
Fourteenforty Research Institute, Inc.

11

Fourteenforty Research Institute, Inc.

A Hypervisor IPS based on Hardware Assisted 

Virtualization Technology

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

Senior Research Engineer

Junichi Murakami



Fourteenforty Research Institute, Inc.

2

Presentation OutlinePresentation OutlinePresentation OutlinePresentation Outline

1. Review of subversive techniques in kernel space

2. Review of Virtualization Technology

3. Viton, Hypervisor IPS

4. Conclusion



Fourteenforty Research Institute, Inc.

3

• 1. Review of subversive techniques in kernel space



Fourteenforty Research Institute, Inc.

4

Remember Joanna's classificationRemember Joanna's classificationRemember Joanna's classificationRemember Joanna's classification

• Joanna Rutkowska proposed stealth malware taxonomy in November, 2006.
http://invisiblethings.org/papers/malware-taxonomy.pdf

• Type 0

• standalone malware, which never changes any system resources

• Type I

• changes the persistent system resources

• Type II

• changes the non-persistent system resources

• Type III

• malware runs outside the system



Fourteenforty Research Institute, Inc.

5

Type I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking Points

IDTR

MSR[176h]

SDT

(ntoskrnl.exe)

SDT Shadow

(win32k.sys)
IDT

・
・
・

・
・
・

other

interrupt

handlers

KiSystemService

Nt* APIs

Nt* APIs

(User/GDI)

SSDT

SSDT



Fourteenforty Research Institute, Inc.

6

Type I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking Points

IDTR

MSR[176h]

SDT

(ntoskrnl.exe)

SDT Shadow

(win32k.sys)
IDT

・
・
・

・
・
・

KiSystemService

Nt* APIs

Nt* APIs

(User/GDI)

SSDT

SSDT

System Registers

other

interrupt

handlers



Fourteenforty Research Institute, Inc.

7

Type I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking Points

IDTR

MSR[176h]

SDT

(ntoskrnl.exe)

SDT Shadow

(win32k.sys)
IDT

・
・
・

・
・
・

KiSystemService

Nt* APIs

Nt* APIs

(User/GDI)

SSDT

SSDT

Well known && 

persistent function pointers

other

interrupt

handlers



Fourteenforty Research Institute, Inc.

8

Type I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking PointsType I: Overview of Hooking Points

IDTR

MSR[176h]

SDT

(ntoskrnl.exe)

SDT Shadow

(win32k.sys)
IDT

・
・
・

・
・
・

KiSystemService

Nt* APIs

Nt* APIs

(User/GDI)

SSDT

SSDT

Code area, really persistent

other

interrupt

handlers



Fourteenforty Research Institute, Inc.

9

Type IType IType IType I

• It is easy to detect

• PatchGuard in Vista(x64) is a countermeasure for this type

• Many rootkit detectors have been released for this type



Fourteenforty Research Institute, Inc.

10

Type IIType IIType IIType II

• Malware changes the non-persistent system resources

• Hooking point might be modified by the regular execution path

• DKOM(Direct Kernel Object Manipulation)

– by http://www.blackhat.com/presentations/win-usa-04/bh-win-04-
butler.pdf

• KOH(Kernel Object Hooking)

– by Greg Hoglund in Jan, 2006
http://www.rootkit.com/newsread.php?newsid=501



Fourteenforty Research Institute, Inc.

11

DKOM(Direct Kernel Object Manipulation)DKOM(Direct Kernel Object Manipulation)DKOM(Direct Kernel Object Manipulation)DKOM(Direct Kernel Object Manipulation)

• Malware manipulates the process list, tokens and other kernel objects 
directly

• For example:

– Unlink target process from process list

– Add/remove priviledges to tokens

• DKOM's possibilities are limited

– Whether information hiding can be done depends on the 
implementation of process that deals with the data



Fourteenforty Research Institute, Inc.

12

KOH(Kernel Object Hooking)KOH(Kernel Object Hooking)KOH(Kernel Object Hooking)KOH(Kernel Object Hooking)

• Remember the SDT, SSDT and other well known && persistent function 
pointers?

• Do you know how many such patching points are there in kernel space?

– They might or might not be persistent

– It depends on each kernel object

• Detector has to understand all function pointers

• is_within_own_memory_range(PVOID Address) is useful, but not enough



Fourteenforty Research Institute, Inc.

13

is_within_own_memory_range(PVOID Addr)is_within_own_memory_range(PVOID Addr)is_within_own_memory_range(PVOID Addr)is_within_own_memory_range(PVOID Addr)

foo.sys

bar.sys

ntoskrnl.exe



Fourteenforty Research Institute, Inc.

14

Type IIIType IIIType IIIType III

• No malware exists in the system(guest)

• Malware (ab)uses Virtualization Technology

• SMM Rootkit and Firmware Rootkit might also fall into this category (a 
problem of taxonomy that is not important for our cause)

• BluePill

– Original BP was presented by Joanna Rutkowska in BH-US-2006.

– (Current) New BP supports both Intel VT and AMD-v technologies,
and is also capable of on the fly loading and unloading

– BP doesn't modify any system resources on the guest

• From a technical view, BP patches the guest's PTE to hide its 
loaded virtual memory from the guest

• However this doesn't really help detecting it



Fourteenforty Research Institute, Inc.

15

Type III (cont.)Type III (cont.)Type III (cont.)Type III (cont.)

• Vitriol

– Presented by Dino Dai Zovi, Black Hat US 2006

– VT-x rootkit, closed source

• VMM Rootkit Framework

– Posted by Shawn Embleton, Aug, 2007
http://www.rootkit.com/newsread.php?newsid=758

– This is really good start point for learning for how to create VMM



Fourteenforty Research Institute, Inc.

16

Case Study: Storm WormCase Study: Storm WormCase Study: Storm WormCase Study: Storm Worm

• The Storm Worm first appeared in Fall, 2006

• Some variants have rootkit functions to hide from AV products

• As of Jan 2008 we can see "Happy New Year 2008" variants

• When a user clicks onto the executable,



Fourteenforty Research Institute, Inc.

17

Storm WormStorm WormStorm WormStorm Worm

1. Executable drops the system driver (.sys), and loads it into the kernel 
using Service Control Manager (SCM)

2. Driver has two functions shown below

• Rootkit functions
Hide files, registry entries and connections using SSDT and IRP 

hooking

• Code Injection function
Inject malicious code (not DLL) into process context of
services.exe and execute it

3. Injected code starts P2P communication



Fourteenforty Research Institute, Inc.

18

Rootkit functionsRootkit functionsRootkit functionsRootkit functions

NtQueryDirectoryFile

• Storm Worm hooks three Native APIs

– NtQueryDirectoryFile, NtEnumerateKey, NtEnumerateValueKey

• API Index of SSDT is different for each NtBuildNumber

• Storm Worm has index number tables for build 2195(2k), 2600(XP) and 
3790(2k3)

IndexNumberTableOf

NtQueryDirectoryFile

SSDT

NtBuildNumber == 2600

NtBuildNumber == 2195

NtBuildNumber == 3790



Fourteenforty Research Institute, Inc.

19

Rootkit functions (cont.)Rootkit functions (cont.)Rootkit functions (cont.)Rootkit functions (cont.)

• It hooks the IRP_DEVICE_CONTROL routine by patching the TCP 
DriverObject's IRP table ("¥¥Device¥¥Tcp")

• Hide connections from netstat

But is this KOH?

YES: It modifies the IRP Table contained within the DriverObject

NO: Many people know about the existence of  IRP tables



Fourteenforty Research Institute, Inc.

20

Code injection functionCode injection functionCode injection functionCode injection function

kernel land

user land

services.exe

malcode

Executable

driver(packed)

driver

malcode

(packed)

1. CreateService()

2. StartService()

1. ZwQuerySystemInformation()

2. ZwOpenProcess()

3. ZwAllocateVirtualMemory()

4. (Copy the malcode)

5. (patch to thread object)

6. KeInitializeApc()

7. KeInsertQueueApc()



Fourteenforty Research Institute, Inc.

21

2. 2. 2. 2. Review of subversive techniques in kernel spaceReview of subversive techniques in kernel spaceReview of subversive techniques in kernel spaceReview of subversive techniques in kernel space



Fourteenforty Research Institute, Inc.

22

What we have to consider "Virtualization"What we have to consider "Virtualization"What we have to consider "Virtualization"What we have to consider "Virtualization"

• CPU Virtualization

– Some registers should be reserved for VMM and each VM.
GDTR, LDTR, IDTR, CR0-4, DR0-7, MSR, Segment Register, etc

– Exceptions

• Memory Virtualization

– should separate VMM memory space and each VM's memory space

• Device Virtualization

– Interrupt, I/O instructions, MMIO, DMA access



Fourteenforty Research Institute, Inc.

23

Virtual Address to Physical AddressVirtual Address to Physical AddressVirtual Address to Physical AddressVirtual Address to Physical Address

CR3

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1

PD PT Page

VA : 0x802398c3

11

PA : 0x00f928c3



Fourteenforty Research Institute, Inc.

24

To simplify...To simplify...To simplify...To simplify...

PAVA

PT

Guest

VA

Guest

PT
PT in VMM

Guest

PA
(Real) Host 

PA

CR3

CR3

Who translates this?

TLB



Fourteenforty Research Institute, Inc.

25

Memory virtualizationMemory virtualizationMemory virtualizationMemory virtualization

• If the processor supports EPT (Extended Page Table), this 2-stages 
translation is automatically done by the MMU

– EPT is not implemented yet

• VMM should implement this translation as software using Shadow Paging 



Fourteenforty Research Institute, Inc.

26

Shadow PagingShadow PagingShadow PagingShadow Paging

Guest

VA
Guest

PA
Guest

VMM

Host

PA

Guest

VA

Shadow Page Table

• VMM updates SPT on #PF in the guest

– and also emulates TLB flush caused by MOV to CR3 and INVLPG

TLBCR3



Fourteenforty Research Institute, Inc.

27

Intel VTIntel VTIntel VTIntel VT

• Intel VT is the Intel VT-* family's generic name

– VT-x, virtualization for x86/64

– VT-d, virtualization for device (Directed I/O)

– VT-i, virtualization for Itanium

• Key factors

– VMX mode

• VMX root-operations(ring0-3)

• VMX non-root-operations(ring0-3)

– VMCS (Virtual Machine Control Structure)

– VMX Instructions set

• VMXON, VMXOFF, VMLAUNCH, VMRESUME, VMCALL, 
VMWRITE, VMREAD, VMCLEAR, VMPTRLD, VMPTRST



Fourteenforty Research Institute, Inc.

28

How Intel VT works:How Intel VT works:How Intel VT works:How Intel VT works:

VMM

Guest

(Current) VMCS

Guest State Area

Host State Area

VM-execution control field

VM-entry control fields

VM-exit control fields

VM-exit information fields

GDTR IDTR ・・・

GDTR IDTR ・・・

Excpt

bitmap

IO

bitmap
・・・

Exit

Reason

VM-exit

VM-exit control

for MSR
・・・

Event Injection ・・・

Exit

Qualification
・・・

VM-entry

process the event



Fourteenforty Research Institute, Inc.

29

enum EXIT_REASON {enum EXIT_REASON {enum EXIT_REASON {enum EXIT_REASON {

• Specific instructions

– CPUID, INVD, INVLPG, RDTSC, RDPMC, HLT, etc.

– All VMX Instructions

• I/O Instructions

– IN, OUT, etc.

• Exceptions

• Access to CR0-CR4, DR0-DR7, MSR

• etc.

};



Fourteenforty Research Institute, Inc.

30

Steps to launch the VMM and VMSteps to launch the VMM and VMSteps to launch the VMM and VMSteps to launch the VMM and VM

• Confirm that the processor supports VMX operations

– CPUID

• Confirm that VMX operations are not disabled in the BIOS

– MSR_IA32_FEATURE_CONTROL

• Set the CR4.VMXE bit

• Allocate and Initialize VMXON region

– Write lower 32 bits value of VMX_BASIC_MSR to VMXON region

• Execute VMXON

– CR0.PE, CR0.PG, and CR4.VME must be set.



Fourteenforty Research Institute, Inc.

31

Steps to launch the VM and VMM (cont.)Steps to launch the VM and VMM (cont.)Steps to launch the VM and VMM (cont.)Steps to launch the VM and VMM (cont.)

• Allocate VMCS regions

• Execute VMPTRLD to set Current VMCS

• Initialize Current VMCS using VMREAD and VMWRITE

– VMCS contains the EP of VMM, and Guest IP after VMLAUNCH

• Execute VMLAUNCH

– Continue to execute the guest from IP is contained in VMCS

• When VM-exit occurred, IP and other registers are switched to VMM 
ones.



Fourteenforty Research Institute, Inc.

32

3. Viton, Hypervisor IPS3. Viton, Hypervisor IPS3. Viton, Hypervisor IPS3. Viton, Hypervisor IPS



Fourteenforty Research Institute, Inc.

33

VitonVitonVitonViton

• IPS, which runs outside the guest

• Just a PoC, tested on Windows XP SP2 only

• Force immutability to persistent system resources

• Observe control/system registers modification, 
and VMX instructions are raised in the guest

• Offer the extensibility for monitoring the guest activity

• It is based on BitvisorBitvisorBitvisorBitvisor



Fourteenforty Research Institute, Inc.

34

Bitvisor Bitvisor Bitvisor Bitvisor ---- http://www.securevm.orghttp://www.securevm.orghttp://www.securevm.orghttp://www.securevm.org

• The Bitvisor VMM software is developed by the Secure VM project 
centered around Tsukuba Univ. in Japan

• Features:

– Open source, BSD License

– Semi-path through model

– Type I VMM (Hypervisor model, like Xen)

– Full scratched, pure domestic production

– Support for 32/64 bits architecture in VMM 

– Support for Multi-core/processor in VMM and Guest

– Can run Windows XP/Vista as Guests without modification

– Support for PAE in the Guest

– Support for Real-mode emulation



Fourteenforty Research Institute, Inc.

35

How Bitvisor works: Launch processHow Bitvisor works: Launch processHow Bitvisor works: Launch processHow Bitvisor works: Launch process

GRUB Bitvisor

BIOS

Windows

Switch to protect-mode(enable paging),

Enter VMX-mode

Launch the VMM and VM

Bitvisor emulates real-mode operations,

return after BIOS is executed 

NTLDR



Fourteenforty Research Institute, Inc.

36

What Viton protects/detects:What Viton protects/detects:What Viton protects/detects:What Viton protects/detects:

• Instructions

– Detect and block all VMX Instructions

• Registers

– Watchdog for IDTR

– Locking the MSR[SYSTENR_EIP] 

– Locking the CR0.WP Bit

• Memory

– Protect from modification

• All code sections (R-X) in ntoskrnl.exe

• IDT

• SDT

• SDT.ST (SSDT)



Fourteenforty Research Institute, Inc.

37

How to protect the guest memory modificationHow to protect the guest memory modificationHow to protect the guest memory modificationHow to protect the guest memory modification

Host

PA

Guest

VA

SPT

• Viton clears the WR bit in a SPT entry

– If CR0.WP is set, even the kernel cannot modify the page

Page number P
W

R

U

S

P

W

T

P

C

D

ADOS R



Fourteenforty Research Institute, Inc.

38

How to recognize the guest memory layoutHow to recognize the guest memory layoutHow to recognize the guest memory layoutHow to recognize the guest memory layout

0x00000000

0x80000000

0xffffffff

Guest

IDTR

IDT

ntoskrnl.exe

N pages

"MZ"

"PE¥0¥0"

.edata

.text

...

We can implement GetNtoskrnlSymbolAddr() 

to parse the .edata section in guest VA space.



Fourteenforty Research Institute, Inc.

39

GuestGuestGuestGuest activity monitoringactivity monitoringactivity monitoringactivity monitoring

• When we use the Viton, no one can modify the kernel code,
excluding the Viton.

• Viton can monitor the guest's activity by hooking the code

1. Allocate memory for detours in the guest VA space

2. Setup the detours buffer

3. Hook the target function



Fourteenforty Research Institute, Inc.

40

How to allocate memory in guest VA spaceHow to allocate memory in guest VA spaceHow to allocate memory in guest VA spaceHow to allocate memory in guest VA space

Guest Viton

int3

push 0x1000

push 0x0

call ExAllocatePool

int 3

some function

mov edi, edi

push ebp

...
Save the original code



Fourteenforty Research Institute, Inc.

41

How to allocate memory in guest VA spaceHow to allocate memory in guest VA spaceHow to allocate memory in guest VA spaceHow to allocate memory in guest VA space

Guest Viton

int3

push 0x1000

push 0x0

call ExAllocatePool

int 3

some function
VM-exit Save the general purpose 

register's values

Add EIP(skip int3 inst.)VM-entry

VM-exit
Retrieve allocated memory 

address (EAX holds it)



Fourteenforty Research Institute, Inc.

42

How to allocate memory in guest VA spaceHow to allocate memory in guest VA spaceHow to allocate memory in guest VA spaceHow to allocate memory in guest VA space

Guest Viton

some function

mov edi, edi

push ebp

...

Restore the original code,

return to the func EP.

(Viton can control EIP/ESP)
VM-entry



Fourteenforty Research Institute, Inc.

43

How to hook the guest codeHow to hook the guest codeHow to hook the guest codeHow to hook the guest code

xor eax, eax

...

target function

detours_buf

Guest Viton

jmp detours_buf

hook_code

original code

jmp caller_func

When the target function is called,

1. jump to the detours_buf

2. Execute our hook_code

3. Execute original code which 

is overwritten by "jmp detours_buf"

4. jump to the next code 

of overwritten one



Fourteenforty Research Institute, Inc.

44

What can Viton do hooking the guest code ?What can Viton do hooking the guest code ?What can Viton do hooking the guest code ?What can Viton do hooking the guest code ?

• Viton can retrieve the guest information in hook_code

– int3 and other inst. that cause VM-exit are useful

• So, Wouldn't you hook below functions ?

– ZwCreateProcess/ZwTerminateProcess

– ZwLoadDriver

• Then, Viton understands process, driver and other guest system 
resource information.



Fourteenforty Research Institute, Inc.

45

DemoDemoDemoDemo



Fourteenforty Research Institute, Inc.

46

DemoDemoDemoDemo



Fourteenforty Research Institute, Inc.

47

DemoDemoDemoDemo



Fourteenforty Research Institute, Inc.

48

VMM

dbgsh (Bitvisor's debuging function)dbgsh (Bitvisor's debuging function)dbgsh (Bitvisor's debuging function)dbgsh (Bitvisor's debuging function)

log buffer

Guest

VMCALL

VM-exit
VM-entry

log message 

through general purpose register



Fourteenforty Research Institute, Inc.

49

DemoDemoDemoDemo

ro_list: read only list



Fourteenforty Research Institute, Inc.

50

DemoDemoDemoDemo



Fourteenforty Research Institute, Inc.

51

DemoDemoDemoDemo



Fourteenforty Research Institute, Inc.

52

DemoDemoDemoDemo



Fourteenforty Research Institute, Inc.

53

DemoDemoDemoDemo



Fourteenforty Research Institute, Inc.

54

Viton vs. Viton vs. Viton vs. Viton vs. 

• Type I

– Easy

• Type II

– DKOM: Difficult, but possible

– KOH: Difficult, we need more research, and breakthrough

• Type III

– Easy (First come, first served)



Fourteenforty Research Institute, Inc.

55

4. Conclusions4. Conclusions4. Conclusions4. Conclusions

• Virtualization Technology becomes a help to protect the kernel

• However, it is not a silver bullet

– Foundation for existing security solutions



Fourteenforty Research Institute, Inc.

5656

Thank you!

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

Senior Research Engineer

Junichi Murakami <murakami@fourteenforty.jp>


