
IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

The Art of Unpacking

Mark Vincent Yason
Malcode Analyst
X-Force Research & Development

Revision 4.0

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

The Art Of Unpacking

Packers are one of the most interesting puzzles to
solve in the Reverse Engineering field

Packers are created to protect legitimate applications,
but they are also used by malcode

Overtime, new anti-reversing techniques are
integrated into packers

Meanwhile, researchers on the other side of the fence
find ways to break/bypass these protections… it is a
mind game

Anti-reversing techniques are also interesting because
a lot of knowledge about Windows internals are
gained

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

The Art Of Unpacking

This talk focuses on commonly used and interesting
anti-reversing techniques employed by packers

Also discusses ways on how to bypass/disable anti-
reversing techniques/tricks

This talk aims to share information to researchers,
reversers and malcode analysts

Information presented can be used in identifying and
solving anti-reversing tricks employed packed
malicious code

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Reversing Topics

Debugger Detection

Breakpoint and Patching Detection

Anti-Analysis

Advanced and Other Techniques

Tools

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

The Art Of Unpacking

Debugger Detection

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > PEB.BeingDebugged Flag

Most basic (and obvious) debugger detection
technique

PEB.BeingDebugged flag is 1 if process is being
debugged, 0 if not

fs:[0x30] points to the PEB

kernel32!IsDebuggerPresent() checks this flag

Packers may obfuscate the check since it is very
obvious

lkd> dt _PEB
 +0x000 InheritedAddressSpace : UChar

 +0x001 ReadImageFileExecOptions : UChar

 +0x002 BeingDebugged : UChar
 :::

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > PEB.BeingDebugged Flag

Example: Using IsDebuggerPresent() and directly
checking PEB.BeingDebugged

Solution:

– Easily bypassed by patching PEB.BeingDebugged flag with 0

– Ollyscript “dbh” command patches this flag

– Olly Advanced also has an option to patch this flag

 ; call kernel32!IsDebuggerPresent()
 call [IsDebuggerPresent]
 test eax,eax
 jnz .debugger_found

 ; check PEB.BeingDebugged directly
 mov eax,dword [fs:0x30] ;EAX = TEB.ProcessEnvironmentBlock
 movzx eax,byte [eax+0x02] ;AL = PEB.BeingDebugged
 test eax,eax
 jnz .debugger_found

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > PEB.NtGlobalFlag, Heap Flags

PEB.NtGlobalFlag == 0x0 if process is not debugged
(by default), usually 0x70 if debugged

The following flags are set if process is being
debugged:

– FLG_HEAP_ENABLE_TAIL_CHECK (0x10)

– FLG_HEAP_ENABLE_FREE_CHECK (0x20)

– FLG_HEAP_VALIDATE_PARAMETERS (0x40)

These flags can overridden via registry setting or
gflags.exe

lkd> dt _PEB
 :::
 +0x068 NtGlobalFlag : Uint4B
 :::

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > PEB.NtGlobalFlag, Heap Flags

Because PEB.NtGlobalFlags are set, Heap Flags will
also be set

PEB.ProcessHeap.Flags ==0x2 (HEAP_GROWABLE) if
process is not debugged, usually 0x50000062 if
debugged (depending on NtGlobalFlags)

– HEAP_TAIL_CHECKING_ENABLED (0x20)

– HEAP_FREE_CHECKING_ENABLED (0x40)

PEB.ProcessHeap.ForceFlags == 0x0 if process is not
debugged, usually, 0x40000060 if debugged (Flags &
0x6001007D)

lkd> dt _HEAP
 :::
 +0x00c Flags : Uint4B
 +0x010 ForceFlags : Uint4B
 :::

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > PEB.NtGlobalFlag, Heap Flags

Solution:

– Patch PEB.NtGlobalFlag, PEB.ProcessHeap Flags

– Olly Advanced plug-in or Ollyscript:

 var peb
 var patch_addr
 var process_heap

 //retrieve PEB via a hardcoded TEB address (first thread:
0x7ffde000)
 mov peb,[7ffde000+30]

 //patch PEB.NtGlobalFlag
 lea patch_addr,[peb+68]
 mov [patch_addr],0

 //patch PEB.ProcessHeap.Flags/ForceFlags
 mov process_heap,[peb+18]
 lea patch_addr,[process_heap+0c]
 mov [patch_addr],2
 lea patch_addr,[process_heap+10]
 mov [patch_addr],0

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > DebugPort

EPROCESS.DebugPort == 0 if process is not being
debugged, otherwise it contains a non-zero value

ntdll!NtQueryInformationProcess (ProcessDebugPort)
queries the DebugPort field

– returns 0xFFFFFFFF if DebugPort is non-zero, otherwise
returns 0

kernel32!CheckRemoteDebuggerPresent() uses
ntdll!NtQueryInformationProcess () to check if the
process is being debugged

BOOL CheckRemoteDebuggerPresent(
 HANDLE hProcess,
 PBOOL pbDebuggerPresent
)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > DebugPort

Solution: Manipulating return value of
NtQueryInformationProcess (ollyscript sample)

 // set a breakpoint handler
 eob bp_handler_NtQueryInformationProcess
 // set a breakpoint where NtQueryInformationProcess returns
 gpa "NtQueryInformationProcess", "ntdll.dll"
 find $RESULT, #C21400# //retn 14
 mov bp_NtQueryInformationProcess,$RESULT
 bphws bp_NtQueryInformationProcess,"x"
 run

bp_handler_NtQueryInformationProcess:
 //ProcessInformationClass == ProcessDebugPort?
 cmp [esp+8], 7
 jne bp_handler_NtQueryInformationProcess_continue
 //patch ProcessInformation to 0
 mov patch_addr, [esp+c]
 mov [patch_addr], 0
 //clear breakpoint
 bphwc bp_NtQueryInformationProcess

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Debugger Interrupts

Single-Step/Breakpoint exception generated by
INT1/INT3 is not passed to the exception handler (by
default) if process is debugged since they are
typically handled by the debugger

If after INT1/INT3 the exception handler is not
invoked, it means process is being debugged

Flags can be set inside the exception handler to mark
that it had been executed

Some packers use kernel32!DebugBreak() since it
invokes INT3

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Debugger Interrupts

What is a CONTEXT:

– Contains the current state of the thread

– Retrieved via GetThreadContext()

– Also passed to the exception handler via ContextRecord
parameter (esp+0xc), contains the state of the thread when
the exception occurred

lkd> dt _CONTEXT
 +0x000 ContextFlags : Uint4B
 +0x004 Dr0 : Uint4B
 :::
 +0x018 Dr7 : Uint4B
 :::
 +0x08c SegGs : Uint4B
 +0x090 SegFs : Uint4B
 :::
 +0x0b0 Eax : Uint4B
 +0x0b4 Ebp : Uint4B
 +0x0b8 Eip : Uint4B

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Debugger Interrupts

Example: Set a Flag (EAX) in the exception handler

 ;set exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp
 ;reset flag (EAX) invoke int3
 xor eax,eax
 int3
 ;restore exception handler
 pop dword [fs:0]
 add esp,4
 ;check if the flag had been set
 test eax,eax
 je .debugger_found
 :::

.exception_handler:
 ;EAX = ContextRecord
 mov eax,[esp+0xc]
 ; set flag (ContextRecord.EAX)
 mov dword [eax+0xb0],0xffffffff
 ;set ContextRecord.EIP
 inc dword [eax+0xb8]
 xor eax,eax
 retn

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Debugger Interrupts

Solution: In OllyDbg, allow single-step/breakpoint
exceptions to be passed to the exception handler via
Shift+F7/F8/F9

The exception handler address can be located via
View->SEH Chain

Another solution is to automatically pass single-
step/breakpoint exceptions to the exception handler
via configuration: Debugging Options->Exceptions

(Demo)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Timing Checks

Several CPU cycles are spent by debugger event
handing code, reverser stepping thru instructions
(and thinking)

Packers check the time spent between instructions, if
time spent passed a specific threshold, process is
probably being debugged

Packers use the following for time measurements:

– RDTSC instruction (Read Time-Stamp Counter)

– kernel32!GetTickCount()

– TickCountLow and TickCountMultiplier in SharedUserData

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Timing Checks

Example: Using RDTSC to check time spent

 rdtsc
 mov ecx,eax
 mov ebx,edx
 ;... more instructions
 nop
 push eax
 pop eax
 nop
 ;... more instructions
 ;compute delta between RDTSC instructions
 rdtsc

 ;Check high order bits
 cmp edx,ebx
 ja .debugger_found
 ;Check low order bits
 sub eax,ecx
 cmp eax,0x200
 ja .debugger_found

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Timing Checks

Solutions:

– Avoid stepping thru unimportant code containing timing
checks, just set a breakpoint and perform a run

– Set a breakpoint in GetTickCount()

– Olly Advanced has a another solution against the RDTSC
check:

Set Time Stamp Disable Bit (TSD) in CR4. Once set, if
RDTSC is executed in privilege level != 0, a General
Protection (GP) exception is triggered

Interrupt Descriptor Table (IDT) is set up to handle GP. If
GP is because of an RDTSC instruction, increment the
returned timestamp value from the previous call by 1

– Note that the last solution may cause system instability

(Demo)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > SeDebugPrivilege

SeDebugPrivilege is disabled on a process access
token by default

OllyDbg/WinDbg enables the SeDebugPrivilege
privilege in their access token

The debugged process will inherit the access token of
the debugger, including SeDebugPrivilege

Note that SeDebugPrivilege is only granted for
administrators by default

Packers indirectly check if SeDebugPrivilege is
enabled by attempting to open the CSRSS.EXE
process - CSRSS.EXE is only accessible to SYSTEM,
SeDebugPrivilege overrides the security descriptor

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > SeDebugPrivilege

Example: Attempt to open the CSRSS.EXE process

Solution: Patch ntdll!NtOpenProcess() to return
0xC0000022 (STATUS_ACCESS_DENIED) if passed
PID is for CSRSS.EXE

 ;query for the PID of CSRSS.EXE
 call [CsrGetProcessId]

 ;try to open the CSRSS.EXE process
 push eax
 push FALSE
 push PROCESS_QUERY_INFORMATION
 call [OpenProcess]

 ;if OpenProcess() was successful,
 ; process is probably being debugged
 test eax,eax
 jnz .debugger_found

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Parent Process

Packers checks if the parent process of the current
process is not explorer.exe, if not, process is probably
being debugged

Implementation involves:

– Retrieve the current process’ PID via TEB.ClientId (fs:[20])
or via kernel32!GetCurrentProcessId()

– Enumerate process:

Find PID of explorer.exe

Find Parent process PID of current process

– Check if Parent Process PID != PID of explorer.exe

Solution: kernel32!Process32NextW() can be patched
to always return 0x0 – packers may choose to skip
the check

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > DebugObject

Involves checking if a debugging session is active by
checking if the number of objects of type
DebugObject is not 0

A DebugObject is created for every debugging session

DebugObject can be queried via
ntdll!NtQueryObject(ObjectAllTypeInformation)

– Returns the following structure:

– OBJECT_TYPE_INFORMATION structure:

typedef struct _OBJECT_ALL_INFORMATION {
 ULONG NumberOfObjectsTypes;
 OBJECT_TYPE_INFORMATION ObjectTypeInformation[1];
}

typedef struct _OBJECT_TYPE_INFORMATION {
 [00] UNICODE_STRING TypeName;
 [08] ULONG TotalNumberOfHandles;
 [0C] ULONG TotalNumberOfObjects;

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > DebugObject

Solutions:

– Returned OBJECT_ALL_INFORMATION.NumberOfObjectTypes
can be manipulated to 0

– Olly Advanced injects code into NtQueryObject to zero out
the entire returned OBJECT_ALL_INFORMATION buffer

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Debugger Window

Packers also identify if a debugger is running by
checking for existence of debugger windows

Debugger windows has predefined class names:
– OLLYDBG for OllyDbg

– WinDbgFrameClass for WinDbg

Use FindWindow() / FindWindowEx() to check for
existence of debugger windows

Solution: Set a breakpoint on FindWindow(), then,
manipulate lpClassName param or return value

 push NULL
 push .szWindowClassOllyDbg
 call [FindWindowA]
 test eax,eax
 jnz .debugger_found

.szWindowClassOllyDbg db "OLLYDBG",0

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Debugger Process

Packers also identify if a debugger is active via
debugger process

Just involves enumerating all process and check if
PROCESSENTRY32.szExeFile is a debugger EXE name:

– OLLYDBG.EXE

– windbg.exe, etc.

Some packers read the process memory and look for
debugger-related strings (eg: “OLLYDBG”)

Solution: Patch kernel32!Process32NextW() to always
fail to prevent process enumeration

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > Device Drivers

Classic technique for detecting kernel mode
debuggers

Fairly simple, involves invoking
kernel32!CreateFileA() against well-known device
names used by kernel mode debuggers

Technique is also used to detect existence of system
monitors (FileMon, RegMon)

Solution: Set a breakpoint
in kernel32!CreateFileW(),
then manipulate the return
value to INVALID_HANDLE_
VALUE

 push NULL
 push 0
 push OPEN_EXISTING
 push NULL
 push FILE_SHARE_READ
 push GENERIC_READ
 push .szDeviceNameNtice
 call [CreateFileA]
 cmp eax,INVALID_HANDLE_VALUE
 jne .debugger_found

.szDeviceNameNtice db "\\.\NTICE",0

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > OllyDbg: Guard Pages

Specific to OllyDbg

OllyDbg has a on-access/write memory breakpoint
feature which is separate from hardware breakpoints

Feature is implemented via Guard Pages

Guard Pages provides a way for applications to be
notified if a memory access/write on specific pages
occurred

Guard Pages are set via PAGE_GUARD page
protection modifier and triggers
STATUS_GUARD_PAGE_VIOLATION (0x80000001)
exception if accessed

If process is being debugged in OllyDbg, the
exception handler will not be called

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > OllyDbg: Guard Pages

Example: Setting up and triggering a
STATUS_GUARD_PAGE VIOLATION

 ; set up exception handler
 :::
 ; allocate memory
 push PAGE_READWRITE
 push MEM_COMMIT
 push 0x1000
 push NULL
 call [VirtualAlloc]
 test eax,eax
 jz .failed
 mov [.pAllocatedMem],eax
 ; store a RETN
 mov byte [eax],0xC3
 ; then set the PAGE_GUARD attrib of page
 lea eax,[.dwOldProtect]
 push eax
 push PAGE_EXECUTE_READ | PAGE_GUARD
 push 0x1000
 push dword [.pAllocatedMem]
 call [VirtualProtect]

 ; set marker (EAX) as 0
 xor eax,eax
 ; trigger STATUS_GUARD_PAGE_VIOLATION
 ; exception
 call [.pAllocatedMem]
 ; check if marker had not been changed
 test eax,eax
 je .debugger_found
 :::
.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]
 ;set marker (CONTEXT.EAX) to
 mov dword [eax+0xb0],0xffffffff
 xor eax,eax
 retn

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Detection > OllyDbg: Guard Pages

Solution: Deliberately trigger an exception so that the
exception handler will be called

– In the last example, perform a INT3, then a RETN

If the exception handler checks the exception code,
reverser needs to set a breakpoint in the exception
handler, then change ExceptionRecord.ExceptionCode
to STATUS_PAGE_GUARD_VIOLATION manually

(Demo)

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

The Art Of Unpacking

Breakpoint and
Patching Detection

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Breakpoint/Patching Detection > Software Breakpoints

Software breakpoints are set by replacing the
instruction at the target address by 0xCC (INT3 /
Breakpoint interrupt)

Packers identify software breakpoints by searching for
0xCC in the unpacking stub or API code

Some packers apply operation on the compared byte
value so the check is not obvious:

Solution:
– Use hardware breakpoints

– Set a breakpoint in UNICODE versions of the API
(LoadLibraryExW instead of LoadLibraryA) or Native APIs

if(byte XOR 0x55 == 0x99) then breakpoint found
Where: 0x99 == 0xCC XOR 0x55

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Breakpoint/Patching Detection > Hardware Breakpoints

Hardware breakpoints are set via Debug Registers

Debug Registers:

– Dr0 – Dr3: Address of breakpoints

– Dr6 – Debug Status: Determine what breakpoint had been
triggered

– Dr7 – Debug Control: Flags to control the breakpoints such
as break on-read or on-write, etc.

Debug registers are not accessible in Ring 3

Debug registers are checked via the CONTEXT record
passed to the exception handler

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Breakpoint/Patching Detection > Hardware Breakpoints

Example: Setup exception handler and check
Context.Drx
 ; set up exception handler
 :::
 ; initialize marker
 xor eax,eax
 ; throw an exception
 mov dword [eax],0
 ; restore exception handler
 :::
 ; test if EAX was updated
 ; (breakpoint identified)
 test eax,eax
 jnz .breakpoint_found
 :::

.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]
 ;check if Debug Registers are not zero
 cmp dword [eax+0x04],0
 jne .hardware_bp_found
 cmp dword [eax+0x08],0
 jne .hardware_bp_found
 cmp dword [eax+0x0c],0
 jne .hardware_bp_found
 cmp dword [eax+0x10],0
 jne .hardware_bp_found
 jmp .exception_ret
.hardware_bp_found
 ;set Context.EAX to signal
 ; breakpoint found
 mov dword [eax+0xb0],0xffffffff
 :::

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Breakpoint/Patching Detection > Patching Detection

Identifies if part of the unpacking stub had been
modified (eg: checks are disabled by the reverser)

Detects software breakpoints as a side effect

Involves performing a checksum on a specific range
of code/data

Some use simple checksums, while other use intricate
checksum/hash algorithms

Solution:
– Avoid setting software breakpoints if checksum routines

exists

– On patched code, try setting an on-access breakpoint on the
modified code, once the breakpoint is hit, analyze the
checksum code and change the resulting checksum to the
correct value

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

The Art Of Unpacking

Anti-Analysis

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Encryption and Compression

Encryption: Packers usually encrypt both the
unpacking stub and the protected executable

Algorithms to encrypt ranges from very simple XOR
loops to complex loops the perform several
computations

Decryption loops are easy to recognize: fetch ->
compute -> store operation

Encryption algorithms and unpacking stub varies on
polymorphic packers

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Encryption and Compression

Example: Polymorphic packer decryption loop
(register swapping, garbage codes)

00476056 MOV BH,BYTE PTR DS:[EAX]
00476058 INC ESI
00476059 ADD BH,0BD
0047605C XOR BH,CL
0047605E INC ESI
0047605F DEC EDX
00476060 MOV BYTE PTR DS:[EAX],BH
00476062 CLC
00476063 SHL EDI,CL
::: More garbage code
00476079 INC EDX
0047607A DEC EDX
0047607B DEC EAX
0047607C JMP SHORT 0047607E
0047607E DEC ECX
0047607F JNZ 00476056

0040C045 MOV CH,BYTE PTR DS:[EDI]
0040C047 ADD EDX,EBX
0040C049 XOR CH,AL
0040C04B XOR CH,0D9
0040C04E CLC
0040C04F MOV BYTE PTR DS:[EDI],CH
0040C051 XCHG AH,AH
0040C053 BTR EDX,EDX
0040C056 MOVSX EBX,CL
::: More garbage code
0040C067 SAR EDX,CL
0040C06C NOP
0040C06D DEC EDI
0040C06E DEC EAX
0040C06F JMP SHORT 0040C071
0040C071 JNZ 0040C045

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Encryption and Compression

Compression: Reduce the size of the protected
executable

Obfuscation side effect because both the protected
executable code and data became compressed data

Examples:

– UPX: NRV (Not Really Vanished), LZMA

– FSG: aPLib

– Upack: LZMA

Solution:

– Determine how the decryption/decompression loop ends and
set a breakpoint

– Remember, breakpoint detection code may exist on the
decryption/decompression loop

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Garbage Code and Permutation

Garbage code: Garbage codes are effective way to
confuse a reverser

They hide the real purpose of the code

Adds effectiveness to other anti-reversing techniques
by hiding them

Effective garbage code are those that look like
legitimate/working code

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Garbage Code and Permutation

Example

– Garbage operations

– JMPs

0044A21A JMP SHORT sample.0044A21F
0044A21C XOR DWORD PTR SS:[EBP],6E4858D
0044A223 INT 23
0044A225 MOV ESI,DWORD PTR SS:[ESP]
0044A228 MOV EBX,2C322FF0
0044A22D LEA EAX,DWORD PTR SS:[EBP+6EE5B321]
0044A233 LEA ECX,DWORD PTR DS:[ESI+543D583E]
0044A239 ADD EBP,742C0F15
0044A23F ADD DWORD PTR DS:[ESI],3CB3AA25
0044A245 XOR EDI,7DAC77F3
0044A24B CMP EAX,ECX
0044A24D MOV EAX,5ACAC514
0044A252 JMP SHORT sample.0044A257
0044A254 XOR DWORD PTR SS:[EBP],AAE47425
0044A25B PUSH ES
0044A25C ADD EBP,5BAC5C22
0044A262 ADC ECX,3D71198C
0044A268 SUB ESI,-4
::: more garbage code:::
0044A280 XOR DWORD PTR DS:[ESI],33B568E3
0044A286 LEA EBX,DWORD PTR DS:[EDI+57DEFEE2]
0044A28C DEC EDI
0044A28D SUB EBX,7ECDAE21
0044A293 MOV EDI,185C5C6C
0044A298 MOV EAX,4713E635
0044A29D MOV EAX,4
0044A2A2 ADD ESI,EAX
0044A2A4 MOV ECX,1010272F
0044A2A9 MOV ECX,7A49B614
0044A2AE CMP EAX,ECX
0044A2B0 NOT DWORD PTR DS:[ESI]

0044A225 MOV ESI,DWORD PTR SS:[ESP]
0044A23F ADD DWORD PTR DS:[ESI],3CB3AA25
0044A268 SUB ESI,-4
0044A280 XOR DWORD PTR DS:[ESI],33B568E3
0044A29D MOV EAX,4
0044A2A2 ADD ESI,EAX
0044A2B0 NOT DWORD PTR DS:[ESI]

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Garbage Code and Permutation

Code Permutation: Simple instructions are
translated into more complex series of instructions

Used by more advanced packers – requires
understanding of the instructions

Simple illustration:

mov eax,ebx
test eax,eax

push ebx
pop eax
or eax,eax

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Garbage Code and Permutation

Example: Code permutation
004018A3 MOV EBX,A104B3FA
004018A8 MOV ECX,A104B412
004018AD PUSH 004018C1
004018B2 RETN
004018B3 SHR EDX,5
004018B6 ADD ESI,EDX
004018B8 JMP SHORT 004018BA
004018BA XOR EDX,EDX
004018BC MOV EAX,DWORD PTR DS:[ESI]
004018BE STC
004018BF JB SHORT 004018DE
004018C1 SUB ECX,EBX
004018C3 MOV EDX,9A01AB1F
004018C8 MOV ESI,DWORD PTR FS:[ECX]
004018CB LEA ECX,DWORD PTR DS:[EDX+FFFF7FF7]
004018D1 MOV EDX,600
004018D6 TEST ECX,2B73
004018DC JMP SHORT 004018B3
004018DE MOV ESI,EAX
004018E0 MOV EAX,A35ABDE4
004018E5 MOV ECX,FAD1203A
004018EA MOV EBX,51AD5EF2
004018EF DIV EBX
004018F1 ADD BX,44A5
004018F6 ADD ESI,EAX
004018F8 MOVZX EDI,BYTE PTR DS:[ESI]
004018FB OR EDI,EDI
004018FD JNZ SHORT 00401906

00401081 MOV EAX,DWORD PTR FS:[18]
00401087 MOV EAX,DWORD PTR DS:[EAX+30]
0040108A MOVZX EAX,BYTE PTR DS:[EAX+2]
0040108E TEST EAX,EAX
00401090 JNZ SHORT 00401099

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Garbage Code and Permutation

Solutions:

– Try using “trace markers” by setting breakpoints on mostly
used APIs by packers (eg:VirtualAlloc/LoadLibrary/
GetProcAddress/etc.), an API logger tool can be used. If
something went wrong between trace markers, then, it is
time to perform a detailed trace

– OllyDbg + VMWare is useful to save trace state so the
reverser can go back to a specific state

– On-memory access/write breakpoints on interesting
code/data are also useful

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Anti-Disassembly

Obfuscate the disassembly produced by
disassemblers/debuggers

One method involves:

– Inserting a garbage byte

– Add a conditional branch to the garbage byte

– The condition for the conditional branch will always be FALSE

The disassembler will follow and disassemble the
garbage byte and produce an incorrect output

More anti-disassembly information: Reversing:
Secrets Of Reverse Engineering (Confusing
Disassemblers) by Eldad Eilam

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Anti-Disassembly

Example:

– Debugger Detection via
PEB.BeingDebugged flag

 ;Anti-disassembly sequence #1

 push .jmp_real_01

 stc

 jnc .jmp_fake_01

 retn

.jmp_fake_01:

 db 0xff

.jmp_real_01:

 ;--------------------------

 mov eax,dword [fs:0x18]

 ;Anti-disassembly sequence #2

 push .jmp_real_02

 clc

 jc .jmp_fake_02

 retn

.jmp_fake_02:

 db 0xff

.jmp_real_02:

 ;--------------------------

 mov eax,dword [eax+0x30]
 movzx eax,byte [eax+0x02]
 test eax,eax
 jnz .debugger_found

mov eax,dword [fs:0x18]
mov eax,dword [eax+0x30]
movzx eax,byte [eax+0x02]
test eax,eax
jnz .debugger_found

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Anti-Disassembly

Example: WinDbg and OllyDbg Disasm Output
0040194a push 0x401954
0040194f stc
00401950 jnb image00400000+0x1953 (00401953)
00401952 ret
00401953 jmp dword ptr [ecx+0x18]
00401957 add [eax],al
00401959 add [eax+0x64],ch
0040195c sbb [eax],eax
0040195f clc
00401960 jb image00400000+0x1963 (00401963)
00401962 ret
00401963 dec dword ptr [ebx+0xb60f3040]
00401969 inc eax
0040196a add al,[ebp+0x310775c0]

0040194A PUSH 00401954
0040194F STC
00401950 JNB SHORT 00401953
00401952 RETN
00401953 JMP DWORD PTR DS:[ECX+18]
00401957 ADD BYTE PTR DS:[EAX],AL
00401959 ADD BYTE PTR DS:[EAX+64],CH
0040195C SBB DWORD PTR DS:[EAX],EAX
0040195F CLC
00401960 JB SHORT 00401963
00401962 RETN
00401963 DEC DWORD PTR DS:[EBX+B60F3040]
00401969 INC EAX
0040196A ADD AL,BYTE PTR SS:[EBP+310775C0]

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Anti-Analysis > Anti-Disassembly

Example cont.: IDAPro Disassembly Output

0040194A push (offset loc_401953+1)
0040194F stc
00401950 jnb short loc_401953
00401952 retn
00401953 ; --
00401953
00401953 loc_401953: ; CODE XREF: sub_401946+A
00401953 ; DATA XREF: sub_401946+4
00401953 jmp dword ptr [ecx+18h]
00401953 sub_401946 endp
00401953
00401953 ; --
00401957 db 0
00401958 db 0
00401959 db 0
0040195A db 68h ; h
0040195B dd offset unk_401964
0040195F db 0F8h ; °
00401960 db 72h ; r
00401961 db 1
00401962 db 0C3h ; +
00401963 db 0FFh
00401964 unk_401964 db 8Bh ; ï ; DATA XREF: text:0040195B
::::

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

The Art Of Unpacking

Debugger Attacks

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Misdirection/Stopping via Exceptions

Packers employ several techniques so that tracing is
not linear, and so that the code is not easily
understandable

One common technique is by throwing caught
exceptions

The exception handler will set the next EIP

Packers also uses exceptions to pause execution if
process is being debugged

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Misdirection/Stopping via Exceptions

Example: Misdirection via Exception (Demo)
 ; set up exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp
 ; throw an exception
 mov ecx,1
.loop:
 rol ecx,1
 into
 jmp .loop
 ; restore exception handler
 pop dword [fs:0]
 add esp,4
 :::
.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]
 ;set Context.EIP upon return
 add dword [eax+0xb8],2
 xor eax,eax
 retn

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Misdirection/Stopping via Exceptions

Solution: If the exception is only for transferring
execution to different parts of the code, exceptions
can be automatically passed to exception handler

The reverser can set
a breakpoint on the
exception handler,
then press Shift+
F7/F8/F9

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Blocking Input

Prevent the reverser from controlling the debugger

User32!BlockInput() block keyboard/mouse inputs

Can be effective if hidden by garbage codes

Can baffle the reverser if not identified

Example: (Demo)

Solution: Patch user32!BlockInput() to just perform a
RETN

Pressing CTRL+ALT+DELETE to manually unblock
input

 push TRUE
 call [BlockInput] ;Block input
 ; ...Unpacking code...
 push FALSE
 call [BlockInput] ;Unblock input

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > ThreadHideFromDebugger

Prevents debugging events from reaching the
debugger

Can be set by ntdll!NtSetInformationThread(
ThreadHideFromDebugger)

Internally, it sets the HideThreadFromDebugger field
of the ETHREAD kernel structure

Example: : (Demo)

Solution: Set a breakpoint on
NtSetInformationThread(), and then prevent the call
from reaching the kernel.

 push 0 ;InformationLength
 push NULL ;ThreadInformation
 push ThreadHideFromDebugger ;0x11
 push 0xfffffffe ;GetCurrentThread()
 call [NtSetInformationThread]

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Disabling Breakpoints

Hardware breakpoints are disabled via the CONTEXT
record passed to exception handlers

Software breakpoints can also be disabled by
replacing identified 0xCC (INT3s) with a
random/predefined byte, thus, also causing a
corruption

Solution:

– If hardware breakpoints are detected, use software
breakpoints, vice versa

– Also try using on access/write memory breakpoint feature of
OllyDbg

– Try setting software breakpoints inside UNICODE versions or
native APIs since they are not being checked by some
packers

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Disabling Breakpoints

Example: Clearing Dr0-Dr7 via ContextRecord

 ; set up exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp

 ; throw an exception
 xor eax,eax
 mov dword [eax],0

 ; restore exception handler
 pop dword [fs:0]
 add esp,4
 :::

.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]

 ;Clear Debug Registers:
 ; Context.Dr0-Dr3,Dr6,Dr7
 mov dword [eax+0x04],0
 mov dword [eax+0x08],0
 mov dword [eax+0x0c],0
 mov dword [eax+0x10],0
 mov dword [eax+0x14],0
 mov dword [eax+0x18],0

 ;set Context.EIP upon return
 add dword [eax+0xb8],6
 xor eax,eax
 retn

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Unhandled Exception Filter

MSDN: If an exception reached the unhandled
exception filter and that the process is being
debugged, the registered top level exception filter will
not be called

kernel32!SetUnhandledExceptionFilter() sets the top
level exception filter

Some packers manually set the exception filter by
setting kernel32!_BasepCurrentTopLevelFilter

Solution: Similar to the solution to the DebugPort
debugger detection technique – manipulate return
value of ntdll!NtQueryInformationProcess()

– UnhandledExceptionFilter calls NtQueryInformationProcess
(ProcessDebugPort) to determine if process is being
debugged

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > Unhandled Exception Filter

Example: Throw an exception and set Context.EIP on
exception filter

 ;set the exception filter
 push .exception_filter
 call [SetUnhandledExceptionFilter]
 mov [.original_filter],eax
 ;throw an exception
 xor eax,eax
 mov dword [eax],0
 ;restore exception filter
 push dword [.original_filter]
 call [SetUnhandledExceptionFilter]
 :::

.exception_filter:
 ;EAX = ExceptionInfo.ContextRecord
 mov eax,[esp+4]
 mov eax,[eax+4]
 ;set return EIP upon return
 add dword [eax+0xb8],6
 ;return EXCEPTION_CONTINUE_EXECUTION
 mov eax,0xffffffff
 retn

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Debugger Attacks > OllyDbg: OutputDebugString() Format
String Bug

Specific to OllyDbg

OllyDbg is known to be vulnerable to a format string
bug which can cause it to crash or execute arbitrary
code

Triggered by an improper string parameter passed to
kernel32!OutputDebugString()

Example:

Solution: Patch OutputDebugString() to just perform
a RETN

 push .szFormatString
 call [OutputDebugStringA]
 :::
.szFormatString db "%s%s",0

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

The Art Of Unpacking

Advanced and
Other Techniques

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > Process Injection

Process injection became
a feature of some packers

Involves selecting a host process (eg: itself,
explorer.exe, iexplore.exe), then injecting code into
the host process

A method to bypass some firewalls

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > Debugger Blocker

Introduced by the Armadillo packer

Prevents a debugger from attaching to a protected
process

Method involves a spawning and debugging a
protected process

Since the protected process is already being
debugged, another debugger can’t attach to the
process (Demo)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > TLS Callbacks

A technique for code to execute before the actual
entry point

TLS callbacks can be identified by PE file parsing tools
(eg: pedump)

TLS directory:
 StartAddressOfRawData: 00000000
 EndAddressOfRawData: 00000000

 AddressOfIndex: 004610F8

 AddressOfCallBacks: 004610FC
 SizeOfZeroFill: 00000000

 Characteristics: 00000000

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > TLS Callbacks

TLS callbacks can be traced by breaking inside
ntdll!_LdrpInitializeProcess (system breakpoint) just
before TLS callbacks are called:

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > Stolen Bytes

Prevent complete reconstruction via process dumping

Portions of the code (usually entry point) is removed
(stolen) by the packer and executed from an
allocated memory

004011CB MOV EAX,DWORD PTR FS:[0]
004011D1 PUSH EBP
004011D2 MOV EBP,ESP
004011D4 PUSH -1
004011D6 PUSH 0047401C
004011DB PUSH 0040109A
004011E0 PUSH EAX
004011E1 MOV DWORD PTR FS:[0],ESP
004011E8 SUB ESP,10
004011EB PUSH EBX
004011EC PUSH ESI
004011ED PUSH EDI

004011CB POP EBX
004011CC CMP EBX,EBX
004011CE DEC ESP
004011CF POP ES
004011D0 JECXZ SHORT 00401169
004011D2 MOV EBP,ESP
004011D4 PUSH -1
004011D6 PUSH 0047401C
004011DB PUSH 0040109A
004011E0 PUSH EAX
004011E1 MOV DWORD PTR FS:[0],ESP
004011E8 SUB ESP,10
004011EB PUSH EBX
004011EC PUSH ESI
004011ED PUSH EDI

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > API Redirection

Prevents import table rebuilding

API calls are redirected to code in allocated memory

Parts of the API code are also copied and executed
from an allocated memory, then control is transferred
in the middle of the API code in the DLL image

Example: Redirected kernel32!CopyFileA()

004056B8 JMP DWORD PTR DS:[<&KERNEL32.CopyFileA>]

004056B8 CALL 00D90000

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > API Redirection

Example Cont.: Illustration of the redirected
kernel32!CopyFileA() API

00D80003 MOV EDI,EDI
00D80005 PUSH EBP

00D80006 MOV EBP,ESP

00D80008 PUSH ECX

00D80009 PUSH ECX

00D8000A PUSH ESI
00D8000B PUSH DWORD PTR SS:[EBP+8]

00D8000E JMP SHORT 00D80013

00D80011 INT 20

00D80013 PUSH 7C830063 ;return EIP

00D80018 MOV EDI,EDI
00D8001A PUSH EBP

00D8001B MOV EBP,ESP

00D8001D PUSH ECX

00D8001E PUSH ECX

00D8001F PUSH ESI
00D80020 MOV EAX,DWORD PTR FS:[18]

00D80026 PUSH DWORD PTR SS:[EBP+8]

00D80029 LEA ESI,DWORD PTR DS:[EAX+BF8]

00D8002F LEA EAX,DWORD PTR SS:[EBP-8]

00D80032 PUSH EAX
00D80033 PUSH 7C80E2BF

00D80038 RETN

7C830053 MOV EDI,EDI
7C830055 PUSH EBP

7C830056 MOV EBP,ESP

7C830058 PUSH ECX

7C830059 PUSH ECX

7C83005A PUSH ESI
7C83005B PUSH DWORD PTR SS:[EBP+8]

7C83005E CALL kernel32.7C80E2A4

7C830063 MOV ESI,EAX

7C830065 TEST ESI,ESI

7C830067 JE SHORT kernel32.7C8300A6

Stolen instructions from kernel 32!CopyFileA

Actual kernel32!CopyFileA code

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > Multi-Threaded Packers

Complicates tracing and the difficulty of
understanding the code increases

Example: PECrypt uses a second thread to perform
decryption of a data fetched by the main thread

Thread 1

Fetch Data

Thread 2

Decrypt Data
Signal

Thread 1

Store Data
Signal

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Advanced / Other Techniques > Virtual Machines

Eventually, the protected code needs to be decrypted and
executed in memory leaving it vulnerable to process dumping
and static analysis

Modern packers solves this by transforming the protected code
into p-codes and executing them in virtual machines

Illustration:

This makes reversing more time consuming since this requires
reversing the p-code structure and translation

Example: Defeating HyperUnpackMe2 With an IDA Processor
Module, Rolf Rolles III
http://www.openrce.org/articles/full_view/28

Protected
Code

(x86)

Protected
Code

(P-code)

Convert
x86

instructions
ExecuteTranslate

Virtual

Machine

Protected Executable

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

The Art Of Unpacking

Tools

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Tools > OllyDbg, OllyScript, Olly Advanced

OllyDbg
http://www.ollydbg.de/

– Powerful Ring 3 debugger.

OllyScript
http://www.openrce.org/downloads/details/106/OllyScript

– Allows automation of setting/handling
breakpoints

– Useful in performing repetitive tasks

Olly Advanced
http://www.openrce.org/downloads/details/241/Olly_Advanced

– An armor to Ollydbg against
anti-debugging and much
more…

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force – The Art Of Unpacking

Tools > OllyDump and ImpRec

OllyDump
http://www.openrce.org/downloads/details/108/OllyDump

– OllyDbg plugin for process
dumping and import table
rebuilding

ImpRec
http://www.woodmann.com/crackz/Unpackers/Imprec16.zip

– Stand-alone tool for process
dumping and excellent import
table rebuilding capability

(Demo)

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

Questions?

Thank you!

Mark Vincent Yason
Malcode Analyst
X-Force Research & Development

