC ever released

● Only testing datasheet released

Binary Diffing: Structural Comparison of
Executable Objects(2004)

● Improved version of Halvar's Blackhat 2004
"Automated Reverse Engineering(2004)"[ARE]
presentation[SCEO]

Binary Diffing: Graph-based comparison
of Executable Objects(2005)

● Improved previous paper "Structural
Comparison of Executable Objects(2004)"

● Heavily dependent on CFG generation from the
binaries

The Tools: Sabre Security's
bindiff(2004)

● Halvar
● A commercial binary diffing tool
● Based on his graph based function

fingerprinting theory.

The Tools: IDACompare(2005)

● Based on signature scanning
● Used for porting malware analysis data
● Designed for around 500k file in size

● Which is a small size

The Tools: eEye Binary Diffing
Suite(2006)

● Internally used for Microsoft's Patch Tuesday
patches analysis

● Patch analysis was the only way to obtain some
secret information they don't release
● You can use eye ball instead of binary diffing

tools
● Some of them has the talent

● The "DarunGrim" is one of the tools included
and performs the main binary diffing analysis.

The Tools: Patchdiff2(2008)

● Made specifically for security patch or hotfix
analysis

● Using checksum of graph call for signaturing
● Sounds like similar to bindiff

The Tools: DarunGrim2(2008)

● The improved version of eEye Binary Diffing
Suite

● Using C++ instead of Python to overcome
performance and memory footprint issues

● Will be Open-Sourced in few weeks

DarunGrim2: Algorithms

● The previous works in binary difference
analysis were mainly concentrated on the graph
structure analysis and graph isomorphism.
● Intensive comparison of two graphs
● dependency on the disassembler's CFG analysis

capabilities
● "B as ic B lock Fing erprint H as h M ap" is

the way to overcome this limitation and to
improve analysis result drastically.

Algorithms: Basic Block Fingerprint
Hash Map

● Fingerprint hashing method is a main algorithm
of DarunGrim2
● Fingerprint of the block=extracted from

instruction sequences
● Two fingerprint hash table for original binary

and patched binary
● For each unique fingerprints from original binary

● DarunGrim2 check if the patched binaries
fingerprint hash table has matching entry.

Algorithms: Basic Block Fingerprint
Hash Map

● Generating fingerprint for a basic block
● Using IDA

● Overcoming Order Dependency
● Reducing Hash Collision

● Merge multiple fingerprints from parent and children
● Determining matching functions

● Count the number of matching basic blocks choose
the pair that has highest matches

● Matching blocks inside function
● After function match is determined, use locality.

Algorithms: Symbolic Names
Matching

● Basic starting points for binary matching
procedure

● Microsoft is generous enough to provide symbol
files as soon as the patch is out

Algorithms: Structure Based Analysis

● Philosophy of divide and conquer
● Similar to that of BMAT tool

● Calculating match rate
● Compare fingerprint string using string match

algorithm, same algorithm used in GNU
diff(1)

● Determines "Stop"(If match rate is under n%)
or "Go"(If match rate is over n%).

● Need to recognize control flow Inversion
● Todd's method: categorizing control flow

types
– Ex) jz vs jnz

DarunGrim2: Real Life Issues

● Split Blocks
● Hot Patching
● Basic Blocks in Multiple Functions

Real Life Issues: Split Blocks

Real Life Issues: Split Blocks

● "The block who has one child and the child of
the block has only one parent in CFG."

● The split blocks tend to make CFG broken
● The matching process incomplete.

● Need to merge split blocks

Real Life Issues: Split Blocks

Real Life Issues: Hot Patching
.text:765D1E9C ; int __stdcall sub_765D1E9C(unsigned __int8
*NetworkAddr,int)
.text:765D1E9C sub_765D1E9C proc near
.text:765D1E9C mov eax, eax
.text:765D1E9E
.text:765D1E9E ; __stdcall W32TimeGetNetlogonServiceBits(x, x)
.text:765D1E9E _W32TimeGetNetlogonServiceBits@8:
.text:765D1E9E push ebp
.text:765D1E9F mov ebp, esp
.text:765D1EA1 push 0FFFFFFFFh
.text:765D1EA3 push offset dword_765D1F80

●Solution: Just ignore any hot patching preamble
●Pattern: mov RegA,RegA at the start of a function

Real Life Issues: Basic Blocks in
Multiple Functions

● Usually one basic block belongs to one function
● There are some cases that one basic block can

be part of multiple functions.
● For example: Windows kernel

● The limitation with IDA
● One function for one basic block

Real Life Issues: Basic Blocks in
Multiple Functions

● Perform additional custom CFG analysis
● Doesn't totally rely on IDA's CFG analysis

● Design data structure to make it possible for
● a basic block can belong to multiple

functions.

Real Life Issues: Instruction
Reordering

● During ARM binaries diffing experiments
● we found that there are a lot of instruction

reordering happen over each releases.
● Binary differ is confused a lot and mark all

the same blocks as being different

Real Life Issues: Instruction
Reordering

Real Life Issues: Instruction
Reordering

Original Patched

STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
LDR R3, =(off_3AFD9AAC - 0x32FF9A80)
SUB SP, SP, #0xC
LDR R1, =(off_3AFD86B8 - 0x32FF9A88)
LDR R3, [PC,R3]
STR R0, [SP,#0x20+var_20]
LDR R1, [PC,R1] ; "initWithPath:"
MOV R0, SP
MOV R6, R2
STR R3, [SP,#0x20+var_1C]
BL _objc_msgSendSuper2
SUBS R5, R0, #0
BEQ loc_32FF9B84

STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
SUB SP, SP, #0xC
LDR R3, =(off_3B2CF6C8 - 0x33328E08)
LDR R1, =(off_3B2CDE70 - 0x33328E10)
STR R0, [SP,#0x20+var_20]
LDR R3, [PC,R3]
MOV R0, SP
LDR R1, [PC,R1] ; "initWithPath:"
MOV R6, R2
STR R3, [SP,#0x20+var_1C]
BL _objc_msgSendSuper2
SUBS R5, R0, #0
BEQ loc_33328F08

Real Life Issues: Instruction
Reordering

Generate Data flow graph and serialize each node

Real Life Issues: Instruction
Reordering

Original Patched
STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
LDR R3, =(off_3AFD9AAC -
0x32FF9A80)
SUB SP, SP, #0xC
LDR R1, =(off_3AFD86B8 -
0x32FF9A88)
LDR R3, [PC,R3]
STR R0, [SP,#0x20+var_20]
LDR R1, [PC,R1] ; "initWithPath:"
MOV R0, SP
MOV R6, R2
STR R3, [SP,#0x20+var_1C]
BL _objc_msgSendSuper2
SUBS R5, R0, #0
BEQ loc_32FF9B84

STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
SUB SP, SP, #0xC
LDR R3, =(off_3B2CF6C8 -
0x33328E08)
LDR R1, =(off_3B2CDE70 -
0x33328E10)
STR R0, [SP,#0x20+var_20]
LDR R3, [PC,R3]
MOV R0, SP
LDR R1, [PC,R1] ; "initWithPath:"
MOV R6, R2
STR R3, [SP,#0x20+var_1C]
BL _objc_msgSendSuper2
SUBS R5, R0, #0
BEQ loc_33328F08

Original Patched
STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
SUB SP, SP, #0xC
BEQ loc_32FF9B84
MOV R0, SP
SUBS R5, R0, #0
STR R0, [SP,#0x20+var_20]
LDR R3, =(off_3AFD9AAC -
0x32FF9A80)
LDR R3, [PC,R3]
STR R3, [SP,#0x20+var_1C]
LDR R1, =(off_3AFD86B8 -
0x32FF9A88)
LDR R1, [PC,R1] ;
"initWithPath:"
BL _objc_msgSendSuper2
MOV R6, R2

STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
SUB SP, SP, #0xC
BEQ loc_33328F08
MOV R0, SP
SUBS R5, R0, #0
STR R0, [SP,#0x20+var_20]
LDR R3, =(off_3B2CF6C8 -
0x33328E08)
LDR R3, [PC,R3]
STR R3, [SP,#0x20+var_1C]
LDR R1, =(off_3B2CDE70 -
0x33328E10)
LDR R1, [PC,R1] ;
"initWithPath:"
BL _objc_msgSendSuper2
MOV R6, R2

Examples

Microsoft's Binaries
Non-Microsoft's Binaries

Malwares

Gathering Binaries

● Each vendors patch pages
● Use MS patches pages

● Need to archive binary files for future patch
releases
● SortExecutables.exe: Sort PE binaries

according to the version information.
● <Company Name>\<File Name>\<Version

Name>

Gathering Binaries: SortExecutables

●You can make your own archive of binaries in
more organized way

●T:\PROJECTS\BINARIES\WINDOWS XP\MICROSOFT CORPORATION\MSHTML
●├─6.00.2600.0000 (xpclient.010817-1148)
●├─6.00.2800.1528
●├─6.00.2800.1561
●├─6.00.2800.1562
●├─6.00.2900.2180 (xpsp_sp2_rtm.040803-2158)
●├─6.00.2900.2604 (xpsp.041130-1728)
●├─6.00.2900.2604 (xpsp_sp2_gdr.041130-1729)
●├─6.00.2900.3020 (xpsp_sp2_gdr.061023-0214)
●├─6.00.2900.3492 (xpsp_sp2_qfe.081212-1622)
●├─6.00.2900.5512 (xpsp.080413-2105)
●├─6.00.2900.5659 (xpsp_sp3_gdr.080819-1237)
●├─6.00.2900.5659 (xpsp_sp3_qfe.080819-1352)
●├─6.00.2900.5694 (xpsp_sp3_qfe.081015-1409)
●├─6.00.2900.5726 (xpsp_sp3_gdr.081212-1450)
●├─6.00.2900.5726 (xpsp_sp3_qfe.081212-1451)
●├─7.00.6000.16788 (vista_gdr.081211-1619)
●├─7.00.6000.16809 (vista_gdr.090114-1504)
●└─8.00.6001.18702 (longhorn_ie8_rtm(wmbla).090308-0339)

Performing Diffing

● Using DarunGrim2.exe and Two IDA sessions
● First launch DarunGrim2.exe
● Launch two IDA sessions
● First run DarunGrim2 plugin from the original binary
● Secondly run DarunGrim2 plugin from the patched binary

● Using DarunGrim2C.exe command line tool
● Handy
● Batch-able
● Quick

The infamous MS08-067(which was
exploited by Conficker)

● Conficker worm exploited this vulnerability to
propagate through internal network.

● Easy target for binary diffing: only 2 functions
changed.

● One is a change in calling convention.
● The other is the function that has the

vulnerability

The infamous MS08-067(which was
exploited by Conficker)

MS08-063: DarunGrim2 vs bindiff
Modified Functions

MS08-063: DarunGrim2 vs bindiff
_SrvIssueQueryDirectoryRequest@32

MS08-063: DarunGrim2 vs bindiff
Patched Blocks

MS08-063: DarunGrim2 vs bindiff
Patched Blocks

MS08-063: DarunGrim2 vs bindiff
Bindiff Results

MS08-063: DarunGrim2 vs bindiff
False Negatives

SrvFsdRestartPrepareRawMdlWrite
SrvIssueQueryDirectoryRequest
SrvRestartRawReceiveVS

7 3VS

MS09-020: WebDav case
Patched Function looks almost same

Orginal

Patched

MS09-020: WebDav case
Flags has changed

Original

Patched

MS09-020: WebDav case
What does flag 8 mean?

MSDN(http://msdn.microsoft.com/en-us/library/dd319072(VS.85).aspx) declares like
following:

MB_ERR_INVALID_CHARS Windows Vista and later: The function does not
drop illegal code points if the application does not set this flag.
Windows 2000 Service Pack 4, Windows XP: Fail if an invalid input character is
encountered. If this flag is not set, the function silently drops illegal code
points. A call to GetLastError returns
ERROR_NO_UNICODE_TRANSLATION.

MS09-020: WebDav case
Broken UTF8 Heuristics?

6F0695EA mov esi, 0FDE9h
,,,,
6F069641 call ?FIsUTF8Url@@YIHPBD@Z ;
FIsUTF8Url(char const *)
6F069646 test eax, eax
if(!eax)
{

6F0695C3 xor edi, edi
6F06964A mov [ebp-124h], edi

}else
{

6F069650 cmp [ebp-124h], esi
}
,,,
6F0696C9 mov eax, [ebp-124h]
6F0696D5 sub eax, esi
6F0696DE neg eax
6F0696E0 sbb eax, eax
6F0696E2 and eax, 8

JRE Font Manager Buffer
Overflow(Sun Alert 254571)

JRE Font Manager Buffer
Overflow(Sun Alert 254571)

Original Patched

.text:6D2C4A75 mov edi, [esp+10h]

.text:6D2C4A79 lea eax, [edi+0Ah]

.text:6D2C4A7C cmp eax, 2000000h

.text:6D2C4A81 jnb short loc_6D2C4A8D

.text:6D2C4A83 push eax ; size_t

.text:6D2C4A84 call ds:malloc

.text:6D244B06 push edi

.text:6D244B07 mov edi, [esp+10h]

.text:6D244B0B mov eax, 2000000h

.text:6D244B10 cmp edi, eax

.text:6D244B12 jnb short loc_6D244B2B

.text:6D244B14 lea ecx, [edi+0Ah]

.text:6D244B17 cmp ecx, eax

.text:6D244B19 jnb short loc_6D244B25

.text:6D244B1B push ecx ; size_t

.text:6D244B1C call ds:malloc

Malwares: 4th of July DDOS Attack

● On this 4th of July a DDOS attack was fired
against some of US government and corporate
sites.
● It had very limited impact against the targets

● For some reason they changed their targets to
South Korean government and major news
sites.
● This time it made a huge success and the targets

were almost unreachable during the attack period(3
days).

● During the time few variants of malware samples
were collected.

Malwares: 4th of July DDOS Attack:
Comparison of variants

VS

Malwares: 4th of July DDOS Attack
●This is the
routines that saves
new attack targets.
●From the binary
this part was the
only modification.
●It can save a lot of
time for the
malware
analysists.

Anti-Binary Diffing

● Symbol Mangling
● Reordering and replacing instructions
● CFG Altering

● Call that never returns
● Sharing Basic Blocks
● Use multiple heads for a function

● CG Altering
● Use proxy call

Anti Binary Diffing Tool: Hondon

● Hondon= 혼돈 =混沌 = Chaos
● A state that can't be divided and defined.

● Don't do extensive code obfuscation that can
affect performance
● Just make the codes not disassemble-able

easily.
● Disassemblableness is not a mandatory

feature for a legitimate binary.
● Usually make IDA's the function recognition

fail

Anti Binary Diffing Tool: Hondon

● Implements CFG altering
● Minor CFG altering breaks IDA

● Tested under 5.0 and 5.5.
● 5.0 is broken severely
● 5.5 is much better, but is still very confused with

function recognition
● Hondon works as IDA plugin

● In real world it should be implemented as a part of
compiler(like Visual C++ or gcc).

● Use binary rewriting to generate obfuscated binary

Hondon: Demo

Check if how IDA can be confused.

Conclusion

● The 1-day exploit threat is real
● Someone finds vulnerabilities fixed silently
● Bugs tend to aggregate and many times

around where bugs were found
● Some fixes are incomplete and someone can

find those facts and can exploit the conditions
● "Hondon" attacks binary-differs weak points

● Dependency on disassemblers for CFG and
CG

DarunGrim2 and Hondon

http://www.darungrim.org
●All the source code and latest binaries will be

uploaded within 2 weeks

http://www.darungrim.org/

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

