
Matthieu Suiche
matt[at]msuiche.net

http://www.msuiche.net
http://www.moonsols.com

 Who am I?
 OS/Security Researcher

 Objectives
 Introducing a new method of memory dumping

○ Advantages

○ Windows Hibernation File Internals

 Exploiting this file for:
○ Defensive (forensics) use

○ Offensive (offensics) use

 Showing some demos

 Giving away SandMan’s newest release :-)

 Microsoft name for « suspend to disk » feature
 Available since Windows 2000.

 This feature is also implemented in non-MS O.S. (MacOSX, Linux,..)

 \hiberfil.sys

 Yes, this is this file!

 It contains a full dump of the memory

 How do I hibernate?
 Start > Hibernate

 Command line:

○ Powercfg /hibernate (to activate)

○ Shutdown /h (to hibernate)

 It is quick and easy.

 No hardware prerequisite

 Hibernation can be activated without reboot

 Contains additional and useful information

 An efficient way to get a physical snapshot to avoid

 Generating a crash dump through BSOD

 Using standalone tools like win32dd [1], mdd [2], dd [3]

○ These kind of tools aren’t necessary compatible with 64bits
 E.g. Drivers signing.

○ Because in MICROSOFT we trust !

 Significant advantages for investigators

 System activity is totaly frozen
○ No software tool is able to block the analysis

○ System is left perfectly functional after analysis

 SandMan can generate a readable dump

○ Dump is interoperable with others tools like:
 Volatility Framework [4]

 PTFinder (Andreas Schuster) [5]

 …

 Writable too?

 Yes! MS Bootloader loads it when the machine is waking
up.

 Modified code can be executed!!

 My header is rich! It also contains:
 Processor state is saved thus :

 We can retrieve Control Registers
○ Very useful for memory management functions
 Like virtual address translation

 And other interesting things like previous EIP.

 Interrupt Descriptor Table (IDT) base address

 Global Descriptor Table (GDT) base address

○ Segmentation!

Field Content
Header PO_MEMORY_IMAGE structure

Page list An array of physical page.

Processor State CONTEXT + KSPECIAL_REGISTERS

Memory Range Array n Header: NextTable page + Number of Entries.
Entries: Destination Page + Checksum

Xpress compressed block p Magic « \x81\x81xpress » (> Win2K)
Compressed data

Xpress compressed block p+1 …

Memory Range Array n+1 …

 Header

 PO_MEMORY_IMAGE

is exported in debugging symbols

 Main magic bytes are:
○ hibr:

hibernation file is valid, system shall be resumed on boot
 Vista (and above) makes use of caps (HIBR)

○ wake:
hibernation file is invalid, system shall be start anew.

 Processor State
 KPROCESSOR_STATE

is exported in debugging symbols

 This structure is filled by calling
KeSaveStateForHibernate() in ntoskrnl.

 This structure contains very interesting values like:
○ GS, FS, ES, DS segments registers

○ EIP (If we apply a mask we can get Ntoskrnl image base)

○ Global Descriptor Table (GDT) Offset

○ Interrupt Descriptor Table (IDT) Offset

○ Control registers (CR0, CR3)

 Memory Range Array
 PO_MEMORY_RANGE_ARRAY is exported in debugging symbols

○ However, this structure does change accros Windows versions.

○ Number of entries per array never exceed 0xFF

○ Pages are not ordered.

 Xpress blocks
 Uncompressed block size is 64kB (0x10 Pages)

 Windows 2000 uses LZNT1

 > Windows 200 O.S. uses internal functions called XpressEncode()

 Xpress compression algorithm
 Xpress algorithm has been implemented by Microsoft Exchange Team

○ Used for LDAP protocol

○ In Microsoft Embedded O.S. Windows CE

○ In Windows IMaging format (WIM) implemented in Windows Vista.

 This algorithm has been publicly documented since recent Microsoft
Interoperability initiative (February 2008)

○ Even, if beta version of SandMan supported it before

 According to Microsoft Exchange documentation, XPRESS algorithm is:

○ LZ77 + DIRECT2

○ LZ77 for compression and DIRECT2 encode bytes positions in meta-data

 Some notes
 If Checksum are set to 0, MS Boot Loader doesn’t check compressed

pages

 Checksum algorithm computed via tcpxsum()

 Everything is page-aligned (PAGE_SIZE = 0x1000 (4kb))

 O.S. fingerprinting is possible using slight variations

○ Header magic bytes (hibr or HIBR?)

○ PO_IMAGE_MEMORY size

○ It’s useful, but not very informative.
 -> HiberGetVersion()

 Some notes
 Hibernation file is NEVER wiped out,

○ only the first page (page header) is wiped after being resumed.

 Then we can still analyze the hibernation file!

 Here SandMan comes!

 Objectives:
 Providing a READ and WRITE access to the hibernation file.

 Kernel-land malwares
 If the code isn’t in the hibernation file

○ It won’t resume execution

 E.g. SMM Rootkit

○ People says SMM Rootkit are great because of SMRAM.

○ Why? Because nobody can access to it.

○ … even Windows… Then, after resume, hibernation process will clear the
SMRAM

○ Bye bye SMM Rootkit.

 Kernel-land malwares detection

 We can imagine some detection cases for kernel-
land malwares:

○ Like writting an SandMan extensions to check the
Integrity of :
 System Service Dispatch Table (SSDT)

- ZwCreateFile, NtQueryDirectoryFile, etc..

 Interrupt Descriptor Table (IDT)

- Int 3, for anti-debugging tricks.

 Global Descriptor Table (GDT)

 …

 Kernel-land malwares detection

 Like writting an SandMan extensions to check the Integrity of :

○ Import Address Table (IAT)

○ Export Address Table (EAT)

 What about inline patching?

○ A disassembling library could help to prevent from inline patching.

 There are a lot of possiblities, to identify rootkit it depends on their
behavior.

 Every running driver is mapped in the hibernation file, else it won’t be
resumed. (e.g. if a driver try to hook hibernation process)

 Forensics through hibernation

 Live memory analysis is growing interest since DFRWS 2005

○ PTFinder, MemParser, Windows Memory Forensics

Toolkit, PMODump, FATKit, Volatility, etc..

 Hibernation file exploitation is powerful because additional

information is provided. For instance, Volatility Framework can use

CR3 as well.

 Unlike these projects, it’s not mandatory to proceed to a « blind »
analysis.

 A Stand-alone graphical hibernation page explorer.

 A Win32DD-like command line to generate a dump.

 Case #1.
 How to reproduce system behavior

(segmentation, paging)
 GetVersion()

 Classical function.

Structure
NT_TIB

Structure
NT_TIB

Physical
Address
Space

Page
Table

Page
Directory

Linear
Address
Space

Global
Descriptor

Table
(GDT)

Segment
Selector

FS = 3B
Segment

descriptor
NT_TIB

..

..

..

..

Entry

..

..

..

Entry Page NT_TIB Self

Process
Environnement

Block (PEB)
NT_TIBPage Table

Page
Directory

Linear
Address
Space

NT_TIB

Self

+0x30: PEB

…

…

…

…

…

…

…

.. Page

..

..

..

OSMajorVersion

OSMinorVersion

OSBuildVersion

…

 Case #1.
 « PatchGuard » like .

 Kernel Analyze

 Current version objectives

 Interrupt Description Table (IDT)

 Global Description Table (GDT)

 System Service Descriptor Table (SSDT)

 Kernel Import Address Table (IAT)

 Kernel Export Address Table (EAT)

 Hal dispatch Table (HDT)

 Hal private dispatch table (HPDT)

 Symbols GUID dumping (can be used for an advanced version)

Context.EIP

Physical
Page

Ntoskrnl

IAT EAT

SSDT
HalDispatch

Table
HalPrivate

DispatchTable
PsInitial

SystemProcess

EPROCESS

Symbols
GUID

Unexported
symbols

Functions Variables Structures

Hibernation file header

Scanning for Ntoskrnl

DEMO !

 Read, Write and eXecution Access
 Can hold sensitive data (password and keys)

 Patching a sleeping machine.

○ Privilege escalation?

○ Target #1: EPROCESS

○ Bypass the login Prompt password?

○ Target #2: msv1_0!MsvpPasswordValidate

 Random notes:

 We can also imagine a way using Microsoft Debugging symbols to
localize unexported functions instead of using a fingerprint operation.

DEMO !

Target
Hibernation

File

SandMan
Framework

Readable
Memory

Dump

Retrieve
information

with
external

Exploit
additionnal
information

Modification

Kernel-
Analyze

Volatility

 HiberOpen() / HiberClose()

 These functions Open/Close an hibernation file and handles an object internaly called
SANDMAN_OBJECT

 HiberBuildPhysicalMemoryDump()

 This function aims at generating a full memory dump, to provide readable snapshot.

 HiberGetPhysicalMemorySize()

 This function can be used to get the target’s physical memory size.

 HiberReadFileHeader() /HiberWriteFileHeader()

 These functions stores the hibernation header into a buffer, and applies checksum header to
the target file if modified.

 HiberReadProcState() / HiberWriteProcState()

 These functions store the processor state into a buffer, and apply checksum header to the
target file if modified.

 HiberGetVersion()

 The home-made proof of concept GetVersion() that SandMan provides.

 HiberCreateTree() / HiberDestroyTree() /

HiberGetPageFirst() / HiberGetPageNext()

 These functions has been implemented to provide an efficient way to browse through
hibernated pages.

 HiberIsPagePresent()

 This function aims to return if a physical page is available or not.

 HiberGetPageAt() / HiberGetPageAtVirtualAddress()

 These functions make possible to read a page with its virtual address or physical address.

 HiberCountMemoryRanges()

 This function can be used to generate internals statistics about the number of Memory Range
Array structures.

 HiberGetPhysicalAddress()

 This function is used to translate virtual address to physical address.

 HiberPatch()

 This function has been implemented to patch a sequence of bytes inside a page.

 HiberPageReplace()

 This function replace a whole page at a specific physical address.

 HiberPageRemove()

 This function fill the target page with a 4Kb null buffer.

 Full disk encryption
 Bitlocker encrypts the full hard drive including hibernation file.

○ Disadvantages: It requires a specific hardware configuration.

 TrueCrypt Team is in touch with Microsoft since April 2008, to find a
solution to the hibernation file issue.

 TrueCrypt Disclamer

 [Update 2008-04-02: Although we have not filed any complaint with
Microsoft yet, we were contacted (on March 27) by Scott Field, a lead
Architect in the Windows Client Operating System Division at Microsoft,
who stated that he would like to investigate our requirements and look
at possible solutions. …

 TrueCrypt Disclaimer

 Disclaimer: As Microsoft does not provide any API for handling
hibernation, all non-Microsoft developers of disk encryption software are
forced to modify undocumented components of Windows in order to
allow users to encrypt hibernation files.

 Therefore, no disk encryption software (except for Microsoft's BitLocker)
can currently guarantee that hibernation files will always be encrypted.
At anytime, Microsoft can arbitrarily modify components of Windows
(using the Auto Update feature of Windows) that are not publicly
documented or accessible via a public API.

 TrueCrypt Disclaimer

 Any such change, or the use of an untypical or custom storage device
driver, may cause any non-Microsoft disk encryption software to fail to
encrypt the hibernation file. Note: We plan to file a complaint with
Microsoft (and if rejected, with the European Commission) about this
issue, also due to the fact that Microsoft's disk encryption software,
BitLocker, is not disadvantaged by this.

 Hibernation file rocks!
 It doesn’t require specific hardware like (Fireware [7], …)

 You don’t have to use liquid nitrogen within 60 seconds to get a
physical dump. [8]

 You don’t have to load an untrusted driver.

 High potential for (ab)use
 « Ultimate LiveKd »

 RootKit and Malware detection

 Live memory forensics

 Future?

 Why not a MacOS X version of SandMan?

SLIDES AND DEMOS WILL BE AVAILABLE AT:
SandMan Framework

http://sandman.msuiche.net

Uncle sam doesn’t want me drinking beers

 [1] win32dd, Matthieu Suiche
 http://win32dd.msuiche.net

 [2] Mdd, Ben Stotts, ManTech
 https://sourceforge.net/projects/mdd/

 [3] dd, George M. Garner Jr.
 http://gmgsystemsinc.com/fau/

 [4] Volatility
 https://www.volatilesystems.com/default/volatility

 [5] PTFinder, Andreas Schuster
 http://computer.forensikblog.de/en/2007/11/ptfinder_0_3_05.html

 [6] TrueCrypt and hibernation file.
 http://www.truecrypt.org/docs/hibernation-file.php

 [7] WinLockPwn, Adam Boileau
 http://storm.net.nz/projects

 [8] ColdBoot Attack
 http://citp.princeton.edu/memory/

 [9] Enter SandMan, Matthieu Suiche & Nicolas Ruff, PacSec 2007
 http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf

 [10] Physical Memory Forensics, Burdach, BH USA 2006
 http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf

http://win32dd.msuiche.net/
https://sourceforge.net/projects/mdd/
http://gmgsystemsinc.com/fau/
https://www.volatilesystems.com/default/volatility
http://computer.forensikblog.de/en/2007/11/ptfinder_0_3_05.html
http://www.truecrypt.org/docs/hibernation-file.php
http://www.truecrypt.org/docs/hibernation-file.php
http://www.truecrypt.org/docs/hibernation-file.php
http://www.truecrypt.org/docs/hibernation-file.php
http://storm.net.nz/projects
http://citp.princeton.edu/memory/
http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf
http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf
http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf
http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf
http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf

