
Vista and ActiveX control

Prepared By: Su Yong Kim

Dong Hyun Lee

Do Hoon Lee

Abstract
This article covers security issues of ActiveX control on Windows Vista. Windows Vista

has some new security mechanisms such as the UAC (User Account Control) and

Protected Mode. Therefore, many old exploit codes for ActiveX control do not work on

Windows Vista. However, after close investigation, we recognized that only a few things

had changed. In addition, some developers are writing their ActiveX control for Windows

Vista in unsecure ways. This makes Windows Vista security mechanisms useless. In this

article, we will describe what changes have been made to ActiveX control on Windows

Vista.

Introduction
ActiveX control is executed in Internet Explorer. Therefore, ActiveX control has the same

privileges as Internet Explorer. On Windows XP, Internet Explorer is operated with the

privilege of the user who executes it. Because most XP users login with the account in

administrator group, Internet Explorer has administrator privileges. Therefore, ActiveX

control can do everything on Windows XP. It can write and read any files or registry keys.

It can execute any processes with administrator privilege. Therefore, if ActiveX control is

successfully exploited on Windows XP, malicious users can obtain administrator privilege

of the victim’s system.

On Windows Vista, Internet Explorer is run at low integrity under Protected Mode.

ActiveX control with low integrity can only read most files or registry keys, but cannot

write many sensitive data on the user’s machine. Table 1 compares things ActiveX control

can do between Windows XP and Windows Vista.

Table 1. What ActiveX control can and cannot do

Operating System

Activity
XP Vista

Writing a file/registry key with low integrity N/A Possible

Writing a file/registry key with medium

integrity and above
Possible Impossible

Executing a process with low integrity N/A possible

Executing a process with medium integrity and

above Possible

User

agreement

required

Reading a file/registry key Possible Possible

Differences of Vulnerabilities on Windows Vista
Except file/registry reading vulnerability, there are some vulnerability differences on

Windows Vista.

First, it is more difficult to install a malicious program exploiting file/registry writing

vulnerabilities on Windows Vista. File writing vulnerability can be misused to create a

malicious program under the Startup folder on Windows XP. However, file writing

vulnerability cannot be done on Windows Vista because ActiveX control doesn’t have

write permission on the Startup folder. Similarly, Registry writing vulnerability cannot be

misused to create a registry key with a malicious command executed at boot time on

Windows Vista.

Second, the process execution vulnerability caused by CreateProcess can be successfully

exploited only with user agreement on Windows Vista. Windows Vista requires a user to

agree to privilege elevation because CreateProcess usually runs a process with medium

integrity and above.

Third, Shellcodes for Buffer overflow vulnerability on Windows XP need to be modified

to work on Windows Vista because they have no write permission on most resources.

1. File/Registry Writing Vulnerability on Windows Vista

ActiveX control cannot write any files in a sensitive folder such as the Startup folder

because it has medium integrity. It is not allowed to create a malicious file in the Startup

folder by exploiting file writing vulnerability on Windows Vista. However, developers

suffer the same problems as malicious users. If ActiveX control is installed in the

“Program Files” folder, it cannot be updated without user agreement. Therefore, some

developers install ActiveX control in a low integrity folder to update it silently.

If ActiveX control is installed in a low integrity folder, malicious users can run a program

misusing file writing vulnerability. Malicious users can overwrite a sensitive file such as a

DLL file or a configuration file in a low integrity folder. Whenever the overwritten DLL file

is loaded, user-privileged malicious programs can be run at low integrity.

2. Process Execution Vulnerability on Windows Vista

Whenever privilege elevation occurs, Windows Vista requires user agreement. On

Windows Vista, CreateProcess runs processes at medium integrity and above, but

CreateProcessAsUser can run at low integrity. Therefore, process execution vulnerability

caused by CreateProcess can be successfully exploited only with user’s agreement.

However, process execution vulnerability caused by CreateProcessAsUser can be misused

without user’s agreement if CreateProcessAsUser is used in ActiveX control to run a

process at low integrity.

In conclusion, user-privileged malicious programs can be run at low integrity by

exploiting process execution vulnerability on Windows Vista.

One interesting fact is that Windows Vista requires user agreement to execute an

unsigned program. Malicious users usually execute mshta.exe with a remote hta file to

install a malicious program. While interpreting an hta file, a malicious program is created

and executed in the victim’s system. Figure 1 shows a VBScript code to execute a

malicious program.

Set shell = CreateObject(“WScript.Shell”)

Shell.Run “sweetlie.exe”

Figure 1. VBScript code to execute malicious program

As mentioned above, if sweetlie.exe doesn’t have a valid signature, Windows Vista

requires user agreement to run sweetlie.exe. Figure 2 shows the security warning window.

Figure 2. Security warning window

However, this security protection can easily be evaded. Malicious users can use a signed

program such as cmd.exe to execute a malicious program. Figure 3 shows an example

that uses cmd.exe to execute a malicious program.

Set shell = CreateObject(“WScript.Shell”)

Shell.Run “cmd.exe /c sweetlie.exe”

Figure 3. VBScript code using cmd.exe

3. Buffer Overflow Vulnerability on Vista

On Windows Vista, buffer overflow vulnerabilities are nearly the same as on Windows XP.

Buffer overflow vulnerability of ActiveX control is exploited via heap spraying method.

Heap spraying method doesn’t depend on the address of loaded DLL files. Therefore,

Address space layout randomization enabled on Windows Vista doesn’t prevent heap

spraying method from working.

However, many old exploit codes for buffer overflow vulnerabilities don’t work on

Windows Vista. Because Internet Explorer has low integrity, two rules should be followed.

If a new process needs to be executed, CreateProcessAsUserA should be used, not

CreateProcessA. If a new file needs to be created, it should be done in a folder with low

integrity.

Figure 4 shows a typical shellcode procedure for Windwos XP.

1. Find the address of kernel32.dll

2. Find the addresses of some API functions in kernel32.dll

- LoadLibraryA, CreateFileA, WriteFile, CloseHandle, CreateProcessA, ExitProcess

3. Call LoadLibraryA for wininet.dll

4. Find the addresses of some API functions in wininet.dll

- InternetOpenA, InternetOpenUrlA, InternetReadFile

5. Call InternetOpenA & InternetOpenUrlA

6. Call CreateFileA & InternetReadFile &WriteFile & CloseHandle

7. Call CreateProcessA & ExitProcess

Figure 4. Shellcode procedure for Windows XP

In figure 4, shellcode downloads a malicious file from a remote web server, and execute

it. However, On Windows Vista, CreateFileA will fail because a downloaded file cannot be

created in a folder with medium integrity. Similarly, CreateProcessA requires user

agreement to execute process.

In figure 5, shellcode was modified to work on Windows Vista

1. Find the address of kernel32.dll

2. Find the addresses of some API functions in kernel32.dll

- LoadLibraryA, CreateFileA, WriteFile, CloseHandle, ExitProcess, GetTempPathA

3. Call LoadLibraryA for wininet.dll

4. Find the addresses of some API functions in wininet.dll

- InternetOpenA, InternetOpenUrlA, InternetReadFile

5. Call InternetOpenA & InternetOpenUrlA

6. Call GetTempPathA

7. Call CreateFileA & InternetReadFile & WriteFile & CloseHandle

8. Call LoadLibraryA for advapi32.dll

9. Find the addresses of CreateProcessAsUserA in advapi32.dll

10. Call CreateProcessAsUserA & ExitProcess

Figure 5. Shellcode procedure for Windows Vista

In figure 5, GetTempPathA returns %Temp%\Low because Internet Explorer’s

environment variable is modified under protected mode. A malicious file is created

in %Temp%\Low folder with low integrity. CreateProcessAsUserA runs it at low integrity.

In figure 6, we see that CreateProcessAsUserA has one more argument, hToken, than

CreateProcessA. If hToken is set to NULL, CreateProcessAsUserA runs a process at the

same integrity as Internet Explorer.

BOOL WINAPI CreateProcessAsUserA(

 HANDLE hToken,

 LPCSTR lpApplicationName,

 LPSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES lpProcessAttributes,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCSTR lpCurrentDirectory,

 LPSTARTUPINFO lpStartupInfo,

 LPPROCESS_INFORMATION lpProcessInformation

);

Figure 6. Prototype of CreateProcessAsUserA

How to restart a malicious program
If process execution vulnerability or buffer overflow vulnerability is successfully exploited,

malicious user can execute a user-privileged malicious program at low integrity. This

program can steal most files and registry information. However, it cannot be executed

again at boot time, because medium integrity is required to register any executable file

as a startup program.

Like file/registry writing vulnerability, a malicious user can overwrite DLL files with low

integrity to restart malicious programs whenever they are loaded by another process. If

an overwritten DLL file is loaded by a higher-privileged process, privilege of malicious

program is elevated and then malicious program can be registered as a startup program.

We developed a tool to monitor a process loading DLL files with low integrity. It hooks

LoadLibraryA and LoadLibraryW API. If a loaded DLL file is low integrity, it shows integrity

level of the process and path of the DLL file.

Figure 7. Tool to detect process loading DLL file with low integrity

Privilege Elevation of ActiveX control
Until now, we have discussed ActiveX control when privilege is not elevated. If ActiveX

control with elevated privilege is vulnerable, a malicious user can obtain full control of

victim’s system. Therefore, ActiveX control with elevated privilege is more dangerous.

We classify privilege elevation of ActiveX control into two groups, explicit and implicit,

and describe details of each group.

1. Explicit Privilege Elevation of ActiveX control

Explicit privilege elevation of ActiveX control requires user agreement. In other words,

when ActiveX control needs privilege elevation, user have to click “Continue” or “Allow”

button on consent pop-ups. Figure 8 shows various types of consent pop-up.

Figure 8. Various consent pop-ups

Microsoft provides CoCreateInstanceAsAdmin for explicit privilege elevation of ActiveX

control. CoCreateInstanceAsAdmin launches ActiveX control at medium integrity and

above after user agreement.

Another method of explicit privilege elevation is executing a higher-privileged surrogate

process. User agreement is also required when ActiveX control tries to run the surrogate

process by calling ShellExecute or CreateProcess.

Even if higher-privileged ActiveX control or surrogate processes have vulnerabilities, they

cannot be exploited silently.

2. Implicit (Silent) Privilege Elevation of ActiveX control

Implicit privilege elevation allows ActiveX control to access higher-privileged resources

without user agreement. There are several methods of implicit privilege elevation.

One is using elevation policy. This is used when ActiveX control needs medium integrity

privilege. Microsoft provides the registry key for elevation policy, whose path is

"HKLM\SOFTWARE\Microsoft\Internet Explorer\Low Rights\ElevationPolicy\{GUID of

ActiveX control}\". Figure 9 shows an example of the use of elevation policy. "AppName"

and "AppPath" are for name and path of the surrogate process to be run by ActiveX

control. "Policy" should be 3 to run a process silently at medium integrity.

Figure 9. Example of use of elevation policy

Another method of privilege elevation is using a resident higher-privileged surrogate

process. When ActiveX control is installed, a higher-privileged surrogate process can be

registered as a startup program. Then, ActiveX control, by communication with the

surrogate process, is able to access higher-privileged resources without user agreement.

In other words, ActiveX control can elevate the restricted privilege by ordering the

surrogate process. Figure 10 shows this scenario.

Figure 10. Implicit privilege elevation by surrogate process

Several types of communication can be possible with this model: files, registry keys,

windows messages, named pipes, file mapping, and RPC (Remote Procedure Call). Some

practical examples are as follows.

□ Sharing files with low integrity

Pseudo Code

ActiveX

Control

…

SHGetKnownFolderPath(&path); // Get the path with low integrity

MyInstallFile(“http://webserver/module.dll”, path); // Download “module.dll” into the path

…

Surrogate

Process

…

SHGetKnownFolderPath(&path); // Get the path with low integrity

LoadLibrary(path+”module.dll”); // Load “module.dll”

…

□ Sharing registry keys with low integrity

Pseudo Code

ActiveX

Control

…

IEGetWriteableHKCU(&key); // Get the registry key with low integrity

MyWriteUpdateURL(“http://webserver”, key); // Write URL on the registry key

…

Surrogate

Process

…

IEGetWriteableHKCU(&key); // Get the registry key with low integrity

url = MyReadUpdateURL(key); // Read URL from the registry key

MyUpdate(url); // Download updated files from URL

…

□ Windows Messages

Pseudo Code

Surrogate

Process

…

ChangeWindowMessageFilter(WM_COPYDATA, MSGFLT_ADD);

/*

 Allow to receive the WM_COPYDATA message from processes with low integrity

 WM_COPYDATA message is used to transmit a string

*/

…

ActiveX

Control

…

CString str = “htt://webserver/update.inf”; // Message to send to the surrogate process

COPYDATASTRUCTURE cds;

cds.cbData = str.GetLength()+1;

cds.lpData = (LPSTR)(LPCSTR)str;

// Get the window pointer of the surrogate process

CWnd *pWnd = FindWindow([surrogate process name], NULL);

// Send message

SendMessage(pWnd->m_hWnd, WM_COPYDATA, (WPARAM)m_hWnd, (LPARAM)&cds);

…

□ Named Pipes

Pseudo Code

Surrogate

Process

…

PSECURITY_DESCRIPTOR pSD = NULL;

PACL pSacl = NULL;

BOOL fSaclPresent = FALSE;

BOOL fSaclDefaulted = FALSE;

// Create a named pipe

HANDLE hPipe = CreateNamedPipe("\\\\.\\pipe\\sharedname", ...);

// Set SECURITY DESCRIPTOR and ACL to low integrity

ConvertStringSecurityDescriptorToSecurityDescriptor("S:(ML;;NW;;;LW)", SDDL_REVISION_1,

&pSD, NULL);

GetSecurityDescriptorSacl(pSD, &fSaclPresent, &pSacl, &fSaclDefaulted);

// Set the named pipe to low integrity

SetSecurityInfo(hPipe, SE_KERNEL_OBJECT, LABEL_SECURITY_INFORMATION, NULL, NULL,

NULL, pSacl);

…

ActiveX

Control

…

DWORD dwBytesWritten;

char buffer = [MessageToSend]; // Message to send to the surrogate process

HANDLE hPipe = CreateFile("\\\\.\\pipe\\sharedname", ...); // Open a named pipe

WriteFile(hPipe, buffer, strlen(buffer), &dwBytesWritten, NULL); // Send the message

…

□ File Mapping (surrogate process first)

Pseudo Code

Surrogate

Process

…

unsigned char pszSecurity[SECURITY_DESCRIPTOR_MIN_LENGTH];

PSECURITY_DESCRIPTOR pSD = NULL;

PACL pSacl = NULL;

BOOL fSaclPresent = FALSE;

BOOL fSaclDefaulted = FALSE;

// Initialize SECURITY DESCRIPTOR & ACL

InitializeSecurityDescriptor(pszSecurity,SECURITY_DESCRIPTOR_REVISION);

SetSecurityDescriptorDacl(pszSecurity, TRUE, 0, FALSE);

// Set SECURITY DESCRIPTOR and ACL to low integrity

ConvertStringSecurityDescriptorToSecurityDescriptor("S:(ML;;NW;;;LW)", SDDL_REVISION_1,

&pSD, NULL);

GetSecurityDescriptorSacl(pSD, &fSaclPresent, &pSacl, &fSaclDefaulted);

SetSecurityDescriptorSacl(pszSecurity, TRUE, pSacl, FALSE);

// Create a memory mapped file with low integrity

CreateFileMapping(INVALID_HANDLE_VALUE, pszSecurity, PAGE_READWRITE, 0, BUF_SIZE,

"[sharedname]");

…

ActiveX

Control

…

LPCTSTR pBuf;

// Open the memmory mapped file

HANDLE hMapFile = OpenFileMapping(FILE_MAP_WRITE, FALSE, "[sharedname]");

pBuf = MapViewOfFile(hMapFile, FILE_MAP_WRITE, 0, 0, BUF_SIZE); // Get a buffer to write

strcpy(pBuf, [MessageToSend]); // Send a message

…

□ File Mapping (ActiveX control first)

Pseudo Code

ActiveX

Control

…

LPCTSTR pBuf;

/*

ActiveX control creates a memory mapped file with low integrity.

*/

// Create a memory mapped file

HANDEL hMapFile = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0,

BUF_SIZE, "[sharedname]");

pBuf = MapViewOfFile(hMapFile, FILE_MAP_WRITE, 0, 0, BUF_SIZE); // Get a buffer to write

strcpy(pBuf, [MessageToSend]); // Send a message

…

Surrogate

Process

…

LPCTSTR pBuf;

// Open the memory mapped file

HANDLE hMapFile = OpenFileMapping(FILE_MAP_READ, FALSE, "[sharedname]");

pBuf = MapViewOfFile(hMapFile, FILE_MAP_READ, 0, 0, BUF_SIZE); // Get the buffer to read

MyReadMapFile(); // Read the message

...

□ RPC (with pipe)

Pseudo Code

Surrogate

Process

…

unsigned char pszSecurity[SECURITY_DESCRIPTOR_MIN_LENGTH];

PSECURITY_DESCRIPTOR pSD = NULL;

PACL pSacl = NULL;

BOOL fSaclPresent = FALSE;

BOOL fSaclDefaulted = FALSE;

// Initialize SECURITY DESCRIPTOR & ACL

InitializeSecurityDescriptor(pszSecurity,SECURITY_DESCRIPTOR_REVISION);

SetSecurityDescriptorDacl(pszSecurity, TRUE, 0, FALSE);

// Set SECURITY DESCRIPTOR and ACL to low integrity

ConvertStringSecurityDescriptorToSecurityDescriptor("S:(ML;;NW;;;LW)", SDDL_REVISION_1,

&pSD, NULL);

GetSecurityDescriptorSacl(pSD,&fSaclPresent, &pSacl, &fSaclDefaulted);

SetSecurityDescriptorSacl(pszSecurity, TRUE, pSacl, FALSE);

// Create an RPC server with low integrity

RpcServerUseProtseqEp("ncacn_np", 20, "\\\\.\\pipe\\[sharedname]", pszSecurity);

...

ActiveX

Control

…

// Connect the RPC server

RpcStringBindingCompose(NULL, "ncacn_np", "localhost", "\\\\.\\pipe\\[sharedname]", ...);

MyCall([MessageToSend]); // Call an RPC function

...

□ RPC (with TCP)

Pseudo Code

Surrogate

Process

…

RpcServerUseProtseqEp("ncacn_ip_tcp", …, "[Port#]", NULL); // Create an RPC server

...

ActiveX

Control

…

RpcStringBindingCompose(NULL, "ncacn_ip_tcp", "[Port#]", ...); // Connect the RPC Server

MyCall([MessageToSend]); // Call an RPC function

....

Frequent consent pop-ups annoy users. For user convenience, developers want to

minimize the number of consent pop-ups. Therefore, implicit privilege elevation is

attractive because it doesn’t require consent pop-ups.

However, implicit privilege elevation of ActiveX control may cause critical security threats.

If ActiveX control with implicit privilege elevation has vulnerabilities, malicious users can

obtain high privilege silently. Therefore, the implicit privilege elevation of ActiveX control

has to be considered when ActiveX control on Windows Vista is inspected.

Conclusion
The most important change of ActiveX control on Windows Vista is that it cannot write

files or keys in most restricted folders or registry keys. This prevents a malicious program

from being executed repeatedly. However, this rule is no longer valid if some sensitive

data are stored in a low integrity folder.

Therefore, developers should not install any program files in low integrity folders. They

should not store any sensitive data in low integrity folders. In addition, they should

obtain user agreement before elevating privilege of ActiveX control.

Related to ActiveX control security, Windows Vista will be the same as Windows XP if

developers do not follow these rules.

Reference
1. Su Yong Kim, Do Hoon Lee, Sung Deok Cha, “Playing with ActiveX controls”,

CanSecWest 2007, http://cansecwest.com/csw07/csw07-suyongkim-dohoonlee.zip

2. Marc Silbey, Peter Brundrett, "Understanding and Working in Protected Mode

Internet Explorer", MSDN, Sep. 2006

3. Microsoft Corporation, "Developer Best Practices and Guidelines for Applications

in a Least Privileged Environment", Sep. 2005

4. Sharon Cohen, Rob Franco, "ActiveX Security: Improvements and Best Practices",

MSDN, Sep. 2006

5. Microsoft Corporation, “Interprocess Communications", MSDN,

http://msdn2.microsoft.com/en-us/liblary/aa365574.aspx

6. Chris Corio, “Teach Your Apps To Play Nicely With Windows Vista User Account

Control”, MSDN, http://msdn2.microsoft.com/en-us/magazine/cc163486.aspx, Jan.

2007

7. Michael Dunn, “A Developer’s Survival Guide to IE Protected Mode”,

http://www.codeproject.com/KB/vista-security/PMSurvivalGuide.aspx, May. 2007

8. Microsoft Corporation, “Designing Applications to Run at a Low Integrity Level",

MSDN, http://msdn2.microsoft.com/en-us/liblary/bb625960.aspx

9. Microsoft Corporation, “CreateProcessAsUser Function”, MSDN,

http://msdn.microsoft.com/en-us/library/ms682429(VS.85).aspx

10. Microsoft Corporation, “Introduction to the Protected Mode API”, MSDN,

http://msdn.microsoft.com/en-us/library/ms537319.aspx

11. Microsoft Corporation, “Appendix A: SDDL for Mandatory Labels”, MSDN,

http://msdn.microsoft.com/en-us/library/bb625958.aspx

