
Win at Reversing
API Tracing and Sandboxing through

Inline Hooking

Nick Harbour

2

Agenda
 Reverse Engineering Primer

 Approaches to Dynamic Analysis

 Inline Hooks

 Advantages Over Other Techniques

 Usages

3

Reverse Engineering Primer
 Reverse Engineering techniques can be

devided into two categories: Static and
Dynamic Analysis

 Static Analysis
• Techniques which do not involve running the code
• Disassembly, file structure analysis, strings, etc.

 Dynamic Analysis
• Techniques which involve running the code
• Behavioral analysis

4

Approaches to Dynamic Analysis
 Network Monitoring
• Isolated Physical Networks
• Virtual Networks

 Hardware Emulation
• Norman Sandbox et al.

 Kernel-Level Monitoring (SSDT hooks)
• Sysinternals’ Process Monitor

 Debuggers

5

Kernel-Level Monitoring

SSDTSSDT

User Mode Process
Kernel32.dllKernel32.dll
Ntdll.dllNtdll.dll

Calls CreateFile()

Kernel
ZwCreateFileZwCreateFile()()

System Call Performed

6

Kernel-Level Monitoring

SSDTSSDT

User Mode Process
Kernel32.dllKernel32.dll
Ntdll.dllNtdll.dll

Calls CreateFile()

Kernel

ZwCreateFileZwCreateFile()()

Procmon.sysProcmon.sys

System Call Performed

7

Kernel-Level Monitoring
 Advantages
• Captures every system call
• Can’t be avoided from userland

 Disadvantages
• Only captures functions implemented as system

calls
• Not every important function call in the Win32 API

is implemented as a system call
• Tools don’t differentiate between process

housekeeping and calls from usercode
• Calls to internal DLL’s cannot be observed

8

Process Monitor

9

Process Monitoring via Debugging
 Advantages
• Debugger can trap any function call, not just

system calls
• Trapped calls are more likely to be highly relevant

to the program’s operation
 Disadvantages
• Have to act as a debugger
• Susceptible to countless anti-debugger techniques

10

Inline Hooks
 Advantages
• Can trap any function call, not just system calls
• Trapped calls are more likely to be highly relevant

to the program’s operation
• Not operating as a debugger
• No device driver required

 Disadvantages
• More of a pain in the #@! to implement

11

Monitoring with Inline Hooks

SSDTSSDT

User Mode Process
Kernel32.dllKernel32.dll
Ntdll.dllNtdll.dll

Calls CreateFile()

Kernel
ZwCreateFileZwCreateFile()()

System Call Performed

HookHook
HandlerHandler

12

Implementing Inline Hooks
1. Find a function of interest

2. Disassemble the beginning of the
function

3. If possible, overwrite the beginning bytes
of the function with a jump or call
instruction

4. Implement a handler for the hooked
function

13

Why Disassemble?
 If you attempt to hook every function from

a DLL, for example, you might run into a
function such as the one below

 Inserting a 5 byte jump or call would write
beyond the end of the function.

somefunction:

31 C0 xor eax, eax
C3 retn

14

A Successful Hook Install
original_function:

55 push ebp
89 E5 mov ebp, esp
81 EC 18 00 00 00 sub esp, 24
31 C9 xor ecx, ecx
…

hooked_function:
E9 E4 7C FF FF jmp <handler>
18 00 00 00 ;unused
31 C9 xor ecx, ecx

15

What to do with hooked functions.
 Observe and Report
• Collect data about the current function call by

gathering data from stack and report to console
• Execute any instructions overwritten from the hook
• Jump back to the next instruction in the hooked

function
 Intercept and Emulate
• Perform a specified action Instead of calling the

intended function

16

Roll-your-own Sandbox
 Trap gethostbyname() to always return a

fixed IP address.

 A pseudo-handle interface to allow fake
reads and writes to files and netwok
sockets.
• Trap connect() to connection to a pseudo-socket.
• CreateFile(), ReadFile(), WriteFile(),

MapViewOfFile()…

17

API Thief
 Launches target process in a suspended state
 Injects a DLL into the process.
 The Injected DLL hooks all Win32 API functions

before the target process is resumed
 API Call monitoring can be used simply with a

process monitor-style console
 Imbedded python can be used to write custom

handlers for specific hooked functions

 Obtain API Thief at www.mandiant.com

18

API Thief Demonstration
 Basic Process Monitoring

 Basic Interception (gethostbyname)

 Pseudo-Handles demonstration

 Automated Unpacking with API Thief

Questions?

nick.harbour@mandiant.com

nickharbour@gmail.com

