Mobile Phone Messaging
Anti-Forensics

Presented by:
Zane Lackey (zane@isecpartners.com) Luis Miras (luis@ringzero.net)

iSEC Partners
https://www.isecpartners.com

BlackHat USA 2008
Agenda

• Introduction
• SMS Background
• Evasion Attacks
• Attacking Mobile Forensics Software
• Demo
• Tools
• Q&A
Introduction

• Why listen to this talk?
 – SMS messages are increasing being used as evidence\(^1\) in investigations:
 – Rapidly emerging field
 – Security issues largely unexplored

SMS Background
SMS Background

• SMS messages stored on SIM or phone
 – Interested in SIM

• SMS as umbrella term that can mean one of several types of messages
 – SMS
 – MMS
 – EMS
 – Others
SMS Background

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>07</td>
<td>91</td>
<td>5155551512F2</td>
<td>04</td>
<td>0B</td>
<td>81</td>
<td>5155551512F2</td>
<td>00</td>
<td>00</td>
<td>8040326195328A</td>
<td>03</td>
<td>C16010</td>
<td></td>
</tr>
</tbody>
</table>

iSEC Partners
https://www.isecpartners.com
SMS Background

01 07 91 5155551512F2 04 0B 81 5155551512F2 00 00 8040326195328A 03 C16010
SMS Background

```
01 07 91 5155551512F2 04 0B 81 5155551512F2 00 00 8040326195328A 03 C16010
```

5155551512F2
SMS Background

8040326195328A
SMS Background

01 07 91 5155551512F2 04 0B 81 5155551512F2 00 00 8040326195328A 03 C16010

C16010
Messages We’re Discussing Today

• Basic messages
 – DELIVER
 – SUBMIT

• Multimedia Messages (MMS)

• Network Originated Messages

• What we’re not covering:
 – EMS
 • Ringtones
 • Simple Pictures (backgrounds)
 – Concatenated Messages
Evasion Attacks

• Focus on ways to make forensics tools miss messages during acquisition of SIM/phone

• Why not just encrypt?
 – Attackers will likely do that too!
 – Why not hide the message as well?
 – Why not hide parts of encrypted message?

• Two methods we’ll discuss today:
 – Network originated messages
 – UCS-2 Byte Order Mark
Evasion Attacks – Network originated messages
Evasion Attacks – Network originated messages

• Messages designed to be generated from MMS proxy
 – MMS proxy controlled by network provider

• Initial research shows handsets can send these messages

• These messages can still contain a normal payload worth of data

• Tested forensics software ignores these messages
 – Either displays a blank message body or no message at all
Evasion Attacks - Encoding

- Three normal types of encoding:
 - GSM 7bit
 - ASCII 8bit
 - UCS-2 16bit
Encoding

<table>
<thead>
<tr>
<th>01</th>
<th>07</th>
<th>91</th>
<th>5155551512F2</th>
<th>04</th>
<th>0B</th>
<th>81</th>
<th>5155551512F2</th>
<th>00</th>
<th>enc</th>
<th>8040326195328A</th>
<th>len</th>
<th>payload</th>
</tr>
</thead>
</table>

iSEC Partners
https://www.isecpartners.com
Encoding – GSM 7 bit

“Hello BlackHat”
“Hello BlackHat”
Encoding – UCS2 16 bit

```
01 07 91 5155551512F2 04 0B 81 5155551512F2 00 enc 8040326195328A len payload
```

```
08
```

```
1C
```

```
00480065006C006C006F00200042006C00610063006E004800610074
```

“Hello BlackHat”
Evasion Attacks - Encoding

• UCS-2 similar to UTF-16

• UCS-2 and UTF-16 allow definition of endianness
 – Via Byte Order Mark (BOM)2

• All observed traffic follows big endianness
 – Tested forensics software assumes big endianness
 – Flipping endianness results in improperly interpreted messages

2 - http://unicode.org/faq/utf_bom.html#BOM
Attacking Forensics Software

• As with any software doing complex parsing, implementation flaws will exist

• Focus on attacking the forensics tools themselves to make them crash or execute arbitrary code when performing an acquisition of a hostile SIM/phone
Attacking Forensics Software

• **Similar to auditing for file format vulnerabilities**
 – Length fields
 – Encoding/decoding problems
 – Flags/bitmasks
 – Signed/unsigned issues

• **Messaging specific**
 – Bitmask header values
 – Length fields
 – UDH fields
Attacking Forensics Software

• Parser runtime analysis

• Many options available
 – Paimei/pydbg
 – IDA code coverage plugin
 – Custom scripts

• Using python scripts
 – Idapython
 – Immunity Debugger
Attacking Forensics Software

- **Challenges**
 - Rudimentary tools on phones
 - Fuzzing on SIM is impractical
 - Sending raw SMS data requires custom hardware/software
 - “raw socket”
 - Vendor inconsistencies
 - Data stores
 - Interfaces
 - Error detection
 - Point of failure
 - Data hiding requires manual verification
DEMO
Testing Environment
Testing Environment

ACS ACR38T ~$30 http://www.txsystems.com/acs.html
Testing Environment
Testing Environment

http://www.isecpartners.com/tools.html
Q&A

• Thanks for coming!

• We are always looking for a few good geeks!

careers@isecpartners.com
REFERENCES
Tools

- **PySIM aka PySimReader**
 - Written by Todd Whiteman: http://simreader.sourceforge.net/
 - Originally designed as a simple tool to read and write phonebook and SMS entries from a SIM card
 - We’ve added the ability to use the tool to write arbitrary raw PDU strings to a SIM card for testing
 - Also added verbose debugging output so you can see the raw PDUs that are stored on the SIM
 - Our modified code available at: http://www.isecpartners.com/tools.html
Tools

• **SMS fuzzing tools**
 – Are (unfortunately) essentially useless when doing the sort of testing discussed in this talk, due to:
 • Small capacity of SIMs (usually ~30 messages)
 • Necessity of human involvement when looking for errors
 – Early in testing we developed a basic SMS fuzzer with the Peach framework, discarded it in favor of targeted test cases with PySimReader

• **SIM writer**
 – ACS ACR38t
 – USB, PC/SC compliant, supported by everything we tried it out on
 – ~$30 @ http://www.txsystems.com/acs.html
Further Information

• **SMS Information:**

• **Prior Research:**