

A 16 Bit Rootkit, and
Second Generation Zigbee Chips

Travis Goodspeed
travis@radiantmachines.com

Black Hat USA, 2009
Las Vegas, NV

Topics for Today

● Second Generation Zigbee Chips
– EM250, CC2430, CC2530

– How to break them.

● A 16 Bit Rootkit
– A very portable operating system,

– easily injected into a µC application,

– without damaging that application.

Notice That

● In IT,
– Malware is common.

– It's annoying.

– Simple malware is detected, removed.

● In embedded systems,
– Malware is rare.

– No one looks for it.

– Simple malware is undetected, sufficient.

Forward

● Confidentiality
– Only to prevent plagiarism.

● Integrity
– Only against accidental corruption.

● Availability
– A watchdog timer.

In this Episode

● EM250
– WTF were they thinking?

● CC2430/CC2530
– Keys are easily extracted.

● MSP430
– A rootkit design.

– How to recognize one, or to build one.

Disclaimers

● EM250/260
– EM3xx will be better.

● CC2430/CC2530
– CC430 will be better.

● MSP430
– MSP430 only chosen for a concrete

example.

Brief Review: Microcontrollers

● Little computer.
– 8 or 16 bit

– Von Neumann or Harvard

– Internal Flash/RAM

– No/partial MMU

● Still a computer.

Brief Review: Wireless Sensors

● Radio+MCU=WSN
● Ultra low power, long deployment.
● Mesh Networking
● Applications

– Smart Grid

– Military

– Wildlife, Geological Research

Brief Review: Terms

● 802.15.4, MAC and lower layers.
● Zigbee, upper layers.
● MSP430, a 16 bit µC
● First Gen Radios, just a radio
● Second Gen Radios, radio+µC

Part 1:
Second Generation Zigbee Chips

Travis Goodspeed
Black Hat 09

First Generation

● CC2420, EM2420
– Same chip!

● Just a radio.
– Keys are sent by SPI.

– As cleartext.

Zigbee Bus Snooping

● First presented at S4 Miami.
– Later Source Boston, HackADay.

– Workshop at Defcon!

● Dirt simple,
– Stick needles into the board's test points.

– Capture SPI traffic live.

– Read the AES128 key.

– Set your radio to the same.

Bus Snooping: Needles

Bus Snooping: Scope

Bus Snooping: Scope

Bus Snooping: Sniffer

People are mean!

Again

● “...the vast majority of pilots and products
out there that support SEP are based on
the EM250, and not the TI CC2420.
Utilities are requiring the security and
standardization that the SEP provides. ...”

– Bruce

EM250

● 12MHz XAP2b 16-bit microcontroller core
– 128kB Flash and 5kB RAM

– 128-bit AES hardware engine

– <1uA sleep current w/ internal RC oscillator
running

● Also a radio.

So to be clear.

● The argument is:
– The CC2420 is vulnerable.

– The EM250 doesn't expose keys by SPI.

– Therefore, EM250 boards are secure.

● The argument is wrong.
– Let's see why!

EM250 Chip

● 16 bit Harvard XAP2
– 1999 design by Cambridge Consultants

● Insight® for Debugging
– JTAG Variant

EM250 Programming

● OTA and by Serial Port
– Bootloader of some sort.

– Might be vulnerable. I haven't looked.

● Serial Port
– Vulnerable to glitching, but don't bother.

● InSight®
– Wide open.

InSight® Port

from SPZB260ADP

Insight® Cable

EM2xx Conclusions

● Insight®
– Lacks a fuse.
– Exploitable with Ember's own tools.

● Locally indefensible.

CC2430

● TI/Chipcon
● System on a Chip

– 802.15.4 radio

– 8051 µC

● Debugging
– SPI-like

– MOSI/MISO on a single pin.

CC2430 Debugging

● Init Sequence
● Commands

– CHIP_ERASE

– GET_PC

– DEBUG_INSTR

– GET_CHIPID

● Reply

Entry Sequence

0x34

Chipcon Physical Layer

● Bits
– MSBit first

– Written on rising edge of clock.

– Sampled on falling edge of clock.

● Direction
– Master speaks first.

– Slave replies.

Chipcon Debugging Protocol

● Command
– 5b instruction

– 1b R/!R

– 2b Objects

● 0 to 3 object bytes
● 0 to 1 return bytes

Chipcon Lock Bit

● Unlocked
– All verbs work.

● Locked
– CHIP_ERASE

– READ_STATUS

– GET_CHIP_ID

● To unlock,
– CHIP_ERASE

Chipcon CHIP_ERASE

● Erases all of Flash.
– All firmware.

– Debug Fuse too.

● None of RAM.

8051 Constant Sidebar

● 8051 is Modified Harvard Architecture
– Data Memory

● Non-executable.
● Quickly read/written.

– Code Memory
● Executable.
● Slowly read as data.

– Incompatible pointers.

Brief Review

● Von Neumann
● Unified Memory
● Executable RAM

● Harvard
● Divided Memory

– Code

– Data

● Unexecutable RAM

8051 Constant Sidebar

● 8051 Compilers
– All variables in Data memory,

● unless explicitly told otherwise.

– At initialization
● Data is populated from Code.

● Therefore,
– EVERY variable is in Data by default.

– Keys are in Data memory.

Chipcon Exploitation

● GoodFET.CC
– Erase

– Write Data >keys.bin

● Key search
– Joshua Wright's Killer Bee, TBR

– 2 seconds for upper RAM

– 4 seconds for all of RAM

Chipcon Defense

● Keep anything sensitive in Code memory.
– See Chipcon DN200.

● const __code char foo[]=”Hello World!”
● printf(foo);

– Won't work!

– printf() expects a pointer to Data memory.

Chipcon Summary

● All current chips are vulnerable.
● Keys are exposed unless protected.
● Protection requires some recoding.

Third Generation Chips

● EM3xx
– ARM Cortex M3 µC

– JTAG Pin Fuse

● CC430
– MSP430 µC

– JTAG TAP Fuse

● Neither is yet available.

Third gen Chips: EM3xx

Third Gen Chips: CC430

photo from TI E2E Blog

Part 1 Conclusions

● Zigbee chips aren't very secure.
● Next generation might be better.

– Might not be better.

● Local security is hard.
– Cryptography != Security

Part 2:
A 16-bit Rootkit

● IVT Proxying/Hooking
● Initial Foothold
● Blind Command Reception
● Efficient Command Frames
● Blind Function Calling

History

● 2007, I authored the first WSN exploit.
– MSP430 infected by 802.15.4 packet

● 2008, I authored an MSP430 R.E. kit.
– http://msp430static.sf.net/ in Perl/SQLite

● 2009, Mike Davis Smart Grid Worm
– Catch his talk at 16h45.

– Practical implementation, which mine ain't.

WSN Exploits in Brief

● Memory is precious
– A few kilobytes of free memory.

– 128 byte packets

● No operating system.
– No system calls, function tables, etc.

– Single statically-linked image.

● Code is in Flash, not RAM.

This Rootkit

● Generic Installation
– Reasonably hardware agnostic.

– Coexists with prior firmware.

● Efficient
– Fits in available memory.

– Reuses victim code where possible.

– Memory/security tradeoff.

MSP430

● 16 bit RISC processor
– Two 20 bit variants.

● Masked ROM Bootloader (BSL)
– Flash ROM in recent variants.

● Chosen for a concrete example.
– Similarities in AVR, PIC, MIPS, etc.

Rootkit Specifics

● How do you find a function?
– No linking tables.

● How do you trap an incoming packet?
– Radio drivers are inlined.

● How do you make the rootkit stealthy?
– Would you make it stealthy?

Locating a Function

● Fingerprints
– Isolate functions, then iterate.

– Checksum bytes.

– Call function that matches bytes.

● Ports
– IO ports are unique to hardware.

– Called as literal indirects.

Interrupt Handling

● Interrupt Vector Table
– List of interrupt handler addresses.

– At the top of memory in Flash.

● To proxy it,
– Copy table to a lower address.

– Handle each target.

– Handler branches to original.

Interrupt Proxy

Unproxied

Interrupt Proxying

● Also used without malice.
● Drastically changes

– Bootloader password.

– Call Graph.

– Memory usage.

– Calling convention.

● Barely changes
– Bytes.

Bootloader Password

● Hard to fake for masked BSL.
– Entry sequence is in hardware.

– Not maskable on classic MSP430.

● JTAG Fuse
– If blown, access is restricted without pass.

– If unblown, local attacker has access.

Call Graph

● Two applications,
– Two disconnected graphs.

– Child connections can be made,
● CALL #0x4000

– Parent connections are more difficult.
● Clearing bits is easier than setting them.
● Reflashing a segment.

Memory Usage

● Linker behavior
– Flash is at the top of memory.

– Code grows from starting address upward.

– Each app starts at a segment boundary.

Calling Convention

● Hackers use GCC
– r15, r14, r13, r12

● Others use IAR
– r12, r14 in IAR 3

– r12, r13, r14, r15 in IAR 4

● Other compilers
– other conventions

Further Fingerprinting

● switch(){}
– Table, word offset, or byte offset?

● mov #0xFFFF, r15
– Constant generator or literal?

● Unused interrupts.
– 0xFFFF, single handler, or many handlers?

Locating a Rootkit

● One app or two?
– Memory map, register usage, gap.

● One compiler or two?
– Calling convention consistency?

– Assembler, switch{} consistency?

Two IVTs

● 0xFB78
● 0xFB7C
● 0xFB80
● 0xFB84
● 0xFB88
● 0xFB8C
● ...

● 0x403A, repeated
● 0x40B4
● 0x4068
● 0x43B8
● 0x40FA
● 0x4000

Once again,

● In IT,
– Malware is common.

– It's annoying.

– Simple malware is detected, removed.

● In embedded systems,
– Malware is rare.

– No one looks for it.

– Simple malware is undetected, sufficient.

For more information,

● TravisGoodspeed.blogspot.com
– Compiler behavior survey.

– MSP430static R.E. toolkit.

● GoodFET.sourceforge.net
– Chipcon debugging.

– Voltage glitching soon.

Defcon talks

● Locally Exploiting Wireless Sensors
– Less theory, more practice.

● An Open JTAG Debugger
– Mapping JTAG Registers

– CC2430 Protocol

– Voltage Glitching

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

