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Reverse Engineering Primer
 Reverse Engineering techniques can be

devided into two categories: Static and
Dynamic Analysis

 Static Analysis
• Techniques which do not involve running the code
• Disassembly, file structure analysis, strings, etc.

 Dynamic Analysis
• Techniques which involve running the code
• Behavioral analysis
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Approaches to Dynamic Analysis
 Network Monitoring
• Isolated Physical Networks
• Virtual Networks

 Hardware Emulation
• Norman Sandbox et al.

 Kernel-Level Monitoring (SSDT hooks)
• Sysinternals’ Process Monitor

 Debuggers
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Kernel-Level Monitoring

SSDTSSDT

User Mode Process
Kernel32.dllKernel32.dll
Ntdll.dllNtdll.dll

Calls CreateFile()

Kernel
ZwCreateFileZwCreateFile()()

System Call Performed
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Kernel-Level Monitoring

SSDTSSDT

User Mode Process
Kernel32.dllKernel32.dll
Ntdll.dllNtdll.dll

Calls CreateFile()

Kernel

ZwCreateFileZwCreateFile()()

Procmon.sysProcmon.sys

System Call Performed
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Kernel-Level Monitoring
 Advantages
• Captures every system call
• Can’t be avoided from userland

 Disadvantages
• Only captures functions implemented as system

calls
• Not every important function call in the Win32 API

is implemented as a system call
• Tools don’t differentiate between process

housekeeping and calls from usercode
• Calls to internal DLL’s cannot be observed
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Process Monitor
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Process Monitoring via Debugging
 Advantages
• Debugger can trap any function call, not just

system calls
• Trapped calls are more likely to be highly relevant

to the program’s operation
 Disadvantages
• Have to act as a debugger
• Susceptible to countless anti-debugger techniques
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Inline Hooks
 Advantages
• Can trap any function call, not just system calls
• Trapped calls are more likely to be highly relevant

to the program’s operation
• Not operating as a debugger
• No device driver required

 Disadvantages
• More of a pain in the  #@!  to implement
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Monitoring with Inline Hooks

SSDTSSDT

User Mode Process
Kernel32.dllKernel32.dll
Ntdll.dllNtdll.dll

Calls CreateFile()

Kernel
ZwCreateFileZwCreateFile()()

System Call Performed

HookHook
HandlerHandler
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Implementing Inline Hooks
1. Find a function of interest

2. Disassemble the beginning of the
function

3. If possible, overwrite the beginning bytes
of the function with a jump or call
instruction

4. Implement a handler for the hooked
function
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Why Disassemble?
 If you attempt to hook every function from

a DLL, for example, you might run into a
function such as the one below

 Inserting a 5 byte jump or call would write
beyond the end of the function.  

somefunction:

31 C0 xor eax, eax
C3  retn
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A Successful Hook Install
original_function:

55 push ebp
89 E5         mov  ebp, esp
81 EC 18 00 00 00 sub  esp, 24
31 C9  xor  ecx, ecx
…

hooked_function:
E9 E4 7C FF FF jmp <handler>
18 00 00 00   ;unused
31 C9 xor  ecx, ecx
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What to do with hooked functions.
 Observe and Report
• Collect data about the current function call by

gathering data from stack and report to console
• Execute any instructions overwritten from the hook
• Jump back to the next instruction in the hooked

function
 Intercept and Emulate
• Perform a specified action Instead of calling the

intended function
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Roll-your-own Sandbox
 Trap gethostbyname() to always return a

fixed IP address.

 A pseudo-handle interface to allow fake
reads and writes to files and netwok
sockets.
• Trap connect() to connection to a pseudo-socket.
• CreateFile(), ReadFile(), WriteFile(),

MapViewOfFile()…
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API Thief
 Launches target process in a suspended state
 Injects a DLL into the process.
 The Injected DLL hooks all Win32 API functions

before the target process is resumed
 API Call monitoring can be used simply with a

process monitor-style console
 Imbedded python can be used to write custom

handlers for specific hooked functions

 Obtain API Thief at  www.mandiant.com
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API Thief Demonstration
 Basic Process Monitoring

 Basic Interception (gethostbyname)

 Pseudo-Handles demonstration

 Automated Unpacking with API Thief



Questions?

nick.harbour@mandiant.com

nickharbour@gmail.com


