Reversing and exploiting an Apple firmware update

K. Chen
Georgia Institute of Technology

Abstract

The security posture of a computer can be adversely af-
fected by poorly-designed devices on its USB bus. Many
modern embedded devices permit firmware to be up-
graded in the field and the use of low-cost microcon-
trollers in these devices can make it difficult to perform
the mathematical operations needed to verify a crypto-
graphic signature. The security of many of these upgrade
mechanisms is very much in question. For a concrete ex-
ample, we describe how to tamper with a firmware up-
grade to the Apple Aluminum Keyboard. We describe
how an attacker can subvert an off-the-shelf keyboard by
embedding into the firmware malicious code which al-
lows a rootkit to survive a clean re-installation of the host
operating system.

1 Introduction

In 2005, the Defense Science Board of the Department of
Defense expressed concerns about the migration of mi-
croelectronics foundries from the United States to for-
eign countries and its impact on the security of mi-
crochips and microelectronic components delivered to
the government and military and used in critical infras-
tructure [3]. If an adversary is able to gain access to a
microelectronic component during the design phase, then
a clandestine modification will corrupt every unit manu-
factured and the confidentiality, integrity or availability
of any system using such a component can be compro-
mised. Moreover, given the complexity of modern sys-
tems, such a modification can be deeply embedded into
a system and difficult to detect and attribute.

In [16], King et al. implemented a general-purpose
malicious processor by modifying a VHDL implemen-
tation of the Leon3 open source SPARC processor. In or-
der for unprivileged software to access privileged mem-
ory locations, the MMU was modified so that when a
particular magic sequence was observed on the data bus,

all protection checking was disabled. By reserving lines
in the instruction cache and data cache and using proces-
sor debugging hardware, a shadow mode mechanism was
created to allow malicious code to be bootstrapped via a
UDP packet. These malicious modifications were imple-
mented using only a 0.13% increase in logic gates and al-
lowed the implementation of malicious services such as
root privilege escalation, a login backdoor and the theft
of passwords from individuals using the system.

Vertical disaggregation in the semiconductor industry
has continued since the 1990’s and fabless IC production
is now common. The significantly lower costs of capital
and lower costs of operation offshore and the infeasibility
of having low-volume manufacturing within the United
States only increases the possibility of this kind of threat
being realized.

Threats from malicious hardware are not limited to mi-
croelectronic components and recently, consumers have
suffered security compromises simply through the pur-
chase and use of off-the-shelf consumer electronics. In
2006, Apple shipped a number of iPod music/video
players pre-installed with a Windows virus called Rav-
MonE.exe [4] and TomTom shipped a number of its GO
910 GPS navigation devices [6] infected with Windows
malware. In a promotion in Japan in 2006, McDon-
ald’s distributed 10,000 MP3 players pre-installed with
a password-stealing trojan [5].

In 2007, Seagate shipped a number of its Maxtor
Personal Storage 3200 hard drives with a trojan called
Virus.Win32.AutoRun.ah which was capable of dis-
abling anti-virus software and was designed to steal lo-
gin credentials to World of Warcraft and a number of
online Chinese games [7]. During the 2007 holiday sea-
son, BestBuy sold a number of digital picture frames pre-
installed with a Windows virus under its house brand In-
signia [8]. In 2008, Hewlett-Packard shipped a number
of infected USB keys with its ProLiant servers [9] and
Asus shipped infected Eee Box mini-computers [10].

Although it is believed in all of these cases that com-

puters used in manufacturing or testing were inadver-
tently infected and that malware was able to “hitch” a
ride, these episodes illustrate the feasibility of an attacker
subverting the supply chain.

Recently, counterfeit Cisco networking equipment
originating from China has been discovered in the United
States. The counterfeit equipment was often found due to
duplicate MAC addresses, duplicate serial numbers and
having a higher failure rate than genuine equipment. In
2008, a PowerPoint presentation of an Office of Man-
agement and Budget briefing given by the FBI regard-
ing the problem of counterfeit Cisco equipment was in-
advertently leaked onto the internet [18]. The presen-
tation described a number of rings located in the United
States that were actively selling counterfeit Cisco gear on
the auction site eBay and to Cisco Gold/Silver partners
through whom equipment ultimately ended up at numer-
ous government agencies and defense contractors. The
presentation asks rhetorically if the motive behind the
counterfeit gear is for profit, or if it is state-sponsored
with the intention to “cause immediate or premature sys-
tem failure during usage,” “gain access to otherwise se-
cure systems,” or “weaken cryptographic systems.”

Due to intense pressures to reduce time-to-market, a
number of consumer hardware products can have their
firmware field-upgraded, and often firmware upgrades
are released to fix bugs and problems that are discovered
after the product has shipped. In fact, there is an offi-
cial USB device class specification for doing firmware
upgrades over USB [2] although we are not certain how
widespread its use is. The problem is that an attacker
may also decide to upgrade the firmware on a device with
their own code for malicious purposes by taking advan-
tage of weaknesses in the upgrade mechanism.

In some cases, the owner or operator of the embed-
ded system makes deliberate efforts to tamper with the
system without the sanction of the manufacturer. For ex-
ample, there is an entire industry which sells aftermarket
performance products for various brands of automobiles
that increase performance by changing the air-fuel mix-
ture, removing the top speed governor, increasing rev-
limit, etc. often at the expense of fuel economy and in-
creased emissions. These software modifications are ap-
plied to a vehicle through its OBD II connector or by
removing the ECU from the vehicle and sending it in for
bench-programming. Other examples include firmware
for the Linksys WRT54G, jailbreaking/unlocking soft-
ware for the Apple iPhone and third-party firmware for
lower-end digital cameras which unlock RAW shoot-
ing and other advanced features typically found only
on higher-end models. Television pirates have repro-
grammed the firmware of cable and satellite receivers
and attacked smartcards for the purpose of signal theft.

2 Prior Work

Researchers have recently become interested in attacking
insecure software update and installation mechanisms.
Package managers for Linux and BSD operating systems
are typically run as superuser in order to modify system
software. They differ in whether cryptographic signa-
tures are on the root metadata, are embedded within the
packages themselves or on detached package metadata.
In [15], Cappos et al. investigated popular package man-
agers such as Yum, Apt, YaST, ports, etc. and discovered
weaknesses in every one they looked at. If an adversary
has control of a mirror or is performing a man-in-the-
middle attack via poisoning ARP or DNS or spoofing
DHCEP, a variety of attacks can be performed. Clients can
be continuously served outdated repository metadata in
order to prevent security updates or served outdated, but
legitimately signed packages with known vulnerabilities
(“metadata replay”). Yum can be subverted by rewrit-
ing package metadata to cause additional packages to be
installed or by returning a repomd . xm1 file of unlim-
ited size to fill up the disk of a client and cause denial of
service.

An attacker can of course setup their own mirror for
popular Linux distributions such as Ubuntu, Debian, Fe-
dora, CentOS and openSUSE and perform these kinds
of attacks. Over the years, numerous sites serving
open-source software have been compromised with the
2003 compromise of the GNU project’s ftp server be-
ing among the most serious [1]. Just recently in August
2008, an unknown attacker compromised a number of
servers at Red Hat, including a machine used to sign Fe-
dora packages. Red Hat claimed however that the pack-
age signing key itself was not compromised, but did issue
a new signing key [11].

For Windows and Mac OS X operating systems,
in [12] Amato developed an open-source toolkit called
EvilGrade for the exploitation of popular software prod-
ucts which perform insecure updates. An attacker per-
forming a man-in-the-middle attack can then exploit a
vulnerable application by injecting a fake update. Appli-
cations which fail to verify updates and have modules in
the toolkit include iTunes, Winamp, WinZip and the Sun
Java plugin. The toolkit even includes a module for per-
forming malicious updates to machines running the Mac
OS X operating system.

However, the idea of tampering with software updates
is by no means new. In the past, before the widespread
penetration of the internet, patches were delivered on
magnetic or cartridge tape and shipped through the mail
or sent by courier. K. Mitnick has said that long ago
he successfully stole the source code to a DECNET/E
protocol sniffer from a small company called Polar Sys-
tems using a fake update. Mitnick took a legitimate up-

date tape for the VMS operating system from Digital
Equipment Corporation, added code to install a backdoor
into the login program, repackaged the box and shrink-
wrapped it with a counterfeit shipping label. He then
obtained a UPS uniform, delivered the fake update tape
to the firm in person and waited for the update to be in-
stalled [17].

In high-security environments such as government in-
stallations and defense contractors, we have often heard
stories of the USB ports of computers being disabled by
filling them in with epoxy glue. On some computers
with poorly-designed USB devices, we do not believe
that this is sufficient to protect against rogue USB de-
vices. For example, we performed most of the work in
this paper on a 4th-generation Apple Macbook Pro lap-
top computer (with model identifier MacbookPro4, 1)
and even without plugging any devices into its external
USB ports, the computer already has four devices on its
USB bus: the bluetooth device, the internal iSight web-
cam located above the LCD screen, the integrated key-
board/trackpad and the infrared receiver.

In this paper, we discuss a practical attack that can be
performed today which blends the threats of malicious
hardware and malicious software updates.

3 Keyboards

As the primary point of data entry in a computer, key-
boards and typewriters before them have long been of in-
terest to attackers. In the 1980’s, numerous news sources
reported that typewriters in the U.S. Embassy in Moscow
were discovered to have devices planted inside of them
which sent out signals encoding keystroke information
using the power cord at television frequencies. Appar-
ently, other countries with embassies in Moscow discov-
ered similar devices in the 1970’s.

In 1999, the FBI obtained warrants to enter the office
of Nicodemo S. Scarfo and Frank Paolercio in New Jer-
sey and encountered an encrypted file. In order to de-
crypt this file, the FBI later returned to the office and
covertly installed a keystroke logger on Scarfo’s com-
puter in order to capture his PGP encryption passphrase.
The FBI obtained the passphrase and is alleged to have
obtained evidence of illegal gambling and loanshark-
ing. In 2001, the DEA conducted an investigation of
an MDMA manufacturing operation. They received au-
thorization to enter the Escondido, CA office of Mark
Forrester and Dennis Alba to install a keylogger onto
their computer in order to obtain passphrases for PGP
and their accounts on the encrypted mail service Hush-
mail.com.

Free and commercial software keystroke loggers are
widely available. logKext is a free and open source
keystroke-logging kernel extension for Mac OS X. Given

the ease of using SetWindowsHookEx () in the Mi-
crosoft Win32 API, there are literally thousands of
keystroke loggers for Microsoft Windows.

Hardware keystroke loggers for both PS/2 and USB
keyboards are also widely available commercially and
typically are devices that sit inline between the terminat-
ing plug of the keyboard and the port on the host com-
puter. Parasite devices that sit inside the keyboard are
also commercially available, but require more effort to
install. Keystroke-logging mini-PCI cards that can be in-
stalled into laptops are also commercially available. In
general, it is difficult to extract the captured data and
so in [19], Blaze et al. built a hardware logger that per-
turbed the inter-keystroke delay and used the delays as a
covert channel and for interactive protocols such as SSH
and VNC, they were successful in extracting keystroke
data without having to physically access the logger. Re-
searchers have even reported success at the recovery of
keystrokes from recordings of acoustic emanations from
somebody typing at a keyboard [20].

4 The Apple Aluminum Keyboard

In August 2007, Apple introduced new wired and wire-
less keyboards to accompany its redesigned iMac desk-
top computer products. The keyboards have low-profile
keys and come in a thin, aluminum enclosure. The wired
keyboard terminates in a USB A male connector and con-
nects to a desktop computer through an available USB
port. The wireless keyboard uses Bluetooth 2.0. The
wired keyboard which has a model number of A1243 and
an Apple part number of MB110LL/A. It is a compound
USB device in that the device is actually a hub with a
keyboard plugged into it and an available USB port on
each side of the keyboard. The keyboard we examined
has a vendor id of 0x05ac and a product id of 0x0220,
and its integrated hub has a product id of 0x1006. This
keyboard is widely deployed and until March 2009, came
standard with all new iMac and Mac Pro desktop com-
puters from Apple, although a customer had the option to
pay additional money to get the wireless keyboard in lieu
of the wired keyboard. The keyboard can also be pur-
chased separately from a desktop computer for $49.00
USD directly from Apple and from other retailers.

In March 2009, Apple introduced another wired key-
board with model number A1242 and an Apple part num-
ber of MB869LL/A. The layout of the keys on this key-
board is identical to the Bluetooth keyboard and does not
have a numeric keypad. This keyboard has a vendor id of
0x05ac and a product id of 0x021d, and its integrated
hub has a product id of 0x1005. Both of the wired key-
boards can be used without difficulty on almost any mod-
ern machine via the USB human interface device class.

In this paper, we examine the wired keyboard with the

numeric keypad introduced in 2007. We were unable to
find sales figures for the three models of keyboards cur-
rently available for sale by Apple, but we believe that it is
the most widely deployed keyboard out of the three due
to its cost and length of time on the market.

By examining a disassembled keyboard, we learned
that internally there is a Cypress CY7C63923 microcon-
troller in a 48-pin SSOP package surface mounted to the
circuit board of the keyboard. The CY7C63923 is an
8-bit microcontroller with a Harvard architecture, 256
bytes of RAM and 8 kilobytes of flash. The chip belongs
to Cypress Semiconductor’s enCoRe II family of chips
designed primarily for ease of use in low-speed USB de-
vices. The chip can support one low-speed USB device
address with three endpoints: the required control end-
point and two additional endpoints. Upon plugging the
keyboard into a computer, we learned that two IN inter-
rupt endpoints are configured with addresses of 0x81
and 0x82. They both have a bInterval value of 10.
Endpoint 0x81 has a wMaxPacket Size of 8 and end-
point 0x82 has a wMaxPacketSize of 1.

On the circuit board adjacent to the microcontroller,
there is a Microchip 25LC040A serial EEPROM in an
8-pin SOIC package. It is a 4-kilobit EEPROM with an
SPI interface. Although adjacent to the microcontroller,
by following circuit traces on the board we determined
that the EEPROM is actually connected to the Cypress
CY7C65630 USB 2.0 hub controller in a 56-pin QFN
package on the board. A high-level schematic of the key-
board is in Figure 1. We traced the circuit paths for the
LED on the keyboard underneath the CAPS LOCK key.
The anode is connected to Vpp and the cathode is con-
nected through resister R7 to pin 8 of the microcontroller,
which is P2.7. This means that the LED is active-low on
this pin.

upstream USB
CY7C65630 hub EEPROM
CY7C63923 — USB port
— USB port
keyboard matrix

Figure 1: A high-level schematic of the keyboard.

S Apple’s Firmware Update

Version 1.0 of the Aluminum Keyboard Update from Ap-
ple was released on April 8, 2008 and is available on-

line [13]. Apple released the update to address com-
plaints from users about keys repeating unexpectedly
while typing and other issues. The resulting down-
load file is named AlKybdFirmwareUpdate.dmg.
From the disk image file, a flat package file named
AlKybdFirmwareUpdate.pkg can be obtained.
When running this installer package, an applica-
tion called “Aluminum Keyboard Firmware Update”
is created in the /Applications/Utilities di-
rectory. In Mac OS X, applications are actually
stored in a directory structure with “.app” appended
to the name of the application. In the directory
Contents/Resources within the application’s di-
rectory, two files called HIDFirmwareUpdaterTool
and kbd_0x0069_.0x0220.irrxfw are of interest.

5.1 Reversing the Firmware Update

The magic number for the application Aluminum
Keyboard Firmware Update is OxCAFEBABE
which indicates that it is a fat/universal binary. For con-
venience, we primarily examined the Intel x86 portion
of the binary in this Cocoa application. Examining the
CustomerKB.nib file from the English localization,
the NSButton push button in the lower right-hand cor-
ner of the user interface had a target outlet set to the
MyMainController class and its action was set to
doUpdate:.

The applicationDidFinishLaunching: del-
egate method starting at address 0x00004fe7 runs
after the application has launched and been initial-
ized, but prior to the first event. = The method
calls a number of routines. It calls a routine
which consults the file SystemVersion.plist in
/System/Library/CoreServices/ to determine
whether the running operating system version is at least
10.5.2. It finds the keyboard to update by calling the rou-
tine starting at 0x000035e0 which uses the I/O Kit li-
brary to search for devices on the USB bus with a ven-
dor ID of 0x0220 and product IDs of 0x222, 0x221,
0x220, and 0x228, in that order. However, we exam-
ined a number of Apple Aluminum keyboards “in the
wild” and only observed keyboards having a product id
of 0x220.

The application checks a number of properties of the
keyboard and checks the validity of the firmware im-
age file kbd_0x0069_0x0220.irrxfw in the bun-
dle. The firmware validity checking routine is called
CRC32: and is the 75 byte routine starting at
0x00003005. Despite the name, this routine does not
do CRC32 at all and in fact, it simply just adds up the
bytes of the firmware image file and the application ver-
ifies that the sum is 0x252ed7.

An otool disassembly of the first 64 bytes of

SHA-1

Filename ‘ Size
AlKybdFirmwareUpdate.dmg | 1,568,432
AlKybdFirmwareUpdate.pkg | 1,483,229
HIDFirmwareUpdaterTool 76,480
kbd_0x0069.0x0220.irrxfw 18,253

8c914be9%94e31al1f2543bd590d7239%aebclebb0cO
7Tele75a4d937f6baddf97a7bfc72e3a04fc9albe
3d564d6cb3bd73121876a2f9a0b9%b85cal032a3fb
cf2b7ac6d4575b8£57ba5562abl1d94££337736f4

Figure 2: Files of interest from Apple, Inc.

00004df4 pushl %ebp

00004d£5 movl %esp, $ebp
00004d£7 pushl %ebx

00004dfs8 subl $0x24, %esp
00004dfb movl 0x08 (%ebp) , sebx
00004dfe movl 0x000080f0, %$eax
00004e03 movl %ebx, (%esp)
00004e006 movl %eax, 0x04 (%esp)
00004e0a calll 0x000090e0
00004e0f testb %$al, %al
00004el11 jne 0x00004e2f
00004e13 movl $0x00000015, 0x10 (%ebp)
00004ela movl 0x00008040, $eax
00004elf movl %ebx, 0x08 (%ebp)
00004e22 movl %eax, 0x0c (%ebp)
00004e25 addl $0x24, %esp
00004e28 popl %ebx

00004e29 leave

00004e2a Jmp 1 0x000090e0
00004e2f movl 0x000080f4, $Seax

Figure 3: First 64 bytes of doUpdate:

doUpdate: is shown in Figure 3. When the
user presses the update push button, the instruction at
0x00004e0a causes a 239 byte routine located from
0x00003850 to 0x0000393e to be called! which
checks whether the machine doing the update is plugged
into a wall outlet.> Requiring that the machine doing the
update be plugged into a wall outlet is understandable
since losing power during a firmware upgrade can result
in a damaged keyboard, but the reader may disable this
check by changing the jne at 0x00004ell to jmp,
i.e. changing the 0x75 to OXEB.

If the reader’s keyboard has already had the firmware
update applied to it, the update program will display
a dialog box saying that the firmware is already up-
to-date and refuse to apply the update. A disassem-
bly of some of the code which performs the check is
shown in Figure 4. The version checking can be by-
passed by making the first conditional short jump uncon-
ditional, i.e. changing 0x75 at 0x00004c81 to 0xEB,
making the second conditional near jump unconditional,
ie. changing 0x0£8696000000 at 0x00004cba
to 0xe99700000090, and then removing the condi-
tional jump at 0x00004820, i.e. changing 0x740e to

00004c7a movl 0x08 (%ebp) , $eax
00004c7d cmpl $0x69, 0x50 (%$eax)
00004c81 jne 0x00004cb3
00004c83 mov1l 0x00008040, $eax
00004c88 movl 0x08 (%ebp) , $edx
00004c8b movl $0x00000011,0x08 ($esp)
00004c93 movl %eax, 0x04 (%esp)
00004c97 movl %edx, (%esp)
00004c9a calll 0x000090e0
00004c9of mov1l 0x00008044, $eax
00004ca4 movl %eax, 0x04 (%esp)
00004ca8 movl 0x08 (%ebp) , seax
00004cab movl %eax, (%esp)
00004cae calll 0x000090e0
00004cb3 movl 0x08 (%ebp) , $edx
00004cbo cmpl $0x69, 0x50 (%$edx)
00004cba jbel 0x00004d56

Figure 4: Part of the version checking code

0x9090.

5.2 Obfuscation

If the application is satisfied that a keyboard that
needs to be updated is attached and the user
presses the wupdate button, then it invokes the
HIDFirmwareUpdaterTool with the arguments
-parse kbd_0x0069.0x0220.irrxfw to first
check that the firmware image can be parsed and then
invokes it with the arguments -progress -pid
0x220 kbd_-0x0069.0x0220.irrxfw. The
second invocation does the heavy lifting of actually
updating the firmware of the keyboard. The firmware
image file kbd_0x0069.0x0220.irrxfw is “en-
crypted” and the core of the decryption routine is
displayed in Figure 5. Let A denote the following 83
byte sequence:

31 1c ef 62 df a7 43 23 78 92 22 6a
38 12 14 a4 65 02 2b 00 9c 00 57 5e
10 85 50 73 dO bl 17 2b 49 ac 49 c4
33 21 b4 48 23 8c 27 98 12 34 80 00
48 ff b4 8f 04 2e 24 2d 92 c7 82 e2
a6 a5 20 20 98 11 84 26 b7 cc 28 £3
e6 98 38 23 dc ba 28 44 42 39 44

00004086 movzbl %al, %edx

00004089 incl %ecx

0000408a movzbl 0x00006020 (%edx), $eax
00004091 notl %eax

00004093 xorb (%esi), %al

00004095 xorb %al, 0xfffff£f55 (%ebp, $edx)
0000409c cmpb %cl, bl

0000409e movl %ecx, $eax

000040a0 Jja 0x00004086

Figure 5: Decryption code

and let B = By Bj - - - Bso denote the following 53 byte
sequence:

12
85
21
ff
ab

10
33
48
a6

14
50
b4
b4
20

a4
73
48
8f
20

65
do
23
04
98

02
bl
8c
2e
11

2b
17
27
24

00 9c
2b 49
98 12
2d 92

00
ac
34
c7

57
49
80
82

S5e
c4
00
ez

The decryption routine reads the firmware file in 83 byte
chunks with the ¢th chunk XOR-ed with the 1’s comple-
ment of A and then each byte XOR-ed with B; 116 mod 53
to produce the “plaintext.”” So the first 83 bytes of
kbd_0x0069.0x0220.irrxfw are XOR-ed with the
complement of A and then each byte is XOR-ed with
0x17. The next 83 bytes are XOR-ed with the comple-
ment of A and then each byte is XOR-ed with 0x2b,
and so forth. The sum of each byte in the plaintext is
then computed and verified to be 0x1057£8.

5.3 Bypassing the obfuscation

We did not make an attempt to completely understand
the algorithm used to obfuscate the firmware image, as it
turns out that the tool HIDFirmwareUpdaterTool
sends “cleartext” over the USB bus to the keyboard’s
bootloader. The unobfuscated firmware file can be easily
obtained from memory.

$ gdb —-g HIDFirmwareUpdaterTool

(gdb) b *0x4abc

Breakpoint 1 at Ox4abc

(gdb) r -progress -pid 0x220
kbd_0x0069_0x0220.irrxfw

Breakpoint 1, 0x00004abc in ?? ()

(gdb) dump binary memory dump.bin
Ox6lec 0x89%ec

The block size in the microcontroller’s flash mem-
ory appears to be 64 bytes and by examining the file
dump .bin 35 bytes at a time, the pattern becomes read-
ily apparent. The first 8820 bytes of dump.bin are
what is relevant. The firmware image is sent over the

USB bus 32 bytes at a time and for every grouping of
35 bytes in dump . bin, the first 3 bytes indicate where
the following 32 bytes are written into flash. The first
2 bytes encode the block number and the third byte en-
codes whether the 32 bytes are in the top half or the bot-
tom half of the block.

5.4 T/OKit API

In Mac OS X, the I/O Kit API is a collection of frame-
works for device driver development and communica-
tion with hardware. HIDFirmwareUpdaterTool ac-
cesses the keyboard over the USB bus using services
from I/O Kit. The tool creates a device-matching dic-
tionary to find the Apple Aluminum keyboard in the I/O
Registry, which is a memory-resident, tree data struc-
ture® that maintains the configuration of devices in the
system. When hardware is added or removed from the
system, the I/O Registry is automatically updated to re-
flect the change in hardware configuration. The I/0O Reg-
istry on a Mac OS X system can be examined using the
developer tool “I/O Registry Explorer” or ioreg from
the command line.

In order to first communicate with the I/O Kit,
it is necessary to obtain the I/O Kit master port, a
Mach port. HIDFirmwareUpdaterTool uses the
IOMasterPort () function and passes the result-
ing port to functions that require a port argument,
but in recent versions of Mac OS X, the constant
kIOMasterPortDefault defined in TOKitLib.h
can instead be passed. At the end, the port is released
using mach_port_deallocate.

Then, I0ServiceMatching () with an argument
of “IOUSBDevice” is used to create a device-matching
dictionary. This is a broad search of the I/O Registry
for all USB devices. The search is narrowed by tak-
ing the resulting dictionary and adding rules requiring
that the vendor ID match 0x05ac and the product ID
match 0x0220 and passing the resulting dictionary to
IOServiceGetMatchingService () to obtain the
registered IOService object. This function is called in
lieu of the API call which returns an iterator over the set
of matching devices. The program expects at most one
matching device and simply accepts the first matching
device on the USB bus. In the unlikely event that a com-
puter has multiple Apple Aluminum keyboards attached
to it, then only one of the attached keyboards will have
its firmware updated.

Then IORegistryEntryCreateCFProperty ()
is used to query the bcdDevice property of the key-
board, which is a binary-coded decimal representation
of the current firmware version of the keyboard. The
keyboards we have observed have a bcdDevice value
of 0x67 prior to the firmware update and a value of

0x69 afterwards. HIDFirmwareUpdaterTool
will refuse to update a keyboard if it detects that its
version is above 0x68. This version checking can be
disabled by removing the near jump if above instruction
at 0x00003373, i.e. changing 0x0£873b0a0000 to
0x909090909090.

5.5 Bootloader operation

The keyboard does not have an interrupt OUT endpoint,
and so the control endpoint has to be used to enter
the bootloader mode. After running the routine at
0x000020c3, the bootloader of the microcontroller
is running and the keyboard is no longer running.
By examining the IOUSBDevRequest passed to
IOUSBDeviceClass: :deviceDeviceRequest ()
in this routine, and after consulting the USB standard,
we determined that an HID-specific request is being used
to put the keyboard into bootloader mode. In particular,
the bmRequestType was 0x21 and the bRequest
was 0x09 indicating that a Set_Report request is sent to
the keyboard. The wvalue was 0x030a which means
that the request is a feature report with a report ID of
Ox0a. The wIndex was 0x0000 which means that the
request was being sent to interface zero and the pData
was simply 0x0a. The bootloader specifies in its device
descriptor that it has a bDeviceClass of O0xFF and has
a product ID of 0x0228. In order to see the firmware
upgrade data go to the keyboard, we looked at the data
being written over the USB bus in 0x00002d69.

The 260 byte routine starting at 0x00002d69
handles the bulk of the writing and reading to the
keyboard over the USB bus. Each call results in a
packet of data being sent to the keyboard followed
by a read to get the response. The indirect call at
0x00002dcf calls interfaceWritePipe ()
in IOUSBInterfaceClass which sends
over the contents of the 64 byte buffer start-
ing at 0x0000a7c0, and the indirect call at
0x00002e07 calls interfaceReadPipe () in
IOUSBInterfaceClass which reads the response
into the 64 byte buffer starting at 0x0000a760. The
code which prepares the first 64 byte buffer transmitted
to the keyboard is shown in 6. The first 64 byte packet
sent to the keyboard is

£ff 38 00 01 02 03 04 05 06 07 00 00
00 00 00O 00 00 0O 00 OO 00 00 0O 00
00 00 00O 00 00O OO 00 OO 00 00 0O 00
00 00 00O OO 00 00 00 00 0O 53 00 00
00 00 00O 0O 00 00 00 00 0O 0O 00 00
00 00 00 0O

and by the as1_logat 0x00005094, we ascertain that
this call has the effect of instructing the bootloader to

00004ce66
00004ce6c
00004c73
00004c76
00004c7a
00004c7e
00004c82
00004c86
00004c8a
00004c8e
00004c92
00004c96
00004c9a
00004c9c
00004c9e
00004ca0l
00004ca3
00004cab5
00004ca6
00004ca8
00004caa
00004cad
00004cb3
00004cb5
00004cbs8
00004cbc
00004cbd
00004cbf

movl
cmpb
movb
movb
movb
movb
movb
movb
movb
movb
movb
movb
je
xorl
movl
leal
addb
incl
cmpl
jne
movb
movl
movl
addl
movb
incl
cmpl
jne

0x000060a0, %$esi
$0x00, 0x0000607d
SOxff, (%esi)
$0x38,0x01 (%esi)
$0x00,0x02 (%esi)
$0x01,0x03 (%e
$0x02, 0x04
$0x03, 0x05
$0x04, 0x06
$0x05,0x07 (%e
$0x06,0x08 (%e
$0x07,0x09 (%e
0x00004ccl
%edx, $edx

(
(
(e
(%e
(
(
(
(

si)
si)
si)
$esi)
si)
si)
si)

%$esi, $eax

0x2d (%esi), $ecx
($eax), %dl

%eax

%ecx, $eax
0x00004ca3

%$dl, 0x2d (%esi)
0x000060a0, $edx
%$esi, $eax
$0x12, $edx
$0x00, 0x2e (%eax)
%eax

%$eax, $edx
0x00004cbs

Figure 6: USB packet setup routine

Return value | Reason for error

0x00 | Device did not respond error
0x08 | Flash protection error

0x10 | Communication checksum error
0x80 | Invalid command error

Figure 7: Error codes

go into bootloader mode. Observe the simple checksum
calculation done from 0x00004c9e to 0x00004caa.
For the example above, 0xff + 0x38 + 0x01 + 0x02
+---+0x07=0x153 which is 0x53 mod 0x100.

The first two bytes of the USB packet is used to
issue commands to the bootloader. We have already
seen that ££ 38 corresponds to entering the bootload
mode, and by the as1_log calls in 0x00004ce0 and
0x00004dd9 respectively, we determined that £ 3a
commands the bootloader to verify flash memory and
ff 3b exits the bootloader. The command ff 39
means to write to flash memory. The return values from
0x00002d69 can be interpreted by examining the code
from 0x00004b63 to 0x00004b8b. See Figure 7.

There is also a final checksum at the very end, which
is computed as a sum of all the firmware blocks mod
0x10000. In this case, the data from blocks 0x02 to
0x4b are summed and the checksum is 0x4e41b which
is Oxe41lb mod 0x10000. This is stored in the last
flash write packet in big endian format.

6 Exploitation

6.1 A benign exploit

For ethical reasons, the firmware modification we de-
scribe is benign. The firmware is modified so that the
LED under the CAPS LOCK key of the keyboard will
flash momentarily when the keyboard is first plugged
into a system. However, malicious payloads can be de-
veloped by individuals with mal-intent.

Since the LED is active-low on pin P2.7 which cor-
responds to register 0x02 on the microcontroller, we
searched the unobfuscated firmware image for instruc-
tions of the form MOV reg[0x02], expr which
start with the opcodes 0x62 0x02. We found the se-
quence 0x62 0x02 0x80 in block 0x0c which did
in fact turn out to be the instruction MOV reg[0x02],
0x80. The final checksum for the entire firmware image
was Ox4e41lb. By replacing 0x80 by 0x00, the new
checksum is 0x4e39b and so Oxe41b in the last block
has to be replaced by 0xe39b.

As a proof-of-concept, the following edited gdb ses-
sion performs the changes mentioned above and demon-
strates code execution on an Apple Aluminum keyboard.

S gdb —-g HIDFirmwareUpdaterTool

(gdb) tb *0x226a

Breakpoint 1 at 0x226a

(gdb) r -progress —-pid 0x220
kbd_0x0069_0x0220.irrxfw

HIDFirmwareUpdaterTool version 1.6.0

H#LHH2##3#

Breakpoint 1, 0x0000226a in ?? ()

(gdb) set {char}0x64b9 = 0x00
(gdb) set {short}0x845e = 0x9%be3
(gdb) c

6.2 Rootkit persistence

Any malicious code embedded into the firmware would
be immune to the typical rootkit detection methods
which examine the integrity of the filesystem, check for
hooks or direct kernel object manipulation, or detect
hardware and/or timing discrepancies due to virtualiza-
tion in the case of a virtual-machine based rootkit. Such
code could also completely bypass the remote attestation
of a Trusted Platform Module, if one were present in the
computer. As far as everybody is concerned, our code is
simply the user typing commands at the keyboard.

When the operating system enumerates the keyboard,
a rootkit can use a custom control endpoint signal to in-
dicate to malicious firmware on the keyboard that the at-
tacker’s rootkit is still operational on the host and that
no action is necessary. However, if the keyboard does
not receive such a signal, it can send malicious com-
mands to the host computer to re-establish control to the
attacker. It would obviously be ideal for this to occur af-
ter a certain period of inactivity by the legitimate user in
the hopes that he/she is not using the computer to witness
any unauthorized activity.

As an example, the keyboard could send the fol-
lowing keystrokes: COMMAND-SPACE, followed by
terminal and RETURN, then followed by exec
/bin/sh 0</dev/tcp/127.0.0.1/4444
1>&0 2>&0 and RETURN, where 127.0.0.1 is
of course replaced by the IP address of the attacker’s
machine. In Mac OS X, COMMAND-SPACE activates
Spotlight and terminal is typed into the Spotlight
search box to launch the terminal application. Then
exec is used to send a shell back to the attacker [14].
The above command just sends a shell back to port 4444
on localhost. The firewall in the Mac OS X Leopard
operating system is by default not enabled, and in any
case, does not block outgoing connections. In the event
that the user uses an outbound firewall like Little Snitch,
an extra RETURN at the end of the above sequence of
keystrokes will select the default option of allowing
the outbound TCP connection from Terminal.app. This
would allow a rootkit to persist even if the user has

performed a clean re-installation of Mac OS X on their
computer.

6.3 Denial of service

It is very easy to brick a keyboard by interrupting the
bootloader during firmware re-programming. However,
a keyboard bricked in this way can generally be un-
bricked by reflashing to 0x69 firmware. If the boot-
loader still runs, then HIDFirmwareUpdaterTool
can be invoked with the arguments -progress -pid
0x228 kbd_0x0069.0x0220.irrxfw. We did not
investigate whether the bootloader itself could be over-
written.

7 Conclusion

Reverse-engineering Apple’s keyboard firmware update
was a fairly simple exercise. Apple could have attempted
to obfuscate the binary as they do in the well-known seg-
ments with the 0x 8 flags set on the LC_.SEGMENT load
commands in certain Apple binaries (indicating AES en-
cryption) such as Finder.app, Dock.app, etc. which are
designed to hinder the piracy of the Mac OS X operating
system. Apple could have issued a PT_DENY_ATTACH
ptrace () request as they do in iTunes as an anti-
debugging measure. However, such methods can be by-
passed without much difficulty.

For a device as simple in design as a keyboard, it is
hard to imagine why a firmware update mechanism is
even required. Many other devices have firmware update
mechanisms that we believe can also be exploited by at-
tackers for malicious purposes.

References

[1] http://www.cert.org/advisories/CA-2003-21.
html, 2003.

[2] http://www.usb.org/developers/devclass_
docs/DFU_1.1.pdf, 2004.

[3] http://www.acq.osd.mil/dsb/reports/
2005-02-HPMS_Report_Final.pdf, 2005.

[4] http://www.apple.com/support/windowsvirus/,
2006.

[5] http://www.mcd-holdings.co.jp/news/2006/
release-061013.html, 2006.

[6] http://www.tomtom.com/news/category.php?ID=
2§NID=349&Language=1, 2007.

[7] http://www.seagate.com/www/en-us/support/
downloads/personal_storage/ps3200-sw, 2007.

[8] http://web.archive.org/web/20080211095252/
www.lnsignia-products.com/news.aspx?
showarticle=13, 2008.

[9] http://www.auscert.org.au/render.html?it=
9077, 2008.

[10] http://www.asus.co.jp/news_show.aspx?id=
12964, 2008.

[11] http://www.redhat.com/archives/
fedora-announce-1ist/2008-August/msg00012.
html, 2008.

[12] http://www.infobyte.com.ar/, 2008.

[13] http://support.apple.com/downloads/
Aluminum_Keyboard_Firmware_Update_1_0, 2008.

[14] http://labs.neochapsis.com/2008/04/17/
connect-back-shell-literally/, 2008.

[15] CAPPOS, J., SAMUEL, J., BAKER, S., AND HARTMAN, J. H. A
look in the mirror: Attacks on package managers. In Proceedings
of the 15th ACM Conference on Computer and Communications
Security (Oct. 2008).

[16] KING, S. T., TUCEK, J., COZZIE, A., GRIER, C., JIANG, W.,
AND ZHOU, Y. Designing and implementing malicious hard-
ware. In Proceedings of the First USENIX Workshop on Large-
Scale Exploits and Emergent Threats (Apr. 2008).

[17] PARKER, T., SACHS, M., SHAW, E., STROZ, E., AND DEVOST,
M. G. Cyber Adversary Characterization: Auditing the Hacker
Mind. Syngress, 2004.

[18] ROLDAN, R., MiyaMoTO, 1., AND LEON, T. FBI Criminal
Investigation: Cisco Routers, 2008.

[19] SHAH, G., MOLINA, A., AND BLAZE, M. Keyboards and covert
channels. In Proceedings of the 15th USENIX Security Sympo-
sium (Aug. 2006).

[20] ZHUANG, L., ZHOU, F., AND TYGAR, J. D. Keyboard acoustic
emanations revisited. In Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security (Nov. 2005).

Notes

!'This cannot be seen from the assembly listing due to message pass-
ing in Objective C.

2Curiously, ~Apple’s developer documentation says that
IOPMCopyBatteryInfo () is unsupported on all Intel CPU
based systems and yet, Apple uses it in this routine anyway.

3Well, it is almost a tree. A RAID disk controller is an example of
an exception.

http://www.cert.org/advisories/CA-2003-21.html
http://www.cert.org/advisories/CA-2003-21.html
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.apple.com/support/windowsvirus/
http://www.mcd-holdings.co.jp/news/2006/release-061013.html
http://www.mcd-holdings.co.jp/news/2006/release-061013.html
http://www.tomtom.com/news/category.php?ID=2&NID=349&Language=1
http://www.tomtom.com/news/category.php?ID=2&NID=349&Language=1
http://www.seagate.com/www/en-us/support/downloads/personal_storage/ps3200-sw
http://www.seagate.com/www/en-us/support/downloads/personal_storage/ps3200-sw
http://web.archive.org/web/20080211095252/www.insignia-products.com/news.aspx?showarticle=13
http://web.archive.org/web/20080211095252/www.insignia-products.com/news.aspx?showarticle=13
http://web.archive.org/web/20080211095252/www.insignia-products.com/news.aspx?showarticle=13
http://www.auscert.org.au/render.html?it=9077
http://www.auscert.org.au/render.html?it=9077
http://www.asus.co.jp/news_show.aspx?id=12964
http://www.asus.co.jp/news_show.aspx?id=12964
http://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
http://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
http://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
http://www.infobyte.com.ar/
http://support.apple.com/downloads/Aluminum_Keyboard_Firmware_Update_1_0
http://support.apple.com/downloads/Aluminum_Keyboard_Firmware_Update_1_0
http://labs.neohapsis.com/2008/04/17/connect-back-shell-literally/
http://labs.neohapsis.com/2008/04/17/connect-back-shell-literally/

	Introduction
	Prior Work
	Keyboards
	The Apple Aluminum Keyboard
	Apple's Firmware Update
	Reversing the Firmware Update
	Obfuscation
	Bypassing the obfuscation
	I/O Kit API
	Bootloader operation

	Exploitation
	A benign exploit
	Rootkit persistence
	Denial of service

	Conclusion

