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Abstract. The Mac OS X kernel (xnu) is a hybrid BSD and Mach
kernel. While Unix-oriented rootkit techniques are pretty well known,
Mach-based rootkit techniques have not been as thoroughly publicly
explored. This paper covers a variety of rootkit techniques for both
user-space and kernel-space rootkits using unique and poorly under-
stood or documented Mac OS X and Mach features.

1. Introduction

Rootkit techniques affecting FreeBSD are well known and docu-
mented ([4]). Many of these techniques also apply directly to Mac
OS X since it shares a good deal of code with FreeBSD. This research,
however, focuses on rootkit techniques that use or abuse unique fea-
tures of the Mach functionality in the Mac OS X kernel.

This paper is organized as follows. First, some background is given
on Mach abstractions, IPC, and RPC. The body of the paper proceeds
in describing injecting code into running processes, injecting new in-
kernel RPC subsystems, transparent remote control of a compromised
system via Mach IPC, and detecting hidden kernel rootkits. Finally,
the paper concludes with some commentary on future directions and
gives the reader instructions on how to obtain the proof-of-concept
tools described in this paper.

2. Background

The Mac OS X kernel (xnu) is an operating system kernel of mixed
lineage, combining the older research-oriented Mach microkernel with
the more traditional and modern FreeBSD monolithic kernel. The
Mach microkernel combines a powerful abstraction, Mach message-
based interprocess communication (IPC) with a number of cooperating
servers to form the core of an operating system. The Mach microkernel
is responsible for managing separate tasks, each in their own separate
address spaces and consisting of multiple threads. A number of default
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servers also provide virtual memory paging, a system clock, and other
miscellaneous low-level services.

The Mach microkernel alone, however, is not enough to implement
a modern operating system. In particular, it has no notion of users,
groups, or even files. In order to provide this functionality, the Mac OS
X kernel includes a graft of the FreeBSD kernel. The top-half of the
FreeBSD kernel (system call handlers, file systems, networking, etc)
was ported to run on top of the Mach microkernel. In order to address
the performance concerns with excessive IPC messaging between kernel
components, both kernels exist in the same privileged address space.
However, in most respects, the Mach API visible from kernel code is
the same as the Mach API visible from user processes.

The Mach kernel deals with a number of core abstractions: the host,
task, thread, and ports that represent them. The Mach host represents
a computer system that is capable of running tasks. Each task encapsu-
lates a number of resources, including a virtual memory address space,
one or more threads of execution control, and an IPC space. The Mach
kernel, tasks, and threads all communicate with each other through
ports. A port is a unidirectional, sequenced, and structured data chan-
nel that is capable of transmitting messages. Each port in a task’s IPC
space is referred to by a task-specific name. Different tasks may refer
to the same port via different names. Access to a port is governed by
a task possessing defined rights on it. Multiple tasks may have rights
to send messages on a port, however only one task may have rights to
receive messages on it. In addition to sending data, tasks may transmit
port rights through messages to other tasks. This system of ports and
port rights forms Mach’s capability-based security model.

Unidirectional IPC is only of limited use. In order to provide a more
flexible system, Mach provides a Remote Procedure Call (RPC) system
on top of Mach IPC. Tasks may use RPC to interact with other tasks on
the same host. Tasks that primarily perform actions on behalf of other
tasks are referred to as servers. Mach-based systems commonly provide
MiG, the Mach Interface Generator to aid in constructing RPC clients
and servers. MiG takes a definition file specifying the RPC interface
(referred to as a subsystem) and creates both client and server stub
functions to automatically handle the marshalling of data into and
from Mach messages. MiG-generated client stubs are actually used
in most of the Mach API to communicate with MiG-generated server
stubs executing within the kernel.
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3. Mach Injection

The Mach API supports a high-level of control over other tasks and
threads. With access to another task’s control port, a controlling task
may allocate, deallocate, read, and write memory within the task. It
may also create, suspend, and kill threads within the controlled task.
These operations are sufficient to map new code into the remote task
and create a new thread to execute that code. There are, however,
some complications with this.

First, the injected code will not be able to call many system APIs.
The code will be executing within a ”naked” Mach thread and many
system functions assume that all threads are POSIX threads. Second,
the injected code may need to be linked in order to call system libraries.
Purely injected code is essentially limited to the level of functionality
of common exploit payloads used in memory corruption exploits.

In order to address these shortcomings, direct Mach thread injection
is simply used to call functions loaded in the remote processes address
space. A small bit of trampoline code is injected in order to promote
the ”naked” Mach thread into a full POSIX thread so that the full
range of standard library functions may be called. In addition, we use
a unique feature of Mach in order to obtain the return value of the
function call in the remote address space. In addition to setting up
the thread, the injected trampoline sets a bogus stack return address
intended to make the thread crash in a deterministic way. Prior to
starting the thread, the controlling task registers itself as an exception
handler for that thread. By doing so, it is notified about exceptions in
the thread before the owning task is. This allows the controlling task
to handle the exception and terminate the thread without disturbing
the rest of the task. When the injected thread crashes at the bogus
return address, the return value from the function is obtained from
the appropriate CPU register in the thread state. By combining these
steps, the controlling task is able to call arbitrary functions in the
target task with chosen arguments and obtain the returned value of
the called function.

Using this technique, dlopen() is called in the remote process in order
to properly load and link a bundle from disk. After loading, dlsym()

is called to resolve the address of the run() symbol exported from the
bundle. Finally, this function is called in order to run the injected
bundle in the remote task.

For more complete details on this technique, see the author’s inject-
bundle tool (available as described in Section 7) and Chapter 11 of The
Mac Hacker’s Handbook [5].
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4. Kernel RPC Subsystem Injection

A number of Mach RPC servers exist within the kernel. The Mach
IPC abstractions allow RPC servers to run in the kernel or user-mode
Mach tasks, often only requiring a recompile with different options to
MiG. In Mac OS X Leopard, the Mach clock, clock priv, host priv,
host security, ledger, lock set, mach host, mach port, mach vm, pro-
cessor, processor set, security, task, thread act, and vm map subsys-
tems are all implemented as kernel servers. Mac OS X adds a few
new in-kernel Mach servers for the IOKit and UserNotification sys-
tems. Running these servers in the kernel improves performance as the
delivery of Mach IPC messages requires less mode switches between
user and kernel mode.

In the xnu kernel, IPC messages received by the kernel are routed to
in-kernel RPC servers through the mig_buckets hash table. This data
structure and the functions that operate on it are defined in the xnu
kernel source file osfmk/kern/ ipc_kobject.c. Each routine in the MiG
subsystem is inserted in the hash table by storing its routine identi-
fier, function pointer, and maximum message size. Incoming messages
have their msgh_id header field set to the routine identifier and the ker-
nel function ipc_kobject_server uses this field to find the RPC server
routine to handle the request.

While the mig_buckets hash table is statically initialized by the ker-
nel, a rootkit can easily dynamically inject new subsystems into it,
as described in [5] and shown in Figure 1. The injected or existing
subsystems can also be removed as shown in Figure 2.

Just as easily as new subsystems are added or removed, existing
subsystems can be modified. The subsystems in this hash table per-
form many of the critical functions of the Mach kernel, including task,
thread, and memory management. A kernel-based rootkit could over-
write the routine pointers in this table in order to intercept messages
to these servers. The request messages and their replies could be mod-
ified in transit in order to modify the behavior of the in- kernel Mach
RPC server. In this respect, this technique is similar to how more
traditional rootkits intercept system calls by patching the system call
table on Unix-like operating systems or the System Service Table on
Windows-based operating systems.

5. Machiavelli

Historical Mach-based operating systems often included the NetMes-
sage Server [2]. The NetMessage Server transparently extended Mach
IPC across the network to other hosts. Each node ran a NetName
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int inject_subsystem(const struct mig_subsystem * mig)
{

mach_msg_id_t h, i, r;

// Insert each routine into mig_buckets hash table

for (i = mig ->start; i < mig ->end; i++) {
mig_hash_t* bucket;

h = MIG_HASH(i);
do {

bucket = &mig_buckets[h % MAX_MIG_ENTRIES ];
} while (mig_buckets[h++% MAX_MIG_ENTRIES ].num !=0 &&

h < MIG_HASH(i)+ MAX_MIG_ENTRIES );

if (bucket ->num == 0) {
// We found a free spot

r = mig ->start - i;

bucket ->num = i;
bucket ->routine = mig ->routine[r]. stub_routine;
if (mig ->routine[r]. max_reply_msg)

bucket ->size = mig ->routine[r]. max_reply_msg;
else

bucket ->size = mig ->maxsize;
}
else {

// Table was full , return an error

return -1;
}

}

return 0;
}

Listing 1. Inserting a new subsystem into the kernel
server hash table

server that acted as a registry of ASCII string names to Mach server
ports for servers running on that host. Clients on a given node could
lookup ports registered in NetName servers on their local or remote
hosts through their own local NetName server. The ports returned by
the local NetName server would in fact be ports to the local NetMes-
sage server. The NetMessage server would act as a proxy to the server
running on the remote host by sending and receiving messages across
the network. In Mac OS X, the functionality of the NetName server has
been subsumed by the Bootstrap Server run within launchd [7]. This
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int remove_subsystem(const struct mig_subsystem * mig)
{

mach_msg_id_t h, i;

// Remove each routine exhaustively from the

// mig_buckets table

for (i = mig ->start; i < mig ->end; i++) {
for (h = 0; h < MAX_MIG_ENTRIES; h++) {

if (mig_buckets[h].num == i) {
bzero(& mig_buckets[h], sizeof(mig_buckets[h]));

}
}

}

return 0;
}

Listing 2. Removing a subsystem from the kernel
server hash table

Bootstrap Server only holds ports for servers running on the local host
and provides no functionality analagous to the NetMessage Server.

The high level of abstraction and control provided by Mach IPC
makes it an ideal facility for remote control of a Mach-based system.
The author’s proof-of-concept rootkit, Machiavelli, does just this by im-
plementing a facility similar in functionality to the NetMessage Server,
however with the spirit and goals of a covert rootkit. Mach IPC mes-
sages are also programming language and byte ordering neutral. While
the current implementation uses the native MiG RPC client stub rou-
tines to marshal IPC messages, an alternate implementation could mar-
shall IPC messages by hand in any programming language.

Machiavelli consists of a Mach proxy server on the local controlling
host and a number of remote agent servers that run on remote com-
promised hosts. On the controlling host, rootkit management utilities
obtain a proxy Mach port from the proxy server and use it just as a
normal application would use a local Mach port. For example, MiG-
generated RPC client routines may be used with the proxy port in
order to execute the RPC request on the remote compromised host in-
stead of the local host. The Machiavelli proxy server receives the Mach
IPC message and transmits it over the network to the remote agent for
actual processing by the destination RPC server.

5.1. Machiavelli API. From the client software’s perspective, there is
little difference in performing Mach RPC with local or remote servers.
Normally, an application would obtain send rights to the local host,



ADVANCED MAC OS X ROOTKITS 7

#include <stdio.h>
#include <stdlib.h>
#include <mach/mach.h>
#include "machiavelli.h"

int main(int argc , char* argv [])
{

kern_return_t kr;
machiavelli_t m = machiavelli_init ();
mach_port_t port;
vm_size_t page_size;

machiavelli_connect_tcp(m, "192.168.13.37", "31337");

port = machiavelli_get_port(m, HOST_PORT );

if ((kr = _host_page_size(port , &page_size )) !=
KERN_SUCCESS) {

errx(EXIT_FAILURE , "_host_page_size: %s",
mach_error_string(kr));

}

printf("Host page size: %d\n", page_size );

return 0;
}

Listing 3. Using Machiavelli to access a remote host port

task, or thread ports with mach_host_self(), mach_task_self(), or
mach_thread_self() respectively. Alternatively, a privileged process may
obtain send rights for another unrelated task through the task_for_pid()

BSD system call. A Machiavelli utility on the other hand obtains a
proxy port for a remote port through the machiavelli_get_port() func-
tion.

Consider the example in Figure 3. This small utility retrieves the
page size through a remote Machiavelli agent. In line 9, the local
Machiavelli proxy is initialized. On line 13, the local proxy is instructed
to connect to a remote Machiavelli agent via TCP on IP 192.168.13.37
and port 31337. On line 15, the call to machiavelli_get_port() obtains
a proxy port for the Mach host port on the remote system. This same
function call can be used to obtain other special ports such as the host
privileged port, IO master port, User Notification port, kernel task as
well as task ports for a given process identifier. Finally on line 17, the
utility calls _host_page_size(), which is a MiG generated RPC client
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stub in the mach_host subsystem. Normally, the first argument is a
host port obtained through mach_host_self(). In this case, we specify
our Machiavelli proxy port so that the Mach RPC request is intercepted
and handled by the RPC server on the remote system.

5.2. Serializing and Deserializing Mach IPC Messages. Serial-
izing simple Mach messages to byte buffers suitable for transmission
over a network is straight-forward. In effect, they are already suitable
for transmission as-is with the simple step of translating remote port
names to local proxy port names. In both the Machiavelli Proxy and
Machiavelli Agents, proxy ports are used to intercept Mach messages
that should be sent over the network. A local proxy port name with
the same port rights is substituted for any port name that exists in the
remote port namespace. When a message is received on a proxy port,
the original remote proxy name is placed in the message header before
it is transmitted to the remote system. This is always performed for
the reply port that may be specified in the msgh_local_port field in the
Mach message header and, as described below, may also be performed
on additional transferred port rights.

Serializing complex Mach messages is a little more involved. Com-
plex Mach messages include a number of descriptors for auxiliary out-
of-line data, including additional Mach ports, large memory buffers,
and port arrays. An additional port right transferred via a Mach mes-
sage is handled identically as the implicitly transferred port right for
the reply port specified in the message header. When out-of-line mem-
ory is attached to a Mach message, the descriptor contains the address
of the beginning and the size of the memory buffer. On a local system,
the entire memory pages containing this memory buffer are remapped
into the task receiving the message. In order to transmit this mem-
ory to a remote system, we append the memory buffer to end of the
Mach message. When the message is deserialized, this memory buffer
is copied into freshly allocated memory pages. The buffer is not copied
to the beginning of the memory pages, though. As per the original
semantics of the out-of-line memory transfers, the sent memory must
be placed at the same offset from the beginning of a memory page as
it was found at in the sending task. Also, depending on flags in the
out-of-line memory descriptor and as passed by the message receiver,
the memory pages may need to be allocated at the specified virtual
address. A complex Mach message may also include out-of-line port
arrays. These arrays include both port names and port rights that have
been transferred to the receiving task. In serialization, the contents of
these arrays are appended to the message. In deserialization, the array
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is restored and the port name are replaced with the port names of local
proxy ports created with the port rights specified in the port array.

5.3. Machiavelli Proxy. The Machiavelli Proxy is the component of
Machiavelli that runs locally on the controlling host. It is responsi-
ble for intercepting IPC messages on its proxy ports and transmitting
them to the remote Machiavelli Agent, which relays them to the re-
mote RPC server. A local application interacts with the Machiavelli
Proxy by initializing it, connecting to the remote Machiavelli Agent,
and requesting send rights for remote ports through the Machiavelli
API. The Machiavelli Proxy returns send rights for proxy ports where
it holds the receive rights. These ports are maintained in a port set
that it receives messages on. When the Machiavelli Proxy receives a
message on one of the ports in the set, it translates the message and
transmits the message to the remote Machiavelli Agent.

While it currently runs as a background thread in any program that
uses the Machiavelli API, it could also have been implemented as a
background daemon with its server port registered in lookupd. This
would allow multiple control utilities to share a single connection to
the remote compromised system. This will be considered for future
work.

5.4. Machiavelli Agents. The Mach API is largely identical for user-
mode and in-kernel Mach servers. This allows us to easily implement
both user-mode and in-kernel Machiavelli agents. In addition, the
serialized Mach messages can be sent and received through any reli-
able data channel giving us a number of options for implementation of
Machiavelli Agents.

The first proof-of-concept Machiavelli Agent is implemented as a
user-mode process listening on a TCP socket. This is the simplest
implementation that still allows full remote control of the system. If the
agent is run as root, it will have access to the task ports for any process
via the task_for_pid() system call. If task_for_pid() is called with a
pid argument of 0, it returns the kernel task control port. This port
allows remote direct memory operations on kernel memory. Combined
with remote access to the privileged host port, this allows effective and
high-level control of the remote kernel, including the ability to load or
unload kernel extensions, read or write kernel memory, and create or
suspend kernel threads.

The user-mode TCP Machiavelli Agent supports a simple protocol.
Upon establishing the connection, the server sends the client the remote
Mach port names for the host, task, and thread ports as well as a Mach
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port name of the Machiavelli RPC server. Following this, the server and
client communicate exclusively through serialized Mach RPC messages.

As described in [5], Mac OS X kernel rootkits may also take advan-
tage of Network Kernel Extensions (NKE) APIs. The rootkit may use
these to intercept network traffic at multiple levels within the kernel
network stack, including ethernet frames directly from the network in-
terface on through fully after IP defragmentation and TCP reassembly.
Any number of these points may be used to implement a remote net-
work covert channel for communication with an in-kernel Machiavelli
Agent.

6. Unloaking Kernel Rootkits

While there have been few Mac OS X kernel rootkits observed in the
wild, a number of proof-of-concept rootkits have been publicly released
or presented. One of the first rootkits was nemo’s WeaponX rootkit
[6]. Other similar rootkit techniques have been written about in De-
veloping Mac OSX Rootkits [8] and The Mac Hacker’s Handbook [5].
These rootkits share a common technique to hide themselves from ker-
nel extension listings by removing themselves from the kernel module
linked list (kmod).

While a kernel module that is not present in the kmod linked list
will not be able to be enumerated or removed, it will still be visible
in memory. The memory allocated for the kernel module will also be
listed in the kernel memory map. This memory map may be enumer-
ated by gaining access to the kernel task control port by passing a pid

argument of 0 to task_for_pid() and calling mach_vm_region() on that
task port. This will enumerate the memory regions and their page
protection permissions for the kernel memory address space.

The Mach host port also provides an interface to enumerate the
loaded kernel modules, kmod_get_info(). This routine can be used to
enumerate the loaded kernel modules, including the address and size
of their loaded code. For proper usage of this function, see the source
code for kextstat [1].

Detecting hidden rootkits is simply a matter of correlating Mach-O
executable objects in the kernel address space with loaded code from ei-
ther the kernel or kernel modules enumerated through kmod_get_info().
This is done by iterating across the memory regions allocated in the
kernel and examining the beginning of them for a Mach-O header. The
Mach-O headers will contain metadata describing its loaded code seg-
ment, which should represent the kernel or a loaded kernel module.
Any Mach-O executables that cannot be substantiated back to the
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kernel itself or a loaded kernel module should be considered suspicious.
The suspicious Mach-O executable objects can then dumped to disk
for further analysis.

For an example implementation of this technique, see the author’s
Uncloak tool, available as described in Section 7.

It should be noted, however, that this only identifies rootkits that
have not also hidden themselves from the kernel memory maps. As
described above in Section 4, a rootkit may intercept IPC messages
to in-kernel servers and modify the replies. A rootkit that is aware of
this detection technique could easily hide its memory regions from dis-
covery by intercepting messages to the appropriate mach_vm subsystem
routines.

7. Availability

In order to demonstrate these techniques, a number of proof-of-
concept tools have been developed. These tools will be made avail-
able on the author’s web site [3] shortly after the BlackHat USA 2009
conference.

• Inject Bundle: Inject a bundle loaded from disk into a running
process

• iChatSpy: Swizzle iChat Objective-C methods in order to log
IM messages

• SSLSpy: Hook SecureTransport SSL functions to log SSL traf-
fic

• iSightSpy: Capture a single frame from the iSight camera
• Machiavelli: Remotely control a compromised system through

remote Mach IPC
• Uncloak: Identify and dump kernel modules that have re-

moved themselves from the kmod linked list.
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