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Introduction: The Problem

● Security patches are meant to fix security 
vulnerabilities.
● fixing problems and protect computers and end 

users from risks.
● 1-day exploits

● binary diffing technique can be used to identify the 
vulnerabilities

● especially useful for Microsoft's binaries



  

Introduction: The Solution

● Purpose: making 1-day exploits difficult and 
time-consuming
● Make binary differs' life harder
● Severe code obfuscation is not an option
● Need an efficient lightweight code obfuscation

● In-house tool to achieve this
● Hondon(meaning Chaos)



  

Binary Diffing: Demo

● Just grab an idea what binary diffing is.
● We will show simple process of binary diffing.



  

Binary Diffing: The History

● BMAP: 10 years ago
● Halvar 

● Bindiff: Expensive commercial tool
● Not affordable to most non-corporate 

researchers
● TODD
● eEye
● 2-3 free or opensource tools



  

Binary Diffing: BMAT(1999)

● Heavily depends on symbolic name matching
● Used mainly for Microsoft's binaries which 

symbol they have access to.
● Auxiliary method: 64bit hashing-based 

comparison for the blocks inside each 
procedure
● hashing=multiple level of abstractions with opcode 

and operands



  

Binary Diffing: Automated Reverse 
Engineering(2004)

● Halvar at Blackhat 2004 
● Signature of functions

● signatures=number of nodes, edges and calls
● Isomorphic comparison between functions CG

● A function is a node and calling relationship is 
an edge



  

Binary Diffing: Comparing binaries 
with graph isomorphism(2004)

● Todd Sabin
● Instructions graph's isomorphic matching
● Compares instructions not basic blocks

● Very unique
● No POC ever released

● Only testing datasheet released



  

Binary Diffing: Structural Comparison of 
Executable Objects(2004)

● Improved version of Halvar's Blackhat 2004 
"Automated Reverse Engineering(2004)"[ARE] 
presentation[SCEO]



  

Binary Diffing: Graph-based comparison 
of Executable Objects(2005)

● Improved previous paper "Structural 
Comparison of Executable Objects(2004)"

● Heavily dependent on CFG generation from the 
binaries



  

The Tools: Sabre Security's 
bindiff(2004)

● Halvar
● A commercial binary diffing tool
● Based on his graph based function 

fingerprinting theory.



  

The Tools: IDACompare(2005)

● Based on signature scanning
● Used for porting malware analysis data
● Designed for around 500k file in size

● Which is a small size



  

The Tools: eEye Binary Diffing 
Suite(2006)

● Internally used for Microsoft's Patch Tuesday 
patches analysis

● Patch analysis was the only way to obtain some 
secret information they don't release
● You can use eye ball instead of binary diffing 

tools
● Some of them has the talent

● The "DarunGrim" is one of the tools included 
and performs the main binary diffing analysis. 



  

The Tools: Patchdiff2(2008)

● Made specifically for security patch or hotfix 
analysis

● Using checksum of graph call for signaturing
● Sounds like similar to bindiff



  

The Tools: DarunGrim2(2008)

● The improved version of eEye Binary Diffing 
Suite

● Using C++ instead of Python to overcome 
performance and memory footprint issues

● Will be Open-Sourced in few weeks



  

DarunGrim2: Algorithms

● The previous works in binary difference 
analysis were mainly concentrated on the graph 
structure analysis and graph isomorphism.
● Intensive comparison of two graphs 
● dependency on the disassembler's CFG analysis 

capabilities
● "B as ic  B lock Fing erprint H as h M ap"  is 

the way to overcome this limitation and to 
improve analysis result drastically. 



  

Algorithms: Basic Block Fingerprint 
Hash Map

● Fingerprint hashing method is a main algorithm 
of DarunGrim2
● Fingerprint of the block=extracted from 

instruction sequences
● Two fingerprint hash table for original binary 

and patched binary
● For each unique fingerprints from original binary 

● DarunGrim2 check if the patched binaries 
fingerprint hash table has matching entry.



  

Algorithms: Basic Block Fingerprint 
Hash Map

● Generating fingerprint for a basic block
● Using IDA

● Overcoming Order Dependency
● Reducing Hash Collision

● Merge multiple fingerprints from parent and children
● Determining matching functions

● Count the number of matching basic blocks choose 
the pair that has highest matches

● Matching blocks inside function
● After function match is determined, use locality.



  

Algorithms: Symbolic Names 
Matching

● Basic starting points for binary matching 
procedure

● Microsoft is generous enough to provide symbol 
files as soon as the patch is out



  

Algorithms: Structure Based Analysis

● Philosophy of divide and conquer
● Similar to that of BMAT tool

● Calculating match rate
● Compare fingerprint string using string match 

algorithm, same algorithm used in GNU 
diff(1)

● Determines "Stop"(If match rate is under n%) 
or "Go"(If match rate is over n%).

● Need to recognize control flow Inversion
● Todd's method: categorizing control flow 

types
– Ex) jz vs jnz



  

DarunGrim2: Real Life Issues

● Split Blocks
● Hot Patching
● Basic Blocks in Multiple Functions



  

Real Life Issues: Split Blocks



  

Real Life Issues: Split Blocks

● "The block who has one child and the child of 
the block has only one parent in CFG."

● The split blocks tend to make CFG broken 
● The matching process incomplete. 

● Need to merge split blocks



  

Real Life Issues: Split Blocks



  

Real Life Issues: Hot Patching
.text:765D1E9C ; int __stdcall sub_765D1E9C(unsigned __int8 
*NetworkAddr,int)
.text:765D1E9C sub_765D1E9C    proc near 
.text:765D1E9C                 mov     eax, eax
.text:765D1E9E
.text:765D1E9E ; __stdcall W32TimeGetNetlogonServiceBits(x, x)
.text:765D1E9E _W32TimeGetNetlogonServiceBits@8:
.text:765D1E9E                 push    ebp
.text:765D1E9F                 mov     ebp, esp
.text:765D1EA1                 push    0FFFFFFFFh
.text:765D1EA3                 push    offset dword_765D1F80

●Solution: Just ignore any hot patching preamble
●Pattern: mov RegA,RegA at the start of a function



  

Real Life Issues: Basic Blocks in 
Multiple Functions

● Usually one basic block belongs to one function
● There are some cases that one basic block can 

be part of multiple functions.
● For example: Windows kernel

● The limitation with IDA 
● One function for one basic block



  

Real Life Issues: Basic Blocks in 
Multiple Functions

● Perform additional custom CFG analysis
● Doesn't totally rely on IDA's CFG analysis

● Design data structure to make it possible for 
● a basic block can belong to multiple 

functions.



  

Real Life Issues: Instruction 
Reordering

●  During ARM binaries diffing experiments
● we found that there are a lot of instruction 

reordering happen over each releases.
● Binary differ is confused a lot and mark all 

the same blocks as being different



  

Real Life Issues: Instruction 
Reordering



  

Real Life Issues: Instruction 
Reordering

Original Patched

STMFD   SP!, {R4-R7,LR}
ADD     R7, SP, #0x14+var_8
LDR     R3, =(off_3AFD9AAC - 0x32FF9A80)
SUB     SP, SP, #0xC
LDR     R1, =(off_3AFD86B8 - 0x32FF9A88)
LDR     R3, [PC,R3]
STR     R0, [SP,#0x20+var_20]
LDR     R1, [PC,R1]     ; "initWithPath:"
MOV     R0, SP
MOV     R6, R2
STR     R3, [SP,#0x20+var_1C]
BL      _objc_msgSendSuper2
SUBS    R5, R0, #0
BEQ     loc_32FF9B84

STMFD   SP!, {R4-R7,LR}
ADD     R7, SP, #0x14+var_8
SUB     SP, SP, #0xC
LDR     R3, =(off_3B2CF6C8 - 0x33328E08)
LDR     R1, =(off_3B2CDE70 - 0x33328E10)
STR     R0, [SP,#0x20+var_20]
LDR     R3, [PC,R3]
MOV     R0, SP
LDR     R1, [PC,R1]     ; "initWithPath:"
MOV     R6, R2
STR     R3, [SP,#0x20+var_1C]
BL      _objc_msgSendSuper2
SUBS    R5, R0, #0
BEQ     loc_33328F08



  

Real Life Issues: Instruction 
Reordering

Generate Data flow graph and serialize each node



  

Real Life Issues: Instruction 
Reordering

Original Patched
STMFD   SP!, {R4-R7,LR}
ADD     R7, SP, #0x14+var_8
LDR     R3, =(off_3AFD9AAC - 
0x32FF9A80)
SUB     SP, SP, #0xC
LDR     R1, =(off_3AFD86B8 - 
0x32FF9A88)
LDR     R3, [PC,R3]
STR     R0, [SP,#0x20+var_20]
LDR     R1, [PC,R1]     ; "initWithPath:"
MOV     R0, SP
MOV     R6, R2
STR     R3, [SP,#0x20+var_1C]
BL      _objc_msgSendSuper2
SUBS    R5, R0, #0
BEQ     loc_32FF9B84

STMFD   SP!, {R4-R7,LR}
ADD     R7, SP, #0x14+var_8
SUB     SP, SP, #0xC
LDR     R3, =(off_3B2CF6C8 - 
0x33328E08)
LDR     R1, =(off_3B2CDE70 - 
0x33328E10)
STR     R0, [SP,#0x20+var_20]
LDR     R3, [PC,R3]
MOV     R0, SP
LDR     R1, [PC,R1]     ; "initWithPath:"
MOV     R6, R2
STR     R3, [SP,#0x20+var_1C]
BL      _objc_msgSendSuper2
SUBS    R5, R0, #0
BEQ     loc_33328F08

Original Patched
STMFD   SP!, {R4-R7,LR}
ADD     R7, SP, #0x14+var_8
SUB     SP, SP, #0xC
BEQ     loc_32FF9B84
MOV     R0, SP
SUBS    R5, R0, #0
STR     R0, [SP,#0x20+var_20]
LDR     R3, =(off_3AFD9AAC - 
0x32FF9A80)
LDR     R3, [PC,R3]
STR     R3, [SP,#0x20+var_1C]
LDR     R1, =(off_3AFD86B8 - 
0x32FF9A88)
LDR     R1, [PC,R1]     ; 
"initWithPath:"
BL      _objc_msgSendSuper2
MOV     R6, R2

STMFD   SP!, {R4-R7,LR}
ADD     R7, SP, #0x14+var_8
SUB     SP, SP, #0xC
BEQ     loc_33328F08
MOV     R0, SP
SUBS    R5, R0, #0
STR     R0, [SP,#0x20+var_20]
LDR     R3, =(off_3B2CF6C8 - 
0x33328E08)
LDR     R3, [PC,R3]
STR     R3, [SP,#0x20+var_1C]
LDR     R1, =(off_3B2CDE70 - 
0x33328E10)
LDR     R1, [PC,R1]     ; 
"initWithPath:"
BL      _objc_msgSendSuper2
MOV     R6, R2



  

Examples

Microsoft's Binaries
Non-Microsoft's Binaries

Malwares



  

Gathering Binaries

● Each vendors patch pages
● Use MS patches pages

● Need to archive binary files for future patch 
releases
● SortExecutables.exe: Sort PE binaries 

according to the version information.
● <Company Name>\<File Name>\<Version 

Name>



  

Gathering Binaries: SortExecutables

●You can make your own archive of binaries in 
more organized way

●T:\PROJECTS\BINARIES\WINDOWS XP\MICROSOFT CORPORATION\MSHTML
●├─6.00.2600.0000 (xpclient.010817-1148)
●├─6.00.2800.1528
●├─6.00.2800.1561
●├─6.00.2800.1562
●├─6.00.2900.2180 (xpsp_sp2_rtm.040803-2158)
●├─6.00.2900.2604 (xpsp.041130-1728)
●├─6.00.2900.2604 (xpsp_sp2_gdr.041130-1729)
●├─6.00.2900.3020 (xpsp_sp2_gdr.061023-0214)
●├─6.00.2900.3492 (xpsp_sp2_qfe.081212-1622)
●├─6.00.2900.5512 (xpsp.080413-2105)
●├─6.00.2900.5659 (xpsp_sp3_gdr.080819-1237)
●├─6.00.2900.5659 (xpsp_sp3_qfe.080819-1352)
●├─6.00.2900.5694 (xpsp_sp3_qfe.081015-1409)
●├─6.00.2900.5726 (xpsp_sp3_gdr.081212-1450)
●├─6.00.2900.5726 (xpsp_sp3_qfe.081212-1451)
●├─7.00.6000.16788 (vista_gdr.081211-1619)
●├─7.00.6000.16809 (vista_gdr.090114-1504)
●└─8.00.6001.18702 (longhorn_ie8_rtm(wmbla).090308-0339)



  

Performing Diffing

● Using DarunGrim2.exe and Two IDA sessions
● First launch DarunGrim2.exe
● Launch two IDA sessions
● First run DarunGrim2 plugin from the original binary
● Secondly run DarunGrim2 plugin from the patched binary

● Using DarunGrim2C.exe command line tool
● Handy
● Batch-able
● Quick



  

The infamous MS08-067(which was 
exploited by Conficker)

● Conficker worm exploited this vulnerability to 
propagate through internal network.

● Easy target for binary diffing: only 2 functions 
changed. 

● One is a change in calling convention. 
● The other is the function that has the 

vulnerability



  

The infamous MS08-067(which was 
exploited by Conficker)



  

MS08-063: DarunGrim2 vs bindiff
Modified Functions



  

MS08-063: DarunGrim2 vs bindiff
_SrvIssueQueryDirectoryRequest@32



  

MS08-063: DarunGrim2 vs bindiff
Patched Blocks



  

MS08-063: DarunGrim2 vs bindiff
Patched Blocks



  

MS08-063: DarunGrim2 vs bindiff
Bindiff Results



  

MS08-063: DarunGrim2 vs bindiff
False Negatives

SrvFsdRestartPrepareRawMdlWrite
SrvIssueQueryDirectoryRequest
SrvRestartRawReceiveVS

7 3VS



  

MS09-020: WebDav case
Patched Function looks almost same

Orginal

Patched



  

MS09-020: WebDav case
Flags has changed

Original

Patched



  

MS09-020: WebDav case
What does flag 8 mean?

MSDN(http://msdn.microsoft.com/en-us/library/dd319072(VS.85).aspx) declares like 
following:

MB_ERR_INVALID_CHARS Windows Vista and later: The function does not 
drop illegal code points if the application does not set this flag.
Windows 2000 Service Pack 4, Windows XP: Fail if an invalid input character is 
encountered. If this flag is not set, the function silently drops illegal code 
points. A call to GetLastError returns 
ERROR_NO_UNICODE_TRANSLATION.



  

MS09-020: WebDav case
Broken UTF8 Heuristics?

6F0695EA mov     esi, 0FDE9h
,,,,
6F069641 call    ?FIsUTF8Url@@YIHPBD@Z ; 
FIsUTF8Url(char const *)
6F069646 test    eax, eax
if(!eax)
{

6F0695C3 xor     edi, edi
6F06964A mov     [ebp-124h], edi

}else
{

6F069650 cmp     [ebp-124h], esi
}
,,,
6F0696C9 mov     eax, [ebp-124h]
6F0696D5 sub     eax, esi
6F0696DE neg     eax
6F0696E0 sbb     eax, eax
6F0696E2 and     eax, 8



  

JRE Font Manager Buffer 
Overflow(Sun Alert 254571)



  

JRE Font Manager Buffer 
Overflow(Sun Alert 254571)

Original Patched

.text:6D2C4A75                 mov     edi, [esp+10h]

.text:6D2C4A79                 lea     eax, [edi+0Ah]

.text:6D2C4A7C                 cmp     eax, 2000000h

.text:6D2C4A81                 jnb     short loc_6D2C4A8D

.text:6D2C4A83                 push    eax             ; size_t

.text:6D2C4A84                 call    ds:malloc

.text:6D244B06                 push    edi

.text:6D244B07                 mov     edi, [esp+10h]

.text:6D244B0B                 mov     eax, 2000000h

.text:6D244B10                 cmp     edi, eax

.text:6D244B12                 jnb     short loc_6D244B2B

.text:6D244B14                 lea     ecx, [edi+0Ah]

.text:6D244B17                 cmp     ecx, eax

.text:6D244B19                 jnb     short loc_6D244B25

.text:6D244B1B                 push    ecx             ; size_t

.text:6D244B1C                 call    ds:malloc



  

Malwares: 4th of July DDOS Attack

● On this 4th of July a DDOS attack was fired 
against some of US government and corporate 
sites.
● It had very limited impact against the targets

● For some reason they changed their targets to 
South Korean government and major news 
sites.
● This time it made a huge success and the targets 

were almost unreachable during the attack period(3 
days).

● During the time few variants of malware samples 
were collected.



  

Malwares: 4th of July DDOS Attack:
Comparison of variants

VS



  

Malwares: 4th of July DDOS Attack
●This is the 
routines that saves 
new attack targets. 
●From the binary 
this part was the 
only modification. 
●It can save a lot of 
time for the 
malware 
analysists.



  

Anti-Binary Diffing

● Symbol Mangling
● Reordering and replacing instructions
● CFG Altering

● Call that never returns
● Sharing Basic Blocks
● Use multiple heads for a function

● CG Altering
● Use proxy call



  

Anti Binary Diffing Tool: Hondon

● Hondon= 혼돈 =混沌 = Chaos
● A state that can't be divided and defined.

● Don't do extensive code obfuscation that can 
affect performance
● Just make the codes not disassemble-able 

easily.
● Disassemblableness is not a mandatory 

feature for a legitimate binary.
● Usually make IDA's the function recognition 

fail



  

Anti Binary Diffing Tool: Hondon

● Implements CFG altering
● Minor CFG altering breaks IDA

● Tested under 5.0 and 5.5.
● 5.0 is broken severely
● 5.5 is much better, but is still very confused with  

function recognition
● Hondon works as IDA plugin

● In real world it should be implemented as a part of 
compiler(like Visual C++ or gcc).

● Use binary rewriting to generate obfuscated binary



  

Hondon: Demo

Check if how IDA can be confused.



  

Conclusion

● The 1-day exploit threat is real
● Someone finds vulnerabilities fixed silently
● Bugs tend to aggregate and many times 

around where bugs were found
● Some fixes are incomplete and someone can 

find those facts and can exploit the conditions
● "Hondon" attacks binary-differs weak points

● Dependency on disassemblers for CFG and 
CG



  

DarunGrim2 and Hondon

http://www.darungrim.org
●All the source code and latest binaries will be 

uploaded within 2 weeks

http://www.darungrim.org/


  

Questions?
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