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Abstract.  Improvements in Operating Systems security have 
created a race to “bare metal” between malware and protection 
software authors.  Bare metal capabilities are defined as software 
or firmware applications that run outside the context of the OS 
and are therefore very powerful and difficult to detect.  
Hypervisors and SMM based rootkits are examples of bare metal 
capabilities.  Because the digital battle ground is contracting, 
advantage goes to the one who can establish a presence there 
first.      
 
The Unified Extensible Firmware Interface (UEFI), the emerging 
BIOS framework, implements very powerful pre-OS capabilities 
and therefore is the perfect framework to give bare metal 
capabilities the quickest possible foothold even before the OS 
bootloader is called.  This paper discusses combining hypervisor 
and UEFI technologies to effect hypervisor control of a platform 
at the earliest opportunity, during the pre-boot phase. 
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1 Introduction 
 
The efforts to lock down and harden OS kernels over the past five years 
have begun to pay dividends.  Initiatives such as Microsoft’s Trustworthy 
Computing Initiative [1] and the software security evangelizing of Michael 
Howard [2] and others has resulted in Operating Systems and applications 
that are prohibitively more difficult to exploit.  Malware and therefore 
software protection authors have shifted the focus of their efforts to bare 
metal.  Buffer overflow types of attacks are fading to the ash heap of 
exploitation history and the threat from hypervisor and SMM based rootkits 
is rising. 
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Concrete examples of the looming bare metal threats are Joanna 
Rutkowska’s Blue Pill hypervisor project, which she introduced at Black 
Hat 2006 [3], and the SMM rootkit introduced at Black Hat 2008 by Shawn 
Embleton and Sherri Sparks of Clear Hat Consulting [4].  The implication 
for system security that Blue Pill and SMM Rootkits represent is clear.  
Capabilities that run outside the context of the OS enjoy near omnipotence 
on the platform and are very difficult to detect using common methods. 
 
Virtualization is enjoying resurgence in popularity.  Interest in this not so 
new technology is being driven in part by recent innovations by Intel® and 
AMD® who have provided support for virtualization in silicon.  Intel® 
refers to their CPU based support for virtualization alternatively as 
Vanderpool, VT-x, or VMX.  AMD® refers to theirs as Pacifica or SVM.  
Prior to the introduction of VMX and SVM, semi-efficient implementations 
of virtualization such as hypervisors used a technique known as para-
virtualization.  Para-virtualization requires that the OS source code be 
modified, which in the case of Linux is not a problem.   In the absence of 
access to the OS source code, as in the case of Microsoft Windows®, 
dynamic binary translation of roughly seventeen Intel® Instruction Set 
Architecture (ISA) instructions is required.  When you consider that these 
seventeen ISA instructions require trapping and modification dynamically, 
you can understand the use of the term “semi-efficient”.  The performance 
hit associated with dynamic binary translation is significant and can be seen 
in the “lagginess” of the mouse movement when running Windows in a 
VMWare® session, but the true impact of the performance degradation is 
generalized system wide.  By providing support for virtualization in silicon, 
Intel® and AMD® have obviated the need for dynamic binary translation 
and para-virtualization, minimizing the performance hit associated with 
virtualization, and thereby stimulating renewed interest and “buzz” around 
hypervisors.  Hypervisors are the quintessential bare metal construct. 
 
UEFI is poised to replace the venerable BIOS.  Legacy BIOS is an amazing 
accomplishment in software engineering.  BIOS has lasted over 25 years 
and through that time the PC architecture has changed drastically.  
Nevertheless, BIOS engineers at many different companies and in many 
different countries have kept BIOS viable with patches and upgrades 
through the years.  However, when the 512 byte boot block was 
demonstrated to be too small for the 64-bit Itanium instructions, the death 
nil of BIOS was rung.  UEFI is the future of BIOS.  Now that Microsoft ® is 
providing support for UEFI in their Windows Vista x64 SP1, the adoption of 
UEFI will likely accelerate.   
 
The major impediment now to widespread adoption of UEFI is the paucity 
of motherboards that support it.  This technology is just now emerging on 
the PC scene, but will radically change it once the motherboard OEMs begin 
supporting it in numbers.  During our recent search for a UEFI compliant 



PC motherboard, even Intel®, AMI®, and Phoenix® had difficulty 
identifying PC motherboards that support UEFI 2.x in June 2008.  AMI® 
identified the Micro-Star International® P45 series of motherboards as 
being UEFI 2.0 compliant, and while this motherboard is available for 
purchase, MSI® won’t have the UEFI 2.0 BIOS ready for release until 
August 2008.  Phoenix® partner CalSoftLabs® identified an Intel® 
reference board by the name of MONTEVINA that supports UEFI 2.0.  
MONTEVINA, which is the code name of the Intel® fifth generation 
Centrino platform based on the Penryn 45mn processor, will be branded the 
“Centrino 2 vPro”.  The Centrino 2 vPro won’t be ready for release until 
mid-July 2008. 
 
The most intriguing aspect of UEFI, at least in the context of this thesis, is 
its rich pre-OS capabilities.  In many respects the UEFI Framework can be 
viewed as an OS in its own right.  For example, the UEFI Framework 
provides mechanisms for prioritizing execution on the CPU, mechanisms for 
managing devices (device driver loading, device I/O protocols), and 
mechanisms for managing memory.  In fact, the UEFI Framework provides 
the capability to establish network connections, provide rich graphics 
support, load drivers, and run applications before the OS bootloader is 
called.  The pre-OS capabilities of UEFI can be used to launch a hypervisor, 
establishing bare metal control of the platform at the earliest possible 
moment.  
 
 
2 Bare Metal Hypervisors 
 
Hypervisors come in two different types; Type-1 (bare metal) hypervisors 
and Type-2 (hosted) hypervisors.     
 
2.1 Types of Hypervisors Defined 
 
Type-2 (hosted) hypervisors reside on top of or along side the OS; it’s an 
application you launch from the OS.  Examples of type-2 hosted hypervisors 
are VMWare® Workstation, QEMU, Microsoft® Virtual PC, and others.  
For the purposes of this paper, we are not interested in type-2 hypervisors 
but it’s important to understand the difference between a bare metal 
hypervisor and a hosted hypervisor. 
 
Type-1 (bare metal) hypervisors run directly on the platform hardware and 
acts as an OS control program, i.e., the OS loads on top of the hypervisor 
and runs as a guest.  Type-1 bare metal hypervisors can exercise purview 
over every aspect of the platform.  The bare metal hypervisor can control the 
OS, memory, and all applications running on the platform.  It is the 
omnipresent nature of bare metal hypervisors that make them an excellent 
payload for UEFI pre-OS capabilities. 



 
2.2 x86 Architectural Challenges to Virtualization 
 
The x86 architecture is particularly difficult to virtualize.  In a classic paper 
(Popek and Goldberg 1974), which was inspired by Goldberg’s doctorate 
dissertation (1972), Popek and Goldberg formally derived the conditions 
under which an ISA can efficiently support a hypervisor [5].  According to 
the Popek and Goldberg paper there are seventeen x86 ISA instructions that 
can not be efficiently virtualized and therefore must be dealt with in 
architecting a x86 hypervisor. 
 
Per Popek and Goldberg, in order to support a Type-1 bare metal 
hypervisor, a processor must meet three virtualization requirements:  
 
1. The method of executing non-privileged instructions must be roughly 
equivalent in both privileged and user mode.  A processor must not use an 
additional bit in an instruction word or in the address portion of an 
instruction when in privileged mode.  
 
2. There must be a method such as a protection system or an address 
translation system to protect the real system and any other guest OS from 
the active guest OS.  
 
3. There must be a way to automatically signal the hypervisor when a guest 
OS attempts to execute one of the seventeen sensitive instructions.  It must 
also be possible for the hypervisor to simulate the effect of the instruction.  
Sensitive instructions include:  
 
3A. Instructions that attempt to change or reference the mode of the guest 
OS or the state of the machine.  
 
3B. Instructions that read or change sensitive registers and/or memory 
locations such as the clock register and interrupt registers.  
 
3C. Instructions that reference the storage protection system, memory 
system, or address relocation system. This class of instruction includes 
instructions that would allow the guest OS to access any location not in its 
virtual memory.  
 
3D. All I/O instructions.  
 
The seventeen sensitive instructions mentioned all violate one of the listed 
requirement 3 (3A - 3D) above.  
 
Several of the seventeen sensitive instructions violate requirement 3B 
(sensitive register instructions), namely: SGDT (Store Global Descriptor 



Table), SIDT (Store Interrupt Descriptor Table), and SLDT (Store Local 
Descriptor Table).  These instructions are normally only used by the OS but 
are NOT privileged in the Intel® Architecture.  Since Intel® processors only 
have one LDTR, IDTR and GDTR, a problem arises when multiple 
operating systems try to use the same registers.  
 
The next sensitive instruction is the SMSW (Store Machine Status Word) 
instruction.  SMSW stores the machine status word (bits 0 - 15 of CR0) into 
a general purpose register or memory location.  Bits 6 - 15 of CR0 are 
reserved and not to be modified.  However, bits 0 - 5 contain system flags 
that control the operating mode and state of the processor.  Although SMSW 
only stores the machine status word, it is sensitive and unprivileged.  You 
can see the problem if a guest OS is running in real mode within a 
hypervisor running in protected mode.  If the VM checked the MSW to see 
if it was in real mode, it would incorrectly see that it was in protected mode 
(PE bit set) and could halt or shutdown and not be able to run successfully.  
 
The next two sensitive instructions are PUSHF and POPF (and their 32-bit 
versions PUSHFD and POPFD).  The issue with these instructions is similar 
to SMSW because pushing the EFLAGS register onto the stack allows 
examination of operating mode and state.  POPF allows some of the 
EFLAGS bits to be changed. It varies based on the processor's current 
operating mode. In real-mode, or when operating at CPL 0, all non-reserved 
flags in the EFLAGS register can be modified except for the VM, VIP, and 
VIF flags.  In virtual-8086 mode, the IOPL must equal 3 to use the POPF 
instructions.  The IOPL allows an OS to set the privilege level needed to 
perform I/O.  In virtual-8086 mode, these key flags are not affected by 
POPF.  However, in protected mode, there are several conditions based on 
privilege levels.  For example, if CPL is greater than 0 and <= to the IOPL, 
all flags can be modified (except IOPL).  If POPF/POPFD is executed 
without enough privilege, an exception is NOT generated.  
 
The next set of the seventeen sensitive instructions violate requirement 3C 
above (Protection System References).  Namely, LAR (Load Access Rights 
byte), LSL (Load Segment Limit), VERR/VERW (Verify a segment for 
reading or writing).  The problem with these instructions is they all perform 
the following check during their execution (CPL -> DPL) OR (RPL -> 
DPL).  This condition checks to ensure that the current privilege level 
(located in bits 0 and 1 of the CS register and SS register) and the requested 
privilege level (bits 0 and 1 of any segment selector) are both greater than 
the descriptor privilege level (privilege level of a segment).  This is a 
problem because prior to VMX and SVM, guests didn't normally execute at 
the highest privilege level (CPL 0).  For example, in Xen, guests run at CPL 
2 (ring-2) - they only "think" they are running at CPL 0.  Therefore, if a 
guest running at CPL 2 executes any of LAR, LSL, VERR or VERW to 
examine a segment descriptor with a DPL < 3, it is likely that the instruction 



will not execute properly.  
 
POP and PUSH are also included in this category of problematic 
instructions for similar reasons.  POP cannot be used to load the CS register 
since it contains the CPL.  A value that is loaded into a segment register 
must be a valid segment selector.  The reason that POP is one of the 
problematic seventeen instructions is it depends on the value of CPL.  If the 
SS register is being loaded and the segment selector's RPL and the segment 
descriptor's DPL are not equal to the CPL, a general protection exception is 
raised.  Furthermore, if the DS, ES, FS, or GS register is being loaded, the 
segment being pointed to is a nonconforming code segment or data, and the 
RPL and CPL are > the DPL, a general protection exception is raised.  
Therefore, as in the case with LAR, LSL, VERR and VERW, if the guest is 
at CPL 3 (ring 3) and did a privilege level check it would likely fail because 
it thinks it's running at CPL 0.  If a process that thinks it's running at CPL 0 
pushes CS onto the stack and checks it's CPL it will see that it's running at 
CPL 3 and may crash.  
 
The next set of problematic instructions is CALL, JMP, INT n, and RETS  
CALL saves procedure linking information on the stack and branches to the 
procedure given in its destination argument.  Naturally there are four types 
of calls (near, far calls to the same privilege level, far calls to a different 
privilege level, and task switches).  Task switches and far calls to different 
privilege levels are a problem for virtualization because they involve CPL, 
DPL, and RPL.  If a far call is executed to a different privilege level, the 
code segment for the procedure being accessed has to be accessed through 
the call gate.  A task uses a different stack for every privilege level.  
Therefore, when a far call is made to another privilege level, the processor 
switches to a stack corresponding to the new privilege level of the called 
procedure.  A task switch operates in a similar manner as a call gate. (The 
main difference being the target operand of the call instruction specifies the 
segment selector of a task gate instead of a call gate).  Both call gate and 
task gate have many privilege level checks to compare the CPL and RPL to 
DPLs.  Since the guest is running at CPL 2 or 3, these checks won't work 
properly with the guest OS tries to access call gates or task gates at CPL 0.  
The JMP and INT n instructions have similar problems for virtualization.  
(The INT n instruction references the protection system many times during 
it's execution).  Naturally, the RET instruction has the opposite effect as 
CALL in that it transfers control to a return address placed on the stack 
(normally by CALL).  The RET instruction can be used for three different 
types of returns: near, far, and inter-privilege-level returns.  Much like the 
CALL instruction, the inter-privilege-level far return examines the privilege 
levels and access rights of the code and stacks segments that are being 
returned to determine if the operation should be allowed.  The DS, ES, FS 
and GS segment registers are cleared by the RET instruction if they refer to 
segments that cannot be accessed by the new privilege level.  Therefore, 



RET is problematic for virtualization because a guest running at CPL 3 
could cause the DS, ES, FS and GS segment registers to not be cleared when 
they should be.  
 
The next problematic instruction of the seventeen instructions is STR (Store 
Task Register) because it references the protection system.  The STR stores 
the segment selector from the task register into a general purpose register or 
memory location.  The segment selector that is stored with this instruction 
points to the task state segment of the current executing task.  This 
instruction is problematic for virtualization because it allows a task to 
examine its requested privilege level (RPL).  
 
The last problematic instruction for virtualization is (believe it or not) MOV.  
The MOV opcode that stores segment registers allows all six of the segment 
registers to be stored to either a general purpose register or memory 
location.  This is a problem because the CS and SS registers both contain the 
CPL in bits 0 and 1.  Thus, a task could store the CS or SS in a general 
purpose register to find that it's not running at the expected CPL.  The MOV 
opcode that loads segment registers does offer some protection because it 
won't allow the CS register to be loaded at all.  However, if a task tries to 
load the SS register, several privilege level checks occur that become 
problematic for the reasons already explained.  
 
 
2.3 Vanderpool (VMX) and Pacifica (SVM) to the Rescue 
 
One approach to getting around the issues caused by the seventeen 
problematic x86 instructions is to avoid them all together by re-writing 
critical portions of the OS kernel to know when it’s running in a virtual 
machine and call out to the hypervisor when necessary.  This is a process 
known as para-virtualization.  Para-virtualization is the approach taken by 
early versions of Xen.  The major drawback with respect to para-
virtualization is it requires access to the OS kernel source code, which while 
appropriate for Linux, it takes Microsoft® Windows off the table. 
 
Without access to the OS kernel source, another approach to getting around 
the issues caused by the seventeen problematic instructions is to implement 
dynamic binary translation.  Dynamic binary translation involves trapping 
the seventeen problematic instructions and converting the source binary to a 
target binary program.  Once trapped, the seventeen problematic instructions 
are funneled through the target binary program code instead of the source 
binary.   
 
While para-virtualization and dynamic binary translation are effective 
solutions to the seventeen problematic x86 instructions, they are hardly 



efficient solutions.  The performance hit associated with para-virtualization 
and dynamic binary translation is not trivial.   
 
Recognizing the growing importance of virtualization, Intel® and AMD® 
decided to address the seventeen problematic instructions by providing 
support for virtualization in hardware (silicon) and expanded the x86 ISA by 
ten (10) instructions.  In doing so, they’ve eliminated the need for para-
virtualization and dynamic binary translation.  Hallelujah! 
 
 
2.4 Intel® VT-x (VMX) 

 
We’ll focus on Intel’s® implementation of virtualization because we’ve 
built our hypervisor around the Intel® technology and therefore we’re most 
familiar with it as opposed to AMD’s® SVM.  While there are some 
difference between VMX and SVM, the differences are minor. 
 
VT-x makes creating a hypervisor rather straight forward.  The following 
are the basic steps required to set-up a hypervisor.  First, you must make 
sure the processor is in 64-bit long mode with paging enabled.  Then: 
 
1) Check for VMX support in processor 

 
                  IF CPUID.1:ECX.VMX[5] = 1 THEN VMX is supported 

 
2) Check to see if BIOS has disabled VMX 
 
   IF IA32_FEATURE_CONTROL MSR (MSR Address 3AH) [2] = 0 
 
   THEN BIOS has disabled VMX 
 
   IF the Lock Bit (bit [0] of the same MSR is set: 
 
   IF IA32_FEATURE_CONTROL MSR (MSR Address 3AH) [0] = 1 
 
THEN the VMX bit (bit [2]) can not be set and VMX is absolutely        
disabled with no chance to enable it except via BIOS upgrade.  IF the 
lock bit is cleared, then the VMX bit can be set via software.  
                                            
3) Enable VMX 
 
   SET CR4.VMXE[13] = 1  
 
4) Create and populate the Virtual Machine Control Structure (VMCS) 
 
5) Call VMPTRLD to make the VMCS active 



 
6) Call VMXON to launch the hypervisor 

 
The ten (10) VMX instructions added by Intel® to the IA32 ISA are: 
 

VMXON / VMXOFF Enable / Disable VMX Operation 
VMCLEAR Initialize VMCS Region 
VMPTRLD / VMPTRST Load / Store Current VMCS Pointer 
VMREAD / VMWRITE Read / Write VMCS Values 
VMLAUNCH / VMRESUME Launch or Resume Guest OS 
VMCALL Call from Guest OS into hypervisor 

 
When VMX is enabled, the CPU runs in one of two modes: 
 
VMX Root (fully privileged ring-0) 
VMX non-Root (partially privileged ring-0) 
 
The hypervisor runs in VMX root mode, while the guest OS runs in VMX 
non-root mode.  A VMEXIT, which is a transition from VMX non-root 
guest OS mode to the hypervisor, can be caused by a number of events and 
conditions.  There are specific and special I/O requests and other events that 
must be handled by the hypervisor, after which a transfer back to VMX non-
root (guest OS) can be made. 
 
A goal we held during the construction of our hypervisor was to keep it as 
small and lightweight as possible.  We firmly believe that a smaller code 
base is easier to maintain and secure.  We are looking to eventually store our 
hypervisor in Flash on the motherboard and size does matter in that 
deployment scenario. 
 
VMX makes the construction and management of hypervisors accessible.  
Hypervisors are a very powerful because they provide an omnipresent 
purview over the platform.  Because of the power of hypervisors and 
because VT-x has made creating them so accessible, there is an imperative 
in making sure your hypervisor gets loaded first in order to control or block 
other bare metal constructs that try to install after yours.  There is 
tremendous value in getting there first.  This is where UEFI and its pre-OS 
capabilities come in to the picture. 
 
3 Unified Extensible Firmware Interface (UEFI) 
 
UEFI is a bootloader and runtime interface between the platform firmware 
and the OS.  UEFI is poised to replace the venerable BIOS we come to love 
and revile all these years.  As 64-bit OSes begin to dominate the landscape, 
UEFI will emerge as the dominant supporting BIOS.  Commodity PC 
motherboards are just now showing up in the marketplace and Microsoft® is 



supporting UEFI 2.0 in Windows Vista x64 SP1.  We are truly on the cusp 
of the advent of UEFI and all the power and utility it brings. 
 
3.1 UEFI - A Programmer’s Overview 

 
UEFI describes a programmatic interface between the platform firmware 
and the OS.  Two of the most outstanding aspects of UEFI are:  
 
1) Its well defined set of interfaces that is highly flexible and scalable, 

which encourages innovation and creativity  
2) Its rich and extensive pre-boot environment, which enables among other 

things pre-boot networking and pre-boot graphics support.  We will use 
this pre-boot environment  

 
A welcome aspect of UEFI is its high level language programming 
environment.  Developing UEFI capabilities is very much a C-language type 
development activity.  We use the TianoCore® SDK and our old linker and 
compiler friend, the Intel® Server2003 DDK to link and compile our UEFI 
components.  As an example of the high level language nature of UEFI 
code, the following code example is from the TianoCore® SDK:  
   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/*++ 
 

Copyright (c) 1998 Intel Corporation 
 
Module Name: 
 
    rtdriver.c 
     
Abstract: 
 
    Test runtime driver 
 
Revision History 
 
--*/ 
 
#include "efi.h" 
#include "efilib.h" 
 
EFI_STATUS 
TestRtUnload ( 
    IN EFI_HANDLE       ImageHandle 
    ); 
 
CHAR16  *RtTestString1 = L"This is string #1"; 
CHAR16  *RtTestString2 = L"This is string #2"; 
CHAR16  *RtTestString3 = L"This is string #3"; 
EFI_GUID RtTestDriverId = { 0xcc2ac9d1, 0x14a9, 
0x11d3, 0x8e, 0x77, 0x0, 0xa0, 0xc9, 0x69, 0x72, 
0x3b }; 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EFI_STATUS 
InitializeTestRtDriver ( 
    IN EFI_HANDLE           ImageHandle, 
    IN EFI_SYSTEM_TABLE     *SystemTable 
    ) 
{ 
    EFI_LOADED_IMAGE        *Image; 
    EFI_STATUS              Status; 
 
    // Initialize the Library. 
    
    InitializeLib (ImageHandle, SystemTable); 
    Print(L"Test RtDriver loaded\n"); 
     
    // Add an unload handler 
     
    Status = BS->HandleProtocol (ImageHandle, 
&LoadedImageProtocol, (VOID*)&Image); 
    ASSERT (!EFI_ERROR(Status)); 
    Image->Unload = TestRtUnload; 
 
    // Add a protocol so someone can locate us 
    
    Status = LibInstallProtocolInterfaces 
(&ImageHandle, &RtTestDriverId, NULL, NULL); 
    ASSERT (!EFI_ERROR(Status)); 
 

// Modify one pointer to verify fixups don't       
// reset it 

     
    Print(L"Address of RtTestString3 is %x\n", 
RtTestString3); 
    Print(L"Address of RtTestString3 pointer is 
%x\n", &RtTestString3); 
    RtTestString3 = RtTestString2; 
    return EFI_SUCCESS; 
} 
 
EFI_STATUS 
TestRtUnload ( 
    IN EFI_HANDLE       ImageHandle 
    ) 
{ 
    DEBUG ((D_INIT, "Test RtDriver unload being 
requested\n")); 
    LibUninstallProtocolInterfaces (ImageHandle, 
&RtTestDriverId, NULL, NULL); 
    return EFI_SUCCESS; 

} 

 
                Fig. 1 – UEFI BIOS Code Example [6] 
 



 
As you can see from Fig. 1, UEFI BIOS code looks very much like C-language 
device driver code.  Gone are the days of 16-bit assembly language BIOS 
patching and coding.  UEFI makes BIOS code writing accessible to a broader 
range of programmers, encouraging innovation and creativity. 
 
The code example in Fig. 1 highlights a few important aspects of UEFI; the 
first we want to point out is the UEFI Systems Table. 
 
The UEFI Systems Table is the most important data structure in UEFI [7].  
A pointer to the UEFI Systems Table is passed into each driver and 
application as part of its entry point.  From the UEFI Systems Table, an 
UEFI executable image can access important UEFI services, which include: 
 
1) Protocol Services 
2) UEFI Runtime Services (we’re particularly interested in Runtime  

Services as part of this thesis) 
3) UEFI Boot Services 

                               
A UEFI Protocol is a block of function pointers and data structures.  The 
UEFI specification defines a number of protocols, but developers can extend 
functionality by defining their own protocols.  There are a number of 
protocols defined in the UEFI SDK that extend capabilities and are not 
defined by the UEFI specification [8].  One example of a TianoCore® 
protocol that extends the specification is the pppd protocol.  The UEFI pppd 
protocol is UEFI Point-to-Point Protocol Daemon that provides a standard 
way to establish network connectivity over serial.  The point is that via 
UEFI protocols, individual developers can easily add their own UEFI 
capabilities by writing their own UEFI protocols.     
 
The Boot Services and Runtime Services are accessed via a UEFI Boot 
Services Table and UEFI Runtime Services Table, which are both data 
fields in the UEFI Systems Table. 
 
UEFI images contain the old familiar PE/COFF header that defines the 
format of the executable code.  The header defines the processor type (IA-
32, Itanium®, or the processor neutral type UEFI Byte Code).  The header 
also defines the image type: 
 
1) UEFI Application 
2) UEFI Boot Services Drivers 
3) UEFI Runtime Drivers 

 
UEFI Applications and UEFI Boot Services Drivers run in the pre-OS 
environment of UEFI, that is, they run before the OS bootloader is called.  It 
is quite possible to establish network connectivity, run all manner of 



applications, and invoke rich graphics support, etc. all before the OS is 
called. 
 
However, the memory allocated by UEFI Applications is reclaimed when 
the UEFI application exits.  In the case of a UEFI Boot Services Driver the 
memory allocated is reclaimed when the OS bootloader calls 
ExitBootServices().  UEFI applications and Boot Services do not persist 
beyond the boot phase; they are not available once the OS loads. 
 
Of these three image types, only the UEFI Runtime Driver image ensures 
that its memory and state persist beyond the bootloader phase, i.e. the driver 
functionality remains available during the lifetime of the OS instance.  UEFI 
Runtime drivers are loaded in memory marked as EfiRuntimeServicesCode, 
and their data structures are reserved as EfiRuntimeServicesData.  These 
types of memory are not reclaimed and preserved after the 
ExitBootServices() is called.  UEFI Runtime Drivers coexist with and can be 
invoked by a UEFI-aware OS.  It is this characteristic of the UEFI Runtime 
Driver that makes it well suited to the construction of a UEFI Hypervisor. 
 
4 Summary 

 
The race to bare metal is on!  Bare metal capabilities are stealthy, powerful 
and growing in numbers.  We’ve focused on the hypervisor as our bare 
metal capability of choice, but there are others such as SMM rootkits; others 
will surely come.  There is tremendous advantage in getting your bare metal 
capability on the platform first because you can control everything that 
comes afterward.  UEFI provides the opportunity to get your bare metal 
capability on platform first, even before the OS bootloader is called. 
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