Embedded Management Interfaces:
Emerging Massive Insecurity

Hristo Bojinov, Elie Bursztein, Eric Lovett, Dan Boneh

Stanford University Security Laboratory

http://seclab.stanford.edu
The secure embedded management interface project is being conducted at the Stanford Security Lab. Its objective is to assess the state of the art of embedded management interfaces and develop more secure solutions. This white paper summarizes the result of the first part of our project: the assessment of the security of current embedded management interfaces. Its results will be used in the second part of the project as a foundation to build more secure management interfaces. The Security Lab is a part of the Computer Science Department at Stanford University. Research projects in the group focus on various aspects of network and computer security.
Table of Contents

1 Introduction 5

2 Background 7
 2.1 Types of devices .. 9
 2.2 Vulnerability classes ... 11

3 Methodology 13
 3.1 Threat model ... 13
 3.2 Scope of the audit .. 13
 3.3 Attack surface measurement 14
 3.4 Tools used .. 14

4 Audit Results Overview 15
 4.1 Vulnerability by Category of Device 15
 4.2 List of Devices by Brand ... 16
 4.3 Complete Device Vulnerability List 18
 4.4 Attack Surface Complete List 19

5 NAS Audit 20
 5.1 LaCie Ethernet Disk Mini ... 21
 5.2 Buffalo LS-CHL ... 23
 5.3 Linksys NMH305 Media Hub 24
 5.4 D-Link DNS-323 ... 25
 5.5 QNAP TS-109 Pro II .. 27

6 Switch Audit 28
 6.1 Netgear FS750T2 .. 29
 6.2 Allied Telesync AT-FS750/16 31
 6.3 SMC 6128L2 .. 34
 6.4 TrendNet TEGS811Fi ... 35

7 Camera Audit 38
 7.1 Linksys Wireless G .. 39
 7.2 D-Link Wireless G ... 40
 7.3 Panasonic BL-C111A ... 41

8 Photo Frame Audit 42
 8.1 eStarling ImpactV .. 43
 8.2 Kodak W820 .. 44
 8.3 Samsung SPF-85V ... 45
9 IP Phone Audit
 9.1 Linksys SPA-942

10 Router Audit
 10.1 Linksys WRT54G2

11 Printer Audit
 11.1 HP LaserJet P2015 Series
 11.2 HP LaserJet 4250
 11.3 HP LaserJet 9000 Series

12 LOM Audit
 12.1 Intel vPro
 12.2 Dell DRAC 4/P
 12.3 IBM Remote Supervisor Adapter

13 Defenses
 13.1 DIY Auditing and Mitigation
 13.2 Browser Defenses
 13.3 Web Server Defenses

14 Related Work

15 Conclusion

16 CSRF testing tool
These days, virtually all network-capable devices, including simple consumer electronics such as printers and photo frames, ship with an embedded web interface for easy configuration. The ubiquity of web interfaces can be explained by two key factors. From the user perspective, they are easy to use because the interaction takes place in a familiar environment—the web browser. For the manufacturer, providing a web-based interface is cheaper than developing and maintaining custom software and installers.

Motivation

Though web interfaces are clearly an effective solution from a usability perspective, considerable expertise is required to make them secure [26]. Surprisingly, this widely-adopted technology is almost completely unexplored from a security point of view. Thus, in September 2008, we decided to investigate the security of embedded management interfaces and how it can be improved. Initially we only expected that only a few embedded web interfaces would exhibit security vulnerabilities, as previous work [20] on the subject had been limited in scope. However, our investigation revealed a completely different picture. All of the devices we audited contained significant vulnerabilities: overall we reported more than 50 vulnerabilities to CERT. This is why we have decided to call our talk “Emerging Massive Insecurity”—the security of embedded devices will likely become a prominent issue in the immediate future. The scope of this issue is not limited to embedded devices, because these devices can be used as stepping stones for more complex attacks. For example, compromising a photo frame in an office building can lead to an infection of a web browser connecting to the photo frame. This infection can then subsequently spread to the entire local network. There are three main factors that explain why these devices are currently insecure:

- **The web interface’s long tail:** Most security researchers focus on the most prominent software systems, such as Apache, Internet Information Services (IIS), PHPbb, and Gmail because they are massively used and therefore the impact of a single vulnerability is enormous. Accordingly, the long tails of interfaces used only on very specific devices have been almost completely ignored.

- **The complexity of the vulnerabilities:** The most interesting vulnerabilities we uncovered came from exploiting the interaction between the different communication channels offered by the devices, such as the interaction between an FTP server and the web interface on a NAS. Accordingly, we have named this type of vulnerability **Cross Channel Scripting (XCS)**. The security of interaction across channels is difficult to assess because something that is innocuous in one channel may well be malicious in another. For example, the string `<script>alert(1)</script>` is innocuous when embedded in an FTP command but will cause an XSS attack when displayed in an HTTP interface.
• **The lack of tools**: Securing embedded interfaces is difficult because there are no tools devoted to auditing them and no framework designed to help developers secure them. In particular, we had to develop ad-hoc scripts and tests to scan for XCS vulnerabilities. Overall, because there is a lack of good software tools for developing embedded web sites, each vendor is forced to develop its own web application, which can (and usually does) lead to security problems.

Contribution
Our main contribution is the first in-depth audit of embedded web management interfaces. To perform the audit we:

• **Developed an efficient methodology**: This helped us choose devices that were particularly interesting to analyze either due to their ubiquity or to the set of services they support.

• **Found new types of vulnerabilities**: We discovered a class of attacks that exploit the interaction between the web interface and other communication channels on the device. For example, we show how the FTP service on a NAS or the SIP service on a phone can be used to compromise the device’s web interface. Generally speaking, little care was taken to ensure that malicious web scripts could not be uploaded via a non-web service. Consumer electronics are especially vulnerable to these attacks since vendors compete based on the number and variety of services supported by their products.

• **Discovered vulnerabilities in a wide spectrum of devices**: We found vulnerabilities in all 21 devices from 16 different brands that we studied, including Dell, Linksys, Samsung, and IBM. These devices represent 8 different categories, including switches, cameras, photo frames, and lights-out management modules. We are in the process of vendor notification through CERT.

By publishing the results of our audit, we hope to shed light on a corner of the security space that is largely unexplored and to convince both the security community and vendors that the security of embedded interfaces is a serious threat that needs to be addressed. In future work, we hope to improve the situation by developing a light-weight web framework that will help vendors develop embedded web sites that resist the exploits discussed in this paper.

Outline
The remainder of the paper is organized as follows: In section 2 we briefly go through the background necessary to understand this work. In section 3 we introduce our audit methodology. In section 4 we present an overview of the vulnerabilities we found. In sections 5, 6, 7, 8, 9, 10, 11, and 12, we give detailed descriptions of the vulnerabilities we found, device by device. Each section covers one category of devices. In section 13 we discuss what can be done to mitigate these kinds of vulnerabilities. In section 14 we provide a summary of relevant related work.
The embedded device market is growing at a very rapid pace. For example, in the 4th quarter of 2008, 7 million digital photo frames were sold, almost 50% more than in the 4th quarter of 2007 (Figure 1). Similarly, analysts forecast that by 2012, 12 million Network Attached Storage (NAS) devices will be sold each year (Figure 2). At the current pace, devices with embedded web servers will outnumber traditional web servers in less than 3 years: Netcraft reports that there are roughly 40,000,000 active web servers on the Internet in June 2009 [18].

In order to distinguish their products from those of their competitors, vendors have begun to add additional features. As the number of features increases, a need rapidly arises for a powerful management interface on the device. To offer this in an intuitive, convenient, and cost effective way, vendors have started to embed web interfaces in their products. Digital photo frames are an excellent example of this expansion of features and need for a configuration interface. Thus, while web interfaces are currently found only on the high-end frames, they will quickly become the norm across the entire market.
For example, Figure 3 is a screenshot of the interface embedded in a high-end Samsung photo frame. This interface allows the user to control the frame’s display remotely, add an Internet photo feed to be displayed on the frame, and to find out various statistics. Although at first sight this interface looks perfectly designed, we have found that in reality it is completely flawed: for example, it is possible to bypass the authentication process and still view photos and store copies of them remotely.
2.1 Types of devices

We found web based management interfaces in the following eight types of devices:

NAS: A network-attached storage (NAS) unit is basically a computer attached to a network that is used solely as a data storage service by other computers on the network. For a detailed description and audit results see Section 5.

Switch: Most corporate network switches offer a web-based interface for configuring the switch, including options such as virtual local-area networks, SNMP communities, IP-based security filtering, and AAA protocols. For a detailed description and audit results see Section 6.

IP Camera: Many companies now offer cameras that can be attached to a home network to provide remote monitoring services. These cameras generally provide a web interface through which the owner can configure the camera and view the video captured. For a detailed description and audit results see Section 7.

Photo Frame: Digital photo frames allow users to display a series of digital photos on a single frame. They generally connect wirelessly to home networks and feature web-based interfaces for setup and configuration. For a detailed description and audit results see Section 8.
IP Phone: Many office phones are now operated over TCP/IP. Since they are network-connected, they also often offer web-based interfaces for configuration and call log access. For a detailed description and audit results see Section 9.

Router: Home routers generally have a web-based interface that allows users to configure various options, such as network-address translation, wireless encryption, MAC address filtering, and port forwarding. For a detailed description and audit results see Section 10.

Printer: Many office printers now feature web-based interfaces through which administrators can remotely view the status of the printer, reboot it, or configure it. For a detailed description and audit results see Section 11.

LOM: Lights-out management (LOM) interfaces now exist in many computers to allow administrators to remotely access the computer, even when it has failed or has been turned off. They generally offer configuration and reboot/recovery options via a web-based interface. For a detailed description and audit results see Section 12.
2.2 Vulnerability classes

During the evaluation of each device, we looked for the following types of vulnerabilities:

- **XSS:** As a warm-up we started by testing for Type 2 (stored) cross-site scripting (XSS) vulnerabilities [6], which are common in web applications. Most devices are vulnerable, including those that perform some input checking. For example, the TrendNet switch ensures that its system location field does not contain spaces, but does not prevent attacks of the form `document.write("<script/src='http://evil.com/a.js'></script>").` XSS attacks are particularly dangerous on embedded devices because they are the first step toward a persistent reverse XCS, as discussed below.

- **CSRF:** Cross-site request forgeries [26] enable an attacker to compromise a device by using an external web site as a stepping stone. We also used CSRF as a way to inject Type 2 (stored) XSS and reverse XCS payloads.

- **File security:** For each device, we checked whether it was possible to read or inject arbitrary files. Some devices, such as the Samsung photo frame, allow the attacker to read protected files without being authenticated. On this device, even when the Web interface was protected by a password, it was still possible to access the photos stored in memory by using a specially crafted URL. On other devices, the Web interface could be compromised by abusing the log file.

- **User authentication:** Most devices have a default password or no password at all. Additionally, most devices authenticate users in cleartext (i.e. without HTTPS). This was even true for several security cameras, which is surprising given that they are intended to securely monitor private spaces.
• **XCS:** A *Cross-Channel Scripting* attack [3] comprises two steps, as shown in Figure 4. In the first step the attacker uses a non-web communication channel such as FTP or SNMP to store malicious JavaScript code on the server. In the second step, the malicious content is sent to the *victim* via the Web interface. XCS vulnerabilities are prevalent in embedded devices since they typically expose multiple services beyond HTTP. XCS bugs are harder to detect than XSS and CSRF since they involve multiple communication channels.

• **Reverse XCS:** In a *Reverse XCS* attack the web interface is used to attack another service on the device. We primarily use reverse XCS attacks to exfiltrate data that is protected by an access control mechanism.

We did not look for SQL injections [9], as it was unlikely that these devices would contain a SQL server. While in some cases we found weaknesses in the networking stack (for example: predictable ISNs), we do not discuss that topic here.
In this section, we discuss our audit methodology and explain the rationale behind it.

3.1 Threat model

The audit was conducted from the perspective of a *network intruder*, which is the most likely scenario for an attack. The attacker is located on the local network and tries to take over as many devices as possible. We assume a weak network attacker, namely one who can initiate network connections, but cannot snoop on or modify packets en-route. Many of the vulnerabilities we found can also be exploited by a weaker *web attacker*, one who is on the general Internet rather than the local network specifically.

3.2 Scope of the audit

To ensure that our audit had the widest coverage possible we performed three rounds of evaluation that gradually expanded the scope of the audit in three directions:

- **Device Type:** Our primary objective was to test as many types of devices as possible. The goal was to show that the vulnerabilities found in these interfaces are not specific to any particular device or type of device, but rather are common across all embedded interfaces.

- **Brand:** Our second objective was to maximize the number of brands we audited. The goal was to evaluate the effort each vendor put into securing their devices. We wanted to analyze how prevalent security problems were amongst various different companies. We found that even such companies as IBM and Linksys have created products with these types of security vulnerabilities.

- **Types of Vulnerabilities:** Finally, we aimed to audit particular devices that exhibit innovative or unusual features. Indeed, our most novel discoveries rely on new and unusual features, such as the interaction between an embedded P2P client in a NAS and the device’s web interface.

Overall we audited a total of 21 devices, spanning 8 device categories and 16 brands. We believe we achieved our goal of testing devices from every major category that features embedded web interfaces. We made sure to include devices from both large companies (e.g. Intel) and small companies (e.g. eStarling) and companies that make several types of appliances (e.g. Linksys).
3.3 Attack surface measurement

The last part of the audit was to evaluate the impact of the vulnerabilities we discovered. To answer this question, we used a custom attack surface metric based on five criteria. We used an attack surface metric because such a metric allows us to get a better sense of which parts of the system need to be made more secure and enables us to keep track of progress in this direction. For example, currently every device has access control problems (Table 3). Another audit in the future might allow us to determine that the situation has improved if we find that only a small fraction of the devices still have authentication problems.

- **Confidentiality:** Does the vulnerability affect the confidentiality of the user’s data?
- **Integrity:** Is it possible to use the vulnerability to alter or erase user data or device settings?
- **Availability:** Does the vulnerability allow an attacker to make the device unavailable by preventing access to it or breaking it?
- **Access control:** Can the vulnerability be used to bypass access control policy? For example, is it possible to use the vulnerability to read files that are supposed to be restricted?
- **Attribution:** Is it possible to use the vulnerability to prevent the attribution of the attacks or later attacks to the real attacker? This mainly occurs when the device is used as a stepping stone to conduct further attacks. Additionally, is it impossible to attribute changes on the device to a particular attacker? For example, does the device lack a system log?

We decided to use a qualitative metric because we do not have a uniform number of devices and brands for each type of device, making quantitative comparisons impossible. Furthermore, the point of enumerating the attack surface is to understand the impact on the network, rather than to try to establish a ranking, which might give a false sense of security.

3.4 Tools used

The audit of each device was done in three phases. First, we performed a general assessment using NMap [15] and Nessus [22]. Next, we tested the web management interface using Firefox and several of its extensions: Firebug [8], Tamper Data [12], and Edit Cookies [28]. We also created a custom tool for CSRF analysis (Appendix 16). In the third phase we tested for XCS using hand written scripts and command line tools such as smbclient.
4.1 Vulnerability by Category of Device

Table 1 summarizes which classes of vulnerabilities were found for each type of device. We use the symbol □ when one device is vulnerable to this class of attacks and ■ when multiples devices in the class are vulnerable. The second column from the left indicates the number of devices tested in that category.

<table>
<thead>
<tr>
<th>Type</th>
<th>Num</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOM</td>
<td>3</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td></td>
<td></td>
<td>■</td>
</tr>
<tr>
<td>NAS</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>Photo Frame</td>
<td>3</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router</td>
<td>1</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>IP Camera</td>
<td>3</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>IP Phone</td>
<td>1</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Switch</td>
<td>4</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Printer</td>
<td>3</td>
<td>■</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

Table 1: Type of vulnerabilities found by devices

This table shows that the NAS category exhibits the most vulnerabilities, which can be expected given the complexity of these devices. We were surprised by the large number of vulnerabilities in photo frames, which are relatively simple devices. A possible explanation is that vendors rushed production in order to grab market share with new features. Indeed, in the Kodak photo frame, half the Web interface is protected against XSS while the other half is completely vulnerable. IP cameras and routers are more mature, and therefore tend to have better security features. Table 1 also shows that even enterprise-grade devices such as switches, printers, and LOMs are vulnerable to a variety of attacks, which is a concern as they are usually deployed into sensitive environments such as server rooms.
4.2 List of Devices by Brand

Table 2 lists which types of devices were tested for each brand. As one can see we did test devices from vendors specialized in one type of product such as *Buffalo*, and from vendors that have a wide range of products such as *D-link*.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Camera</th>
<th>LOM</th>
<th>NAS</th>
<th>Phone</th>
<th>Photo Frame</th>
<th>Printer</th>
<th>Router</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allied</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffalo</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Link</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dell</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eStarling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kodak</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaCie</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linksys</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netgear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Panasonic</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QNAP</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samsung</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TrendNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 2: List of devices by brand

- **Allied Telesis:** Formerly Allied Telesync, is a telecommunications company specialized in networking hardware.

- **Buffalo Inc:** Is one of the of the 14 subsidiaries of Melco Holdings Inc., initially founded as an audio equipment manufacturer, the company entered the computer peripheral market in 1981 with an EEPROM writer. It is well known for its NAS product.

- **D-Link Corporation:** was founded in 1986 in Taipei as Datex Systems Inc. It began as a network adapter vendor and has gone on to become a designer, developer, and manufacturer of networking solutions for both the consumer and business markets such as IP cameras, routers, and NAS.

- **Dell, Inc:** A multinational technology corporation that develops, manufactures, sells, and supports computers system and other computer-related products. The build their own LOM interface.
• **eStarling**: A brand that belong to the startup PF Digital Inc created in 2006. It is specialized in photo frame with advanced features.

• **HP**: A multinational technology corporation that develops, manufactures, sells, and supports computers system, networking products and other computer-related products. They embedded web interface in printer and server for LOM for example.

• **IBM/Lenovo**: A multinational technology corporation that develops, manufactures, sells, and supports computer systems. The IBM server systems can be configured with a LOM module, which has an embedded web interface.

• **Intel**: The world’s largest semiconductor chip maker, based on revenue. The company is the inventor of the x86 series of microprocessors. Intel embeds a web interface in all recent Core2 chipsets to allow a remote administration (as part of the vPro/AMT technology stack).

• **Kodak**: Eastman Kodak Company is a multinational American corporation which produces imaging and photographic materials and equipment. Kodak uses web interfaces in photo frames.

• **LaCie**: LaCie is a computer hardware company specializing in external hard drives, RAID arrays, optical drives, and computer monitors.

• **Linksys**: Founded in 1988 and acquired by Cisco Systems in 2003, is a major provider of home and small office network products. Linksys deploys web interfaces in almost all its products from routers, to NAS, to IP phones and cameras.

• **Netgear**: Founded in 1996, is a US manufacturer of computer networking equipment and other computer hardware. It deploys web interfaces in almost all of its products from routers, to switches, NAS, and cameras.

• **Panasonic**: Formerly known as Matsushita Electric Industrial Co., Ltd., is a multinational corporation based in Kadoma, Japan. Its main business is in electronics manufacturing and produces products under a variety of names including Panasonic and Technics. Panasonic deploys web interfaces in IP cameras, for instance.

• **QNap**: A company specializing in NAS devices.

• **Samsung**: Samsung Electronics is the world’s largest electronics company, headquartered in Seoul, South Korea. Samsung Electronics is a global vendor in more than 60 consumer electronics product series.

• **SMC Networks**: Is a hardware manufacturer of equipment such as network cards, switches, wireless routers, broadband routers, VDSL, network attached storage servers, and IP cameras.

• **TrendNet**: A telecommunications company specialized in networking hardware. They use embedded web interfaces in their line of switches and IP cameras.
4.3 Complete Device Vulnerability List

The following table lists, for each device, which types of vulnerabilities we found. Note that nearly all devices were vulnerable to CSRF attacks. Those that weren’t either didn’t have features that could be vulnerable to CSRF attacks or seemed to implement some sort of referrer header validation, rather than secret validation tokens. Additionally, every single device had authentication vulnerabilities. Only a few devices allowed HTTPS access to the web interface, and none of them restricted users to HTTPS only. Every device had an easy-to-guess default password, and in all cases but one the password was common across units worldwide, rendering it completely useless unless changed during initial setup.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS-920</td>
<td>D-Link</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wireless G</td>
<td>Linksys</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BL-C111A</td>
<td>Panasonic</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SPA-942</td>
<td>Linksys</td>
<td>IP Phone</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DRAC</td>
<td>Dell</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RSA2</td>
<td>IBM</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>vPro</td>
<td>Intel</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linkstation</td>
<td>Buffalo</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DNS-323</td>
<td>D-Link</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ethernet Disk</td>
<td>Lacie</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NMH-305</td>
<td>Linksys</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TS-109</td>
<td>QNAP</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ImpactV</td>
<td>eStarling</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EasyShare w820</td>
<td>Kodak</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SPF-85v</td>
<td>Samsung</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP P2015</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 4250</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 9000</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WRT54G2</td>
<td>Linksys</td>
<td>Router</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AT-FS750</td>
<td>Allied Telesync</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FS750T2</td>
<td>Netgear</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SMC6128L2</td>
<td>SMC</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TEG-S811Fi</td>
<td>TrendNet</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
4.4 Attack Surface Complete List

Table 3 lists, for each device, what the vulnerable attack surface is. Nearly every device is vulnerable in four of the five categories. For instance, many devices have CSRF vulnerabilities that allow an attacker to create a user account or change the administrator password. Thus, if an attacker can exploit this single CSRF vulnerability, they have gained access to the device, can write new data to the device or change settings (integrity), and in some cases can continually reset the device, making it unusable. Given that most devices do not keep system logs, a single CSRF vulnerability therefore makes a device vulnerable across many criteria.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS-920</td>
<td>D-Link</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wireless G</td>
<td>Linksys</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BL-C111A</td>
<td>Panasonic</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SPA-942</td>
<td>Linksys</td>
<td>IP Phone</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DRAC</td>
<td>Dell</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RSA2</td>
<td>IBM</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>vPro</td>
<td>Intel</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linkstation</td>
<td>Buffalo</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DNS-323</td>
<td>D-Link</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ethernet Disk</td>
<td>Lacie</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NMH-305</td>
<td>Linksys</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TS-109</td>
<td>QNAP</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ImpactV</td>
<td>eStarling</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EasyShare w820</td>
<td>Kodak</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SPF-85v</td>
<td>Samsung</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP P2015</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 4250</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 9000</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WRT54G2</td>
<td>Linksys</td>
<td>Router</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AT-FS750</td>
<td>Allied Telesync</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FS750T2</td>
<td>Netgear</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SMC6128L2</td>
<td>SMC</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TEG-S811Fi</td>
<td>TrendNet</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 3: Attack surface device by device
Network-attached storage (NAS) emerged over 15 years ago. Its main goals are to simplify sharing (compared to direct-attached storage), and to leverage existing, inexpensive network hardware (compared to SCSI or Fibre-channel based products). Typically, a NAS device exposes a variety of filesystem protocols like NFS, CIFS, WebDAV, and FTP through an Ethernet port. Management for the device can be performed via a serial link, however a browser-based interface is better suited and preferred for most management tasks. Beyond management, the web interface often provides a capability to inspect and modify the state of the filesystem. Specialized (often proprietary) storage management software is typical only for large enterprise installations, and hence was outside of the scope of our security audit.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-323</td>
<td>D-Link</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linkstation</td>
<td>Buffalo</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet Disk</td>
<td>Lacie</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMH-305</td>
<td>Linksys</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TS-109</td>
<td>QNAP</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-323</td>
<td>D-Link</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linkstation</td>
<td>Buffalo</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ethernet Disk</td>
<td>Lacie</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NMH-305</td>
<td>Linksys</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TS-109</td>
<td>QNAP</td>
<td>NAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
5.1 LaCie Ethernet Disk Mini

Vendor: LaCie
Product ID: Ethernet Disk Mini
Firmware version: 1.1.2
URL: http://www.lacie.com/products/product.htm?pid=10994

XSS via CSRF

![XSS via CSRF](image)

Figure 5: An XSS attack via CSRF in the username field.

On this NAS, joint CSRF/XSS attack is possible that allows an attacker to create a link containing arbitrary JavaScript code that will be executed by any user who follows the link, due to a complete lack of input validation. This vulnerability can be exploited simply by creating a link that exploits a particular unchecked input fields. The attack does require that the attacker know the IP address assigned to the NAS, but does not require the attacker to have access credentials.
Login XCS

Figure 6: An XCS attack via a login attempt.

On this device, when a log-in attempt fails, the event and failed username are recorded in the system log. When displayed, the system log entries are not properly escaped, allowing an attacker to use a carefully constructed user name to inject a script into the log. When the log is later viewed by an administrator, arbitrary JavaScript will be executed on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker needs to be able to access the login page of the device.

Filename XCS

Using the SMB command-line interface, a malicious user can rename files. When these constructed filenames are later viewed by an administrator, arbitrary script injection will occur, executing on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker must be able to login to the FTP interface of the device, though the attacker need not have full administrative access to the device.
5.2 **Buffalo LS-CHL**

Vendor: Buffalo
Product ID: LS-CHL
Firmware version: 1.00

P2P XCS

![Image of XCS attack via torrent]

Figure 7: An XCS attack via torrent. The text underlined in green is the attack and its results.

Using the BitTorrent download feature of this device, a malicious user can insert malicious scripts onto the device. When carefully constructed torrents inserted and the BitTorrent download feature is later viewed by an administrator, arbitrary JavaScript will be executed on the administrator's machine with administrative privileges on the device. To exploit this vulnerability, the attacker must be able to login to the device.
5.3 Linksys NMH305 Media Hub

Vendor: Linksys
Product ID: NMH305
Firmware version: 4.4.9

Filename XCS
Using the SMB or FTP command-line interfaces, a malicious user can add and rename files on the device. When carefully constructed filenames are later viewed by an administrator, arbitrary script injection can occur, executing JavaScript on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker must be able to login to the FTP interface of the device, though the attacker need not have full administrative access to the device.

File Access
On this device, when the administrator username and password are changed, the event and new values are recorded in the system log. However, viewing the system log does not require logging in to the device, allowing an attacker to see the current username and password, as well as all former usernames and passwords, in the clear without authenticating to the device. To exploit this vulnerability, the attacker needs to know the IP address of the device.
5.4 D-Link DNS-323

Vendor: D-Link
Product ID: DNS-323
Firmware version: 1.05
URL: http://www.dlink.com/products/?pid=509

XSS

![Image of D-Link DNS-323](image)

Figure 8: An XSS attack in the system description field that embeds the Stanford Security Lab logo.

On this device, XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the NAS and requires access credentials.
Figure 9: An XSS attack in the FTP folder field that embeds the Stanford Security Lab logo.

CSRF DoS

CSRF attacks are possible that allow an attacker to force the device to reboot, shutdown, or reset to factory default settings, due to a complete lack of request validation. These vulnerabilities can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the requests, the attacker can perform a denial of service attack on the device. Additionally, by resetting the device to factory settings, the attacker can utilize knowledge of the default password to gain complete control of the device. The attack does require that the attacker know the IP address assigned to the NAS.
5.5 QNAP TS-109 Pro II

Vendor: QNAP
Product ID: TS-109 Pro II
Firmware version: 2.1.2 Build 1114T

Filename XCS
Using the FTP command-line interface, a malicious user can add and rename files on the device. When carefully constructed filenames are later viewed by an administrator, arbitrary script injection can occur, executing JavaScript on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker must be able to login to the FTP interface of the device, though the attacker need not have full administrative access to the device.

CSRF
Access Control
CSRF attacks are possible that allow the addition of a user to the switch or the addition of an existing user to the administrators group (granting full access rights to that user), because of a complete lack of request validation. These vulnerabilities can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.
A network switch is a device used to connect multiple computers or network segments together. While core switching functionality operates at layer two, using the MAC addresses of the devices directly connected to the switch, switches can operate at any of the seven network layers. It is increasingly common for switches to have functionality that goes well beyond simple layer two switching, especially in managed switches, which are generally what are used in corporate server rooms. Having this increased functionality requires that these switches have a way for administrators to configure them, and in many cases, they now run internal web servers in order to allow administrators to remotely configure them. Managed switches generally offer configuration options for things such as virtual local-area networks, SNMP communities, IP-based security filtering, and AAA protocols. The configuration interfaces are generally available in-band to computers within the local network, though many switches also have serial ports to allow console access.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT-FS750</td>
<td>Allied Telesync</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS750T2</td>
<td>Netgear</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC6128L2</td>
<td>SMC</td>
<td>Switch</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEG-S811Fi</td>
<td>TrendNet</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT-FS750</td>
<td>Allied Telesync</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FS750T2</td>
<td>Netgear</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SMC6128L2</td>
<td>SMC</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TEG-S811Fi</td>
<td>TrendNet</td>
<td>Switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
6.1 Netgear FS750T2

Vendor: Netgear
Product ID: FS750T2
Firmware version: V1.1.2.05
URL: http://www.netgear.com/Products/Switches/SmartSwitches/FS750T2.aspx

XSS

![System Setting](image)

Figure 10: An XSS attack in the system name field.

An XSS attack is possible that allows an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in an unchecked input field. The attack does require that the attacker know the IP address assigned to the switch and requires access credentials.
CSRF DoS
A CSRF attack is possible that allows an attacker to force the device to reboot, due to a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the request, the attacker can perform a denial of service attack on the device. The attack does require that the attacker know the IP address assigned to the switch. The attack can also be used to reset the device to factory defaults.
6.2 Allied Telesync AT-FS750/16

Vendor: Allied Telesync
Product ID: AT-FS750/16
Firmware version: 1.0.0.30

CSRF DoS
A CSRF attack is possible that allows an attacker to force the device to reboot, due to a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the request, the attacker can perform a denial of service attack on the device. The attack does require that the attacker know the IP address assigned to the switch.
XSS
An XSS attack is possible that allows an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in an unchecked input field. The attack does require that the attacker know the IP address assigned to the switch and have access credentials.

![XSS Attack Example](image.png)

Figure 11: An XSS attack in the system name field.

Stanford Security Lab 32 Black Hat USA 2009
Console XCS

An attacker with access to the console configuration interface of the switch can inject arbitrary scripts into the switch name. When the web interface is later viewed by an administrator, JavaScript can be executed on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker must have physical access to the switch or must compromise the computer hooked up to the console interface. See Figure 12 for how to exploit this attack and the result.

![Console XCS](image)

Figure 12: The console showing how to carry out the XCS attack and the result of the console XCS attack.
6.3 SMC 6128L2

Vendor: SMC
Product ID: 6128L2
Firmware version: 0.07, 1.1.0.7

CSRF DoS
A CSRF attack is possible that allows an attacker to force the device to reboot, due to a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the request, the attacker can perform a denial of service attack on the device. The attack does require that the attacker know the IP address assigned to the switch.

CSRF Access Control
A CSRF attack is possible that allows the addition of a user with full access rights to the switch, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.
6.4 TrendNet TEGS811Fi

Vendor: TrendNet
Product ID: TEGS811Fi
Firmware version: v1.01

Console XCS

An attacker with access to the console configuration interface of the switch can inject arbitrary scripts into the switch location. When the web interface is later viewed by an administrator, JavaScript can be executed on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker must have physical access to the switch or must compromise the computer hooked up to the console interface. See Figures 13 and 14 for how to exploit this attack and the result.

Figure 13: The console showing how to carry out the XCS attack.

Figure 14: The result of the console XCS attack.
XSS

Figure 15: An XSS attack in the system location field.

XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the switch and requires access credentials.
CSRF DoS
A CSRF attack is possible that allows an attacker to force the device to reboot, due to a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the request, the attacker can perform a denial of service attack on the device. The attack does require that the attacker know the IP address assigned to the switch.

CSRF Access Control
A CSRF attack is possible that allows the modification of the administrator password or the disabling of IP-based security filtering, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.
IP cameras, a type of CCTV cameras, have been growing in popularity in recent years as an easy way for people to remotely monitor their homes. They can also be used by businesses as a replacement for standard analog CCTV cameras. A major contribution to their popularity is that they can simply be connected to an existing home or corporate network and monitored from commodity computers. The popularity of IP cameras will likely continue to grow as video quality improves and new features, such as motion detection, become common across all cameras. In order to view the video output and configure settings, nearly all cameras feature a built-in web server.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS-920</td>
<td>D-Link</td>
<td>Camera</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wireless G</td>
<td>Linksys</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL-C111A</td>
<td>Panasonic</td>
<td>Camera</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS-920</td>
<td>D-Link</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wireless G</td>
<td>Linksys</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BL-C111A</td>
<td>Panasonic</td>
<td>Camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
7.1 Linksys Wireless G

Vendor: Linksys
Product ID: WVC54GCA
Firmware version: V1.21, JUL 07, 2006

CSRF Access Control
A CSRF attack is possible that allows the creation of new users or the modification of the admin username and password, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of suitable forms. By then submitting these forms automatically, the attacker is acting on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the camera.

CSRF File Access

![Linksys Wireless G Image]

Figure 16: An CSRF attack that shows the contents of the file /etc/shadow.

A CSRF attack is possible that allows an attacker to view the content of arbitrary files on the device, because of a complete lack of request and input validation. To exploit this vulnerability, an attacker must have access credentials on the device or a way to circumvent the same-origin policy in an authenticated user’s browser. This attack also requires that the attacker know the IP address assigned to the camera.
7.2 D-Link Wireless G

Vendor: D-Link
Product ID: DCS-920
Firmware version: 1.01 (2008-06-25)
URL: http://www.dlink.com/products/?sec=1&pid=664

CSRF Access Control

A CSRF attack is possible that allows the creation of new users, due to a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of suitable forms. By then submitting these forms automatically, the attacker is acting on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the camera.
7.3 Panasonic BL-C111A

Vendor: Panasonic
Product ID: BL-C111A
Firmware version: 3.51R00
URL: http://www2.panasonic.com/consumer-electronics/shop/Computers-Networking/Network-Cameras/Residential-IP-Network-Cameras/model.BL-C111A.S_11002_7000000000000005702

CSRF Access Control
A CSRF attack is possible that allow the modification of the administrator username and password, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.

CSRF DoS
CSRF attacks are possible that allow an attacker to force the device to reboot or reset to factory default settings, due to a complete lack of request validation. These vulnerabilities can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the requests, the attacker can perform a denial of service attack on the device. Additionally, by resetting the device to factory settings, the attacker can utilize knowledge of the default password to gain complete control of the device. The attack does require that the attacker know the IP address assigned to the NAS. CSRF attacks are possible that allow an attacker to force the device to reboot or reset to factory default settings, due to a complete lack of request validation. These vulnerabilities can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the requests, the attacker can perform a denial of service attack on the device. Additionally, by resetting the device to factory settings, the attacker can utilize knowledge of the default password to gain complete control of the device. The attack does require that the attacker know the IP address assigned to the NAS.
Digital picture frames have started to gain popularity only recently. We expect that their popularity will continue to grow as display prices keep on falling and new, power-efficient visualization technologies like color e-paper emerge and become commonplace [5].

The latest generation of digital picture frames is a showcase of interoperability features: WiFi, RSS, e-mail, and video streaming capabilities are becoming standard, along with the ability to display various “widgets” that show weather forecasts, stock quotes, or various other content downloaded autonomously from the Internet.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImpactV</td>
<td>eStarling</td>
<td>Photo Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EasyShare w820</td>
<td>Kodak</td>
<td>Photo Frame</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPF-85v</td>
<td>Samsung</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImpactV</td>
<td>eStarling</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EasyShare w820</td>
<td>Kodak</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SPF-85v</td>
<td>Samsung</td>
<td>Photo Frame</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
8.1 eStarling ImpactV

Vendor: eStarling
Product ID: ImpactV
Firmware version: V110
URL: http://www.estarling.com/products.sf

Image Display
The frame allows the user to send an email to the frame with an attached photo, which will subsequently be displayed on the frame. This feature does not require any credentials, so an attacker that can guess or determine the email address can display arbitrary images on the frame. Furthermore, the email addresses are automatically generated and appear to follow a specific pattern, making them significantly easier to guess.
8.2 Kodak W820

Vendor: Kodak
Product ID: W820
Firmware version: 2008.08.1
URL: http://www.kodak.com/eknec/PageQuerier.jhtml?pq-path=13166&pq-locale=en_US&requestid=2158

XSS

![XSS attack in the photo feed URL field](image)

Figure 17: An XSS attack in the photo feed URL field.

An XSS attack is possible that allows an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface and clicks a particular button, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in an unchecked input field. The attack does require that the attacker know the IP address assigned to the frame, but does not require access credentials.
8.3 Samsung SPF-85V

Vendor: Samsung
Product ID: SPF-85V
Firmware version: M-CB08S6US-1001.1

Authentication bypass

The url used to display the current photo on the frame is not protected by the authentication mechanism as the result it is possible to view the current photo without being logged.

Default password

The frame come with a default password.

XSS/CSRF

It is possible to inject an XSS in the configuration panel of the photo frame. The configuration panel is not protected against CSRF attack.
RXCS File Stealing

Figure 18: an RXCS attack in the Samsung photo frame that allows to steal photos.

It is possible to combine the previous vulnerabilities to inject a “ghost” script that will be used to steal the photo stored on the frame as they will display.
VoIP devices come in different flavors and can be based on various protocols. We focused on phones which support the SIP protocol (generally accepted as the standard protocol for establishing a connection between IP phones today). Further, we looked for devices that boast management using a browser. While we believe that for larger deployments the individual phones are unlikely to be managed separately by IT organizations, the mere existence of a web interface and the expected pervasiveness of this type of device on the network will result in a large, exploitable domain of targets given a vulnerability in the interface.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA-942</td>
<td>Linksys</td>
<td>IP Phone</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA-942</td>
<td>Linksys</td>
<td>IP Phone</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
9.1 Linksys SPA-942

Vendor: Linksys
Product ID: SPA-942
Firmware version: 6.1.5(a)

CSRF Access Control
A CSRF attack is possible that allows the modification of the administrator password, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of suitable forms. By then submitting these forms automatically, the attacker is acting on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the camera.
An XSS attack is possible that allows an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in an unchecked input field. The attack does require that the attacker know the IP address assigned to the switch and have access credentials, if the user has enabled them.
Using a carefully constructed username, an attacker can make a SIP call to the phone and inject arbitrary JavaScript into the call log. When this log is later viewed by an administrator, JavaScript can be executed on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker must know or guess the phone number of the device.

Figure 20: An XCS attack via a SIP call username.
Although routers have existed in some form since the early days of the ARPANET, we focused on a particular class of routers, residential routers, because they are now quite common and generally have a web server used to configure the device. These devices generally have multiple high-level functions beyond simply routing packets, such as serving as a DSL or cable modem, network switch, wireless access point, firewall, DHCP server, or NAT device. In order to allow users to configure each of these features, they generally run an internal web server.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRT54G2</td>
<td>Linksys</td>
<td>Router</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRT54G2</td>
<td>Linksys</td>
<td>Router</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
10.1 Linksys WRT54G2

Vendor: Linksys
Product ID: WRT54G2
Firmware version: 1.0.00 build 012, Jan. 24, 2008

CSRF Access Control
A CSRF attack is possible that allow the modification of the wireless security protocol and password, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.
XSS

Figure 21: An XSS attack in an access restrictions field that embeds the Stanford Security Lab logo.

XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the router and requires access credentials.
Figure 22: An XSS attack in the ping test feature that embeds the Stanford Security Lab logo.

Backup File XCS
Using the configuration restore feature of the Linksys WRT54G2 router, an attacker can "restore" malicious settings to the device. This is especially easy because the backup/restore file contains no checksum or MAC to ensure legitimacy. When a carefully constructed restore file is used, arbitrary script injection can occur, causing arbitrary JavaScript to be executed on the administrator’s machine on the next page view. To exploit this vulnerability, the attacker must be able to login to the device.
While printers actually predate the computers they are now commonly used with, a particular type of printer has become extremely popular in recent years: the network-attached corporate laser printer. Because modern laser printers generally have many advanced features, such as support for multiple network and administration protocols, and don’t wish to incur the design and build costs of including a large screen and input device on the printer itself, they often feature embedded web servers. Their prevalence in corporate environments makes any vulnerabilities in the interface especially problematic.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP P2015</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 4250</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 9000</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP P2015</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 4250</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HP 9000</td>
<td>HP</td>
<td>Printer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
11.1 HP LaserJet P2015 Series

Vendor: HP
Product ID: P2015
Firmware version: 20070221

XSS

XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the printer and have access credentials, if the administrator has enabled password protection.

CSRF Access Control

A CSRF attack is possible that allow the modification of the administrator password, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the printer.
11.2 HP LaserJet 4250

Vendor: HP
Product ID: 4250
Firmware version: 20050304 08.008.6

XSS
XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the printer and have access credentials, if the administrator has enabled password protection.

CSRF Access Control
A CSRF attack is possible that allow the modification of the administrator password, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the printer.

RXCS
A CSRF attack is possible that allow the modification of the email control settings, because of a complete lack of request validation. After changing these settings, the attacker can then control the device by sending it emails. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the printer.
11.3 HP LaserJet 9000 Series

Vendor: HP
Product ID: 9000
Firmware version: 20030127 02.511.0

XSS
XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the printer and have access credentials, if the administrator has enabled password protection.

CSRF Access Control
A CSRF attack is possible that allow the modification of the administrator password, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the printer.

RXCS
A CSRF attack is possible that allow the modification of the email control settings, because of a complete lack of request validation. After changing these settings, the attacker can then control the device by sending it emails. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the printer.
Lights-out management (LOM) systems emerged as a way to simplify the management of large numbers of computers in enterprise or remote office environments. In server systems, LOM modules are often separate hardware modules (e.g. PCI cards) which have a special connection to the motherboard and a separate network interface. Recently, with the introduction of Intel vPro and upcoming similar functionality from other vendors [4], LOM modules have started to become ubiquitous: for example, every new Intel-based PC sold today has embedded LOM functionality which is invisible to the host OS.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>XSS</th>
<th>CSRF</th>
<th>XCS</th>
<th>RXCS</th>
<th>File</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAC</td>
<td>Dell</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA2</td>
<td>IBM</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vPro</td>
<td>Intel</td>
<td>LOM</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Confid</th>
<th>Integrity</th>
<th>Avail</th>
<th>Access</th>
<th>Attrib</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAC</td>
<td>Dell</td>
<td>LOM</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RSA2</td>
<td>IBM</td>
<td>LOM</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>vPro</td>
<td>Intel</td>
<td>LOM</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
12.1 Intel vPro

Vendor: Intel
Product ID: vPro
Firmware version: 2.6.3.1032
URL: http://www.intel.com/technology/vpro/

CSRF Access Control
A CSRF attack is possible that allow the modification of the system password and other fields, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.

XSS
XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the NAS, but does not require access credentials, due to a CSRF vulnerability (see section above).
12.2 Dell DRAC 4/P

Vendor: Dell
Product ID: DRAC 4/P
Firmware version: 1.61 (Build 09.09)

CSRF Access Control
A CSRF attack is possible that allow the addition and modification of users, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.

XSS

![XSS Attack Image]

Figure 23: An XSS attack that embeds the Stanford Security Lab logo.

XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the NAS and have access credentials.
Login XCS

Figure 24: An XCS attack via a login attempt.

On the Dell DRAC 4 Lights-Out Management system, when a log-in attempt fails, the event and failed username are recorded in the system DRAC 4 log. When displayed, the system log entries are not properly escaped, allowing an attacker to use a carefully constructed user name to inject a script into the log. When the log is later viewed by an administrator, arbitrary JavaScript will be executed on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker needs to be able to access the login page of the device.
12.3 IBM Remote Supervisor Adapter

Vendor: IBM
Product ID: Remote Supervisor Adapter II Refresh 1
Firmware version: 18 (GUEP07A)
URL: http://www-947.ibm.com/systems/support/ssupportsite.wss/docdisplay?brandind=5000008s&lndocid=MIGR-57091

CSRF Access Control
A CSRF attack is possible that allow the addition and modification of usernames and passwords, because of a complete lack of request validation. This vulnerability can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a suitable request. The attacker is then able to act on behalf of the administrator. The attack does require that the attacker know the IP address assigned to the switch.

XSS
XSS attacks are possible that allow an attacker to store arbitrary JavaScript code on the device to be executed by any user who subsequently visits the administration interface, due to a complete lack of input validation. This vulnerability can be exploited simply by storing a particular string in any of the unchecked input fields. The attack does require that the attacker know the IP address assigned to the NAS and have access credentials.

Login XCS
On the IBM Remote Supervisor Adapter II Lights-Out Management system, when a log-in attempt fails, the event and failed username are recorded in the system log. When displayed, the system log entries are not properly escaped, allowing an attacker to use a carefully constructed user name to inject a script into the log. When the log is later viewed by an administrator, arbitrary JavaScript will be executed on the administrator’s machine with administrative privileges on the device. To exploit this vulnerability, the attacker needs to be able to access the login page of the device.

CSRF DoS
CSRF attacks are possible that allow an attacker to force the device to reboot or reset to factory default settings, due to a complete lack of request validation. These vulnerabilities can be exploited without access credentials, simply by forcing an authenticated administrator to view malicious content consisting of a particular URL request, thereby acting on behalf of the administrator. By simply repeating the requests, the attacker can perform a denial of service attack on the device. Additionally, by resetting the device to factory settings, the attacker can utilize knowledge of the default password to gain complete control of the device. The attack does require that the attacker know the IP address assigned to the NAS.
Defending against the latest attacks in the next generation of web-connected devices will require a change in thinking.

Appliance vendors need to begin considering the broader implications of the technology they deliver, given that it will be deployed to tens or hundreds of millions of end-users. A long list of web attacker exploits, such as those discussed above, has shown that a vulnerability in the management interface of a consumer or small-office device is no longer safely hidden behind a firewall.

End users, IT staff, and anyone purchasing such a device needs to assess the products they intend to deploy in terms of their capabilities in the context of the larger infrastructure, the sensitivity of data the devices will have access to (either directly or over the network—including possible unauthorized access), and the risk mitigation options.

13.1 DIY Auditing and Mitigation

End users can use our approach to evaluate the security of products they are interested in purchasing or using. Likewise, device vendors can use this approach to audit their products. The main areas that need to be considered in such an evaluation are:

- **Authorization:** Who is authorized to use the device? What are the different user roles and how should (and should not) they interact?

- **Authentication:** How does user authentication work? What are the initial setup steps that are taken to set up the device?

- **Auditing:** How are user actions tracked? What gets posted to logs, and in what format? What happens if the space allocated to logs is depleted?

- **Administration:** What are the different types of management operations supported? What class of authorization does each operation require? Which ones are the most critical, and what mechanisms are used to protect them?

- **Access:** What data or interfaces can the device access? What is the worst case scenario, assuming the device is completely controlled by an adversary?

By focusing their energy on the questions most important to security, end users and vendors alike can make informed decisions while incurring a relatively low cost of time spent doing consumer research or product development.
13.2 Browser Defenses

In recent work, we have proposed a system called SiteFirewall, which is capable of blocking some types of XCS attacks from being carried out. The system uses a browser extension that acts as a firewall between vulnerable, internal web sites, and those accessed by the user on the open Internet. Optionally, the SiteFirewall architecture can also use a web server module that supplies custom HTTP headers for every page on the embedded web site. These headers can indicate to the user’s web browser that the page is not supposed to request any outside resources for its operation, possibly excepting a short whitelist of acceptable resources (to accommodate use-cases such as fetching device documentation directly from the vendor’s web site on the Internet).

13.3 Web Server Defenses

While we believe that security must be implemented in depth and web browsers need to provide comprehensive security options to their users, embedded web server and web site implementations are the source of the problem, so we are planning to extend the concept of a firewall to the server side. We believe that a light-weight framework designed specifically for use in building embedded web sites would be extremely effective at eliminating the common vulnerabilities. Because it would be designed for small embedded servers, the framework can be designed with security in mind, rather than high performance. Additionally, standardization and openness in framework use and design will lead to more visibility and inspection, and therefore ultimately better security.
As stated in the introduction, the security of embedded interfaces is almost a completely unexplored territory, therefore most related work has focused on one of the two following areas: general web security or low-level attacks on devices.

General web vulnerabilities and defenses

Previous interest in web interface security has been predominantly Internet-centric. Indeed, most of today’s risks stem from the direct interactions between users and websites for e-commerce, learning, or entertainment. Most of the vulnerabilities we discovered in our audit were of well-known types that exist in conventional interactions between a user’s browser and the web server [2, 6]. Many XSS defenses have been proposed in the literature [6, 10, 1, 7, 11, 13, 24, 17, 19, 21, 29, 25], and many of these defenses can help mitigate XCS vulnerabilities if they are properly used by the embedded web application. One of the key novelties of Internet Explorer 8 is an XSS filter that blocks certain reflected XSS attacks [23]. However, ways to bypass this filter were found very quickly after its release [14]. The approach used in IE8 was inspired by noscript[16], a popular Firefox extension.

Low-level attacks

Low-level attacks on devices usually target vulnerabilities or design oversights in a specific protocol supported by the device. These attacks often yield spectacular results, such as control of at least of a substantial subsystem of the device, if not the whole device [27].

We see these two directions as complementary to our work. We have focused on embedded web servers because they have received less than their fair share of scrutiny, despite the fact that their presence is growing steadily. On the other hand, we have avoided the lower-level exploits because we believe that the most sizeable future threats will come via easily-accessible interfaces that are somehow bridged to the outside world, such as those exposed to the user’s web browser.
In this white paper, we have summarized the results obtained during the first phase of our secure embedded management interface project. The goal of this phase was to evaluate the current state of the security of embedded interfaces.

Our results demonstrate that there are currently many security problems in embedded interfaces. This poses a serious threat because embedded devices are very widely deployed, including in sensitive environments, and are a growing market.

Our audit covered 8 different types of devices across 16 vendors and 21 individual products. Overall, we have documented and reported to CERT more than 40 vulnerabilities. In addition to a long list of traditional attacks on embedded management interfaces, we have developed a new category of attacks that we call cross-channel scripting (XCS and Reverse XCS). Network-connected appliances are especially vulnerable to XCS due to the variety of protocols they implement. Alongside these novel attacks, we have presented practical defense recommendations for vendors and end users.

The goal of the second phase of our project is to build browser and web server defenses that will help increase the security of these interfaces. Our primary focus will be to build a secure framework that vendors can easily use in their devices, thereby improving security across many devices at once.

Here the source of the tool we used to test device for CSRF. the code is currently configured for the file access attack on the Linksys Wireless G camera, but is designed to be easy to modify for any similarly repetitive exploration of a CSRF vulnerability. See Figure 25 for a screenshot of the interface.

```html
<html>
<head>
<title>CSRF creator</title>

<script type="text/javascript">
function setActions() {
  var actionStr = document.getElementById('action').value;
  document.csrfform.action = actionStr;
  document.getElementById('actionURLSpan').innerHTML = actionStr;
}
</script>
</head>
<body onload="setActions()">
<br />
<br />
Set Action: <input type="text" value="http://192.168.1.108/adm/file.cgi" size="50" id="action" onblur="setActions()" />
<br />
Current Action: <span id="actionURLSpan">asdf</span>
<br />
<br />
<form method="post" action="" name="csrfform" target="formTarget">
Next File: <input type="text" name="next_file" id="next_file">
<input type="submit" value="test" onclick="addToHistory()"/>
</form>
```
<input type="button" value="yes" onclick="setFileExists(true)"/>
<input type="button" value="no" onclick="setFileExists(false)"/>

<iframe height="70%" width="90%" name="formTarget"></iframe>

<script type="text/javascript">
var historyTable = document.getElementById("historyTable");

function setFileExists(exists) {
 var td = historyTable.lastChild.lastChild;
 td.innerHTML = exists ? "yes" : "no";
}

function addToHistory() {
 var tr = document.createElement("tr");
 var actionTD = document.createElement("td");
 actionTD.innerHTML = document.getElementById('action').value;
 var nextFileTD = document.createElement("td");
 nextFileTD.innerHTML = document.getElementById('next_file').value;
 tr.appendChild(actionTD);
 tr.appendChild(nextFileTD);
 tr.appendChild(document.createElement("td"));
 historyTable.appendChild(tr);
}
</script>
Figure 25: A screenshot of the interface.