
ModProfiler: Defending Web

Applications from 0-day Attacks
Signatures out. Traffic profiling in.

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

http://www.modsecurity.org/projects/modprofiler

About Us

Ivan Ristić and Ofer Shezaf, Breach Security

 Web application firewall experts:
 Ivan created ModSecurity, the most popular WAF on earth,

and wrote “Apache Security” by O‟reilly.

 Ofer created WebDefend, the first and most advanced
behavioral based WAF.

 Web application security leaders:
 Officers, the Web Application Security Consortium

(WASC)

 Lead OWASP chapters in London & Israel
respectively.

 Open source & community projects:
 Ivan leads the WASC Web Application

Firewall Evaluation Criteria (WAFEC) project. leader.

 Ofer leads the WASC Web Hacking
Incidents Database (WHID) project.

http://www.modsecurity.org/projects/modprofiler

Breach Security
Technology Leaders

 Breach is a leading WAF

vendor.

 Sole focus is web application

security since 1999.

 Managed by an experienced

group of security professionals.

 Best application security DNA

in the industry. We wrote the

books.

 Home to ModSecurity, the open

source WAF.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART I: THE PROBLEM DOMAIN

http://www.modsecurity.org/projects/modprofiler

Why are Web Applications

Inherently Insecure?

 Applications are vulnerable:

 Unique, each one exposing its own

vulnerabilities.

 Change frequently, requiring constant

tuning of application security.

 Complex and feature rich with the advent

of AJAX, Web Services and Web 2.0.

 Applications are threatened:
 New business models drive “for profit”

hacking.

 Performed by professionals enabling
complex attacks.

 Potential impact may be severe:
 Web applications are used for sensitive

information and important transactions.

 Attack may target site customers.

http://www.modsecurity.org/projects/modprofiler

What are we doing about it?
Web Application Security through the application lifecycle

Ensuring
code is

secure by
training

developers

Inspecting
applications for
vulnerabilities:

automated/
manual/

code review/
pen testing

Real time
protection
using Web

Applications
Firewalls
(WAFs)

• Programmers are not security experts.

For example, they do not understand

CSRF.

• Security is always a secondary goal.

• Code developed externally due to

outsourcing, M&A and packaged

software.

• Very expensive to perform

comprehensively: requires

considerable expertise and time.

• Needs to be performed on each

change in the application.

• The cheapest solution.

• Last barrier for everything that

sneaks through coding and testing.

• Can they be effective?Can WAFs be effective?

http://www.modsecurity.org/projects/modprofiler

To Be Effective, WAFs need to:

 Provide protection against all attacks, both

known and unknown.

 Be easy to use:

 Work automatically, with little or no involvement from

the user.

 Allow for manual updates as needed.

 Have a low rate of false positives.

 Be production grade.

http://www.modsecurity.org/projects/modprofiler

WAF Protection Strategies

 Negative security model: allow all, deny what's wrong

 Web specific IPS:
► Simple concept, generic to all applications and provides instant security.

► Based on rules instead of signatures: full parsing, complex logic, anti-
evasion.

 Difficult to guard against every attack variant and evasion attempts.

 Positive security model: deny all, allow what's right

 An independent input validation envelope for web applications.

 Provides the best protection.

 Hard to implement:
► Rules must be written specifically for each page in the application.

► Rules needs to be maintained as the application changes.

 Easy to write for specific vulnerabilities (virtual patching)

 Learning is needed to effectively use the positive model.

http://www.modsecurity.org/projects/modprofiler

Case study: The „1=1‟ Signature

 Classic example of an SQL injection attack

 Many IPS solutions include a signature to detect this attack.

 The tautology ensures that the injected query returns „true‟ .

 A WAF would easily overcome these evasions:

 Encoding: 1%3D1,

 Including white space characters: 1 =%091

 Adding SQL inline comments: 1 /* comment */ = 1

 But it is impossible to create a signature for every tautology:

 1+1=2, 2 > 1 and for some databases just 1 or Ivan.

 A positive security rule will provide the best security:

<LocationMatch :"/login.php$">
SecRule ARGS:username “!^\w+$” “deny,log"

>/LocationMatch>

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART II - MODSECURITY

http://www.modsecurity.org/projects/modprofiler

What is ModSecurity?

 The most popular WAF in
the world with (a lot) more
than 10,000 installations.

 An open source production
grade project started in
2002.

 An Apache module which
supports both embedded
and reverse proxy
deployments.

 Support and training by
Breach Security.

`

Web

Server

Firewall

`

Web

Server

Firewall

Proxy Mode

Embedded Mode

http://www.modsecurity.org/projects/modprofiler

Technical overview

 Rules language is not a simple custom signatures engine, but rather
an event-based scripting language targeted at inspecting HTTP
transactions.

 Supports variables, state, control structure and even full blown
scripting using LUA.

 Simple things are easy to do; complex things are possible, for
example:
 A signature for detecting a known attack vector.

 A state based rule for detecting a brute force attack (see example below)

1

2

SecAction phase:1,nolog,pass,initcol:ip=%{REMOTE_ADDR}_%{HTTP_USER-AGENT}

SecRule IP:SCORE "@ge 20" "phase:1,pass,log,setvar:ip.blocked=1,expirevar:ip.blocked=600"

SecRule IP:BLOCKED "@eq 1" "phase:1,deny,log,status:302,redirect:http://www.site.com/"

SecRule REQUEST_FILENAME "login\.jsp$"

"phase:1,pass,nolog,setvar:ip.score=+1,expirevar:ip.score=600"

Comparison

Operator
ActionState

Rate

control

http://www.modsecurity.org/projects/modprofiler

Components

 ModSecurity 2.5:

 The core rules processing engine.

 ModSecurity Core Rules:

 An open source rule set providing a generic negative

security application layer protection.

 ModSecurity Community Console:

 A free tool for aggregating events from up to 3

ModSecurity sensors.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART III – POSITIVE SECURITY USING

LEARNING

http://www.modsecurity.org/projects/modprofiler

Alternative Learning Methods

 Outbound based dynamic policy
 The original application firewalls technology.

 WAF analyzes output pages to generate rules for input pages:
► Input fields, hidden fields, links etc.

 Defunct due to Web 2.0, AJAX & Web Services.

 Crawler based learning
 Same process as dynamic policy, but built in advance.

 Somewhat better than dynamic policy as crawler can interpret
JavaScript.

 Still a problem to adjust to changes and to achieve full coverage.

 Behavioral based learning:
 Analyze inbound traffic to determine normal behavior.

 The leading method today; Used by ModProfiler.

http://www.modsecurity.org/projects/modprofiler

Behavioral Based Learning

 Monitor inbound traffic and generate a normal
behavior profile.

 Profile includes a statistical model for normal values
of the properties of the request:

 Field length, character set, expected value or type.

 Existence, order, cardinality and location of fields.

 Properties not limited to fields: can include for example
also properties of headers or uploaded files.

 Validate request according to profile:

 Each model separately.

 Anomaly scoring: aggregating multiple tests.

http://www.modsecurity.org/projects/modprofiler

Sample Profile

Site Map

Parameters

Parameter

Types

http://www.modsecurity.org/projects/modprofiler

Behavioral Analysis Challenges

 Learning period:

 Fixed length or determined by quality of sample?

 Different for each element or global?

 Protecting seldom used pages.

 Avoiding learning attacks.

 Complex applications:

 Identifying parameter: Custom separator, PATH_INFO, SOAP,
JSON or non standard.

 Dynamic URLs: Parameters as part of the URL.

 A parameter specifying the action instead of the URL.

 Anomalies vs. attacks
 O'Brien is Irish, O‟Select is not.

 Change management.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART IV - MODPROFILER

http://www.modsecurity.org/projects/modprofiler

Collecting Data

 Uses ModSecurity audit logs, which contain

complete HTTP transaction data, as source of

traffic.

 Filter out invalid traffic.

 Ignore requests singled out by signatures.

 Remove "noise" (e.g. non-200 transactions).

 Extract properties:

 User defined mapping (Dynamic URLs, custom

separators)

http://www.modsecurity.org/projects/modprofiler

Generation the Model

 Simple fixed size sample of requests used for

elements and all models.

 Generates tests for each model (length, char set,

type) for each parameters

 This matches well ModSecurity rules capabilities.

 Exported as ModSecurity rules:

 Blocking strategy set by user: Warn only, Block or Mixed

mode: block for well-learned resources, warn for all others.

 Recommended to use detection only mode initially to test

rules and apply exceptions.

http://www.modsecurity.org/projects/modprofiler

Real Wold Issues

 Handling of partial learning:
 Rules generated for URLs for which sample was too low

can be set to alert even if other rules block.

 Rules generated to alert/block on URLs and parameters
not seen during learning.

 No handling of application changes: a change may
result in a flood of events.

 Negative security should still be used:
 Filter attacks for learning.

 Provide protection during learning period and for partially
and not learned resources.

 Protection for free form text fields.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART V - CONCLUSION

http://www.modsecurity.org/projects/modprofiler

False Positives and False Negatives

 False positives (FPs):
 How many times the rule set alerted when there was no

attack?

 As attack count is low, false positives are measured by
counting total alerts.

 False negatives (FNs):
 How many attacks did the rule set miss?

 Nearly impossible to measure for a 0-day detection
system. The best way to estimate is to measure level of
protection against known exploits by running a scanner.

 FPs and FNs are a function of sample size,
protected application and sample quality.

http://www.modsecurity.org/projects/modprofiler

Future directions

 User profiling:

 Learn the behavior of each user.

 Can be used to detect fraud.

 Requires handling a huge amount of information and compensating
for a small sample per user.

 Session profiling:

 Learn the normal flow of usage in the application.

 Handle additional data formats:

 XML, JSON, URL Mapping.

 Real-time & continues operation:

 Detect change by monitoring event flood or comparing profiles over
time.

 Learning responses:

 Detecting defacement, leakage and errors.

http://www.modsecurity.org/projects/modprofiler

Questions?

Ivan Ristic, ivanr@breach.com

Ofer Shezaf, ofers@breach.com

Further information:
http://www.modsecurity.org/projects/modprofiler

mailto:ivanr@breach.com
mailto:ofers@breach.com

