IBM Global Services

.....
.

-~
n uuuuu

Mark Vincent Yason
Malcode Analyst

X-Force Research & Development
myason@us.ibm.com

IBM Internet Security Systems
Ahead of the threat.™

© Copyright IBM Corporation 2007

Packers are one of the most interesting puzzles to
solve in the Reverse Engineering field

Packers are created to protect legitimate applications,
but they are also used by malcode

Overtime, new anti-reversing techniques are
Integrated into packers

Meanwhile, researchers on the other side of the fence
find ways to break/bypass these protections... it is a
mind game

Anti-reversing technigues are also interesting because
a lot of knowledge about Windows internals are
gained

1 el RN " A P I . I
B O A AR SR -t -—- S 41

E i |1 i e .

. 1 IBM Internet Secu [
WM (1t 1) e R = o~ — Yo

A e N e b - s o i 54 £

| N A R S AR T R D B S S E

g R TR

This talk focuses on commonly used and interesting
anti-reversing techniques employed by packers

Also discusses ways on how to bypass/disable anti-
reversing techniques/tricks

This talk aims to share information to researchers,
reversers and malcode analysts

Information presented can be used in identifying and
solving anti-reversing tricks employed packed
malicious code

IBM Internet Security Systems

Anti-Reversing Topics

= Debugger Detection

= Breakpoint and Patching Detection
Anti-Analysis

Advanced and Other Techniques
Tools

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

The Art Of Unpacking =~

Debugger Detection

IBM Internet Security Systems
Ahead of the threat.™

e,

ey
Ry
T
——pr

© Copyright IBM Corporation 2007

IBM Internet Security Systems

Debugger Detection > PEB.BeingDebugged Flag

= Most basic (and obvious) debugger detection
technique

= PEB.BeingDebugged flag is 1 if process is being
debugged, O if not

= fs:[Ox30] points to the PEB
= kernel32!IsDebuggerPresent() checks this flag

= Packers may obfuscate the check since it is very
obvious

Ikd> dt PEB
+0x000 InheritedAddressSpace : UChar
+0x001 ReadlmageFileExecOptions : UChar

+0x002 BeingDebugged : UChar

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

| [T]
m
@

IBM Internet Security Systems

Debugger Detection > PEB.BeingDebugged Flag

= Example: Using IsDebuggerPresent() and directly
checking PEB.BeingDebugged

; call kernel32!1sDebuggerPresent()

call [1sDebuggerPresent]
test eax,eax
jnz .debugger_ found

; check PEB.BeingDebugged directly

mov eax,dword [fs:0x30] ;EAX = TEB.ProcessEnvironmentBlock
movzx eaxX,byte [eax+0x02] ;AL = PEB.BeingDebugged
test eax,eax
jnz .debugger_ found
= Solution:

— Easily bypassed by patching PEB.BeingDebugged flag with O
— Ollyscript “dbh” command patches this flag
— Olly Advanced also has an option to patch this flag

© Copyright IBM Corporation 2007

IBM Internet Security: Systems X-Force = The Art Of Unpacking

IBM Internet Security Systems

i
®

Debugger Detection = PEB.NtGlobalFlag, Heap Flags

= PEB.NtGlobalFlag == 0xO if process is not debugged
(by default), usually 0x70 if debugged

Ikd> dt _PEB

+0x068 NtGlobalFlag - Uint4B

= The following flags are set if process is being
debugged:
— FLG_HEAP_ENABLE_TAIL_CHECK (0x10)
— FLG_HEAP_ENABLE_FREE_CHECK (0x20)
— FLG_HEAP_VALIDATE_PARAMETERS (0x40)

= These flags can overridden via registry setting or
gflags.exe

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Because PEB.NtGlobalFlags are set, Heap Flags will
also be set

PEB.ProcessHeap.Flags ==0x2 (HEAP_GROWABLE) if
process is not debugged, usually Ox50000062 if
debugged (depending on NtGlobalFlags)
HEAP_TAIL_ CHECKING_ENABLED (0x20)
HEAP_FREE_CHECKING_ENABLED (0x40)

PEB.ProcessHeap.ForceFlags == 0xO if process is not
debugged, usually, 0x40000060 if debugged (Flags &
0x6001007D)

Ikd> dt HEAP

+0x00c Flags - Uint4B
+0x010 ForceFlags - Uint4B

R, . A SR L dh S | smemmecoe
G PV e e S

IBM Internet Security Systems

Debugger Detection = PEB.NtGlobalFlag, Heap Flags

= Solution:
— Patch PEB.NtGlobalFlag, PEB.ProcessHeap Flags
— Olly Advanced plug-in or Ollyscript:

var peb
var patch_addr
var process_heap

//retrieve PEB via a hardcoded TEB address (first thread:

Ox7¥fde000)
mov peb, [7ffde000+30]
//patch PEB_NtGlobalFlag
lea patch_addr, [peb+68]
mov [patch_addr],0
//patch PEB.ProcessHeap.Flags/ForceFlags
mov process_ heap, [peb+18]
lea patch_addr, [process heap+0c]
mov [patch_addr],2
lea patch_addr, [process heap+10]
mov [patch_addr],0

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

EPROCESS.DebugPort == O if process is not being
debugged, otherwise it contains a non-zero value

ntdllINtQueryInformationProcess (ProcessDebugPort)
queries the DebugPort field
returns OXFFFFFFFF if DebugPort is non-zero, otherwise
returns O
kernel32!CheckRemoteDebuggerPresent() uses
ntdllINtQueryInformationProcess () to check if the
process is being debugged

BOOL CheckRemoteDebuggerPresent(
HANDLE hProcess,
PBOOL pbDebuggerPresent

)

R A R L S e
() 1BV InteingESeculity Systems Force - il
P e A R i s i -:_‘::_t.;_::_-_-_-_::_-_-:-r,..’_if

IBM Internet Security Systems

Debugger Detection = DebugPort

= Solution: Manipulating return value of
NtQuerylnformationProcess (ollyscript sample)

// set a breakpoint handler

eob bp _handler NtQuerylnformationProcess

// set a breakpoint where NtQuerylnformationProcess returns
gpa "NtQuerylnformationProcess', "ntdll._dIl"

find $RESULT, #C21400# //retn 14

mov bp NtQuerylnformationProcess,$RESULT

bphws bp NtQuerylnformationProcess, "x"

run

bp _handler NtQuerylnformationProcess:

//ProcessinformationClass == ProcessDebugPort?

cmp [espt8], 7

jne bp _handler NtQuerylnformationProcess continue
//patch Processinformation to O

mov patch_addr, [esp+c]

mov [patch_addr], O

//clear breakpoint
bphwc bp_ NtQuerylnformationProcess

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Single-Step/Breakpoint exception generated by
INT1/INT3 is not passed to the exception handler (by
default) If process is debugged since they are
typically handled by the debugger

If after INT1/INT3 the exception handler is not
Invoked, it means process is being debugged

Flags can be set inside the exception handler to mark
that it had been executed

Some packers use kernel32!DebugBreak() since it
Invokes INT3

Pl 1 | N G | N iMoo
[| IBM Internet Security Systems X-Force — Th
RRERE A TR DS AFh RS e

IBM Internet Security Systems

| [T]
m
@

Debugger Detection = Debugger Interrupts

= What is a CONTEXT:
— Contains the current state of the thread
— Retrieved via GetThreadContext()

— Also passed to the exception handler via ContextRecord
parameter (esp+0xc), contains the state of the thread when
the exception occurred

Ikd> dt _CONTEXT

+0x000 ContextFlags - Uint4B
+0x004 DroO - Uint4B
+0x018 Dr7 - Uint4B
+0x08c SegGs - Uint4B
+0x090 SegFs - Uint4B
+0x0b0 Eax - Uint4B
+0x0b4 Ebp - Uint4B
+0x0b8 Eip - Uint4B

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

[[T]
T
@

Debugger Detection = Debugger Interrupts

= Example: Set a Flag (EAX) Iin the exception handler

;set exception handler

push .exception_handler

push dword [fs:0]

mov [£s:0], esp

;reset flag (EAX) invoke int3

xXor eax,eax

int3

;restore exception handler

pop dword [f£s:0]

add esp,4

;check if the flag had been set .exception_handler:

test eax,eax -EAX = ContextRecord

je .debugger found mov eax, [esp+0xc]

S ; set flag (ContextRecord.EAX)
mov dword [eax+0xb0O],OxFFFrffff
;set ContextRecord.EIP
inc dword [eax+0xb8]
Xor eax,eax
retn

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

-t
i
@

Debugger Detection = Debugger Interrupts

Solution: In OllyDbg, allow single-step/breakpoint
exceptions to be passed to the exception handler via
Shift+F7/F8/F9

The exception handler address can be located via
View->SEH Chain

Another solution is to automatically pass single-
step/breakpoint exceptions to the exception handler
via configuration: Debugging Options->=Exceptions

(Demo)

= Debugging options

Commands l Disasm | CPU | Registers | Stack] Ana
Secuity | Debug | Events Exceptions l Trace |

¥ lgnore memory access violations in KERNEL32

Ignore [pass to program) following exceptions:

IV Single-step break

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Several CPU cycles are spent by debugger event
handing code, reverser stepping thru instructions
(and thinking)

Packers check the time spent between instructions, if
time spent passed a specific threshold, process is
probably being debugged

Packers use the following for time measurements:
RDTSC instruction (Read Time-Stamp Counter)

kernel32!1GetTickCount()
TickCountLow and TickCountMultiplier in SharedUserData

| |
T
@

IBM Internet Security Systems

Debugger Detection = Timing Checks

= Example: Using RDTSC to check time spent

rdtsc

mov ecx,eax

mov ebx,edx

;... more instructions
nop

push eax

pop eax

nop

;... more instructions
;compute delta between RDTSC instructions
rdtsc

;Check high order bits

cmp edx,ebx

ja .debugger_ found
;Check low order bits
sub eax,ecx

cmp eax,0x200

ja .debugger_ found

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Solutions:

Avoid stepping thru unimportant code containing timing
checks, just set a breakpoint and perform a run

Set a breakpoint in GetTickCount()
Olly Advanced has a another solution against the RDTSC

check:
Set Time Stamp Disable Bit (TSD) in CR4. Once set, if
RDTSC is executed in privilege level '= 0, a General

Protection (GP) exception is triggered

Interrupt Descriptor Table (IDT) is set up to handle GP. If
GP is because of an RDTSC instruction, increment the
returned timestamp value from the previous call by 1

Note that the last solution may cause system instability
(Demo)

SeDebugPrivilege is disabled on a process access
token by default

OllyDbg/WinDbg enables the SeDebugPrivilege
privilege in their access token

The debugged process will inherit the access token of
the debugger, including SeDebugPrivilege

Note that SeDebugPrivilege is only granted for
administrators by default

Packers indirectly check if SeDebugPrivilege is
enabled by attempting to open the CSRSS.EXE
process - CSRSS.EXE is only accessible to SYSTEM,
SeDebugPrivilege overrides the security descriptor

R, I A SR R e, gt
(1 | IBM Internet Security Systems X-Force -
BERE . OSSR S RS b

R TSR

IBM Internet Security Systems

LU
@

Debugger Detection > SeDebugPrivilege

= Example: Attempt to open the CSRSS.EXE process

;query for the PID of CSRSS.EXE
call [CsrGetProcesslid]

;try to open the CSRSS.EXE process
push eax

push FALSE

push PROCESS QUERY_INFORMATION
call [OpenProcess]

;1T OpenProcess() was successful,
process i1s probably being debugged

test eax,eax

jnz .debugger_ found

= Solution: Patch ntdlI!INtOpenProcess() to return
OxC0000022 (STATUS ACCESS_ DENIED) if passed
PID is for CSRSS.EXE

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Packers checks if the parent process of the current
process is not explorer.exe, if not, process is probably
being debugged

Implementation involves:

Retrieve the current process’ PID via TEB.Clientld (fs:[20])
or via kernel32!1GetCurrentProcessid()

Enumerate process:

Find PID of explorer.exe

Find Parent process PID of current process
Check if Parent Process PID !'= PID of explorer.exe

Solution: kernel32!Process32NextW() can be patched
to always return Ox0 — packers may choose to skip
the check

1 e RN i A PV . RN
AR i % N -
. 1 IBM Internet Secu - —=Th
R 1 e R o ¥
P R AR I o o 1 T 1 = e e — — SR —— e
L B e i e e e e * b

LUV 7 s A R

Involves checking if a debugging session is active by
checking if the number of objects of type
DebugObject is not O

A DebugObject is created for every debugging session

DebugObject can be queried via

NntdlIINtQueryObject(ObjectAllTypelnformation)

Returns the following structure:

typedef struct OBJECT ALL INFORMATION {

ULONG NumberOfObjectsTypes;

OBJECT_TYPE INFORMATION ObjectTypeInformation[1l];
}

OBJECT TYPE INFORMATION structure:

typedef struct _OBJECT_TYPE_INFORMATION {
[0O0] UNICODE_STRING TypeName;
[08] ULONG TotalNumberOfHandles;
[OC] ULONG TotalNumberOfObjects;

IBM Internet Security Systems

[
[[T]
L
®

Debugger Detection = DebugObject

= Solutions:

— Returned OBJECT_ ALL_INFORMATION.NumberOfObjectTypes
can be manipulated to O

— Olly Advanced injects code into NtQueryObject to zero out
the entire returned OBJECT _ALL_INFORMATION buffer

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Packers also identify if a debugger is running by
checking for existence of debugger windows

Debugger windows has predefined class names:

OLLYDBG for OllyDbg
WinDbgFrameClass for WinDbg

Use FindWindow() / FindWindowEXx() to check for

existence of debugger windows

push NULL

push -.szWindowClassOl 1yDbg
call [FindWindowA]

test eax,eax

jnz -.debugger_ found

-.szWindowClassOl 1yDbg db "OLLYDBG",O

Solution: Set a breakpoint on FindwWindow(), then,
manipulate IpClassName param or return value

R A R L S e
() 1BV InteingESeculity Systems Force - il
P e A R i s i -:_‘::_t.;_::_-_-_-_::_-_-:-r,..’_if

Packers also identify if a debugger is active via
debugger process
Just involves enumerating all process and check if
PROCESSENTRY32.szExeFile is a debugger EXE name:
OLLYDBG.EXE
windbg.exe, etc.

Some packers read the process memory and look for
debugger-related strings (eg: “OLLYDBG™)

Solution: Patch kernel32!'Process32NextW() to always
fail to prevent process enumeration

R, I A SR L S R e, g
C o0 HIBM Internet Security Systems X-Force — The
| B | b R R e S

Classic technique for detecting kernel mode

debuggers
Fairly simple, involves invoking

kernel32!CreateFileA() against well-known device
names used by kernel mode debuggers

Technique is also used to detect existence of system

monitors (FileMon, RegMon) oush

Solution: Set a breakpoint el
in kernel32!CreateFileW(), el
then manipulate the return push
value to INVALID HANDLE tan
VALUE o

NULL

0

OPEN_EXISTING

NULL

FILE_SHARE_READ
GENERIC_READ
.szDeviceNameNtice
[CreateFileA]

eax, INVALID HANDLE VALUE
.debugger_ found

.szDeviceNameNtice db "_\NTICE",0

Specific to OllyDbg

OllyDbg has a on-access/write memory breakpoint
feature which is separate from hardware breakpoints
Feature is implemented via Guard Pages

Guard Pages provides a way for applications to be
notified iIf a memory access/write on specific pages
occurred

Guard Pages are set via PAGE__GUARD page
protection modifier and triggers

STATUS_ _GUARD_PAGE_VIOLATION (0x80000001)
exception if accessed

If process is being debugged in OllyDbg, the
exception handler will not be called

R, I A SR R e, gt
(1 | IBM Internet Security Systems X-Force -
BERE . OSSR S RS b

R TSR

IBM Internet Security Systems

[[T]
T
@

Debugger Detection > OllyDbg: Guard Pages

= Example: Setting up and triggering a
STATUS GUARD PAGE VIOLATION

; set up exception handler

; allocate memory
push PAGE_READWRITE
push MEM COMMIT
push 0x1000

push NULL

call [VirtualAlloc]

test eax,eax

jz .failed

mov [.pAllocatedMem] ,eax

; store a RETN

mov byte [eax],6 0xC3

; then set the PAGE_GUARD attrib of page
lea eax, [.dwOldProtect]

push eax

push PAGE_EXECUTE READ | PAGE GUARD
push 0x1000

push dword [.pAllocatedMem]

call [VirtualProtect]

IBM Internet Security: Systems X-Force = The Art Of Unpacking

; set marker (EAX) as O

xor eax,eax

; trigger STATUS GUARD_PAGE_VIOLATION
; exception

call [-pAllocatedMem]

; check if marker had not been changed

test eax,eax
je .debugger_found

.exception_handler

;EAX = CONTEXT record

mov eax, [esp+0xc]

;set marker (CONTEXT.EAX) to

mov dword [eax+0xbO],OxFFFffFfff
xor eax,eax

retn

© Copyright IBM Corporation 2007

5
| [T]
ii“l
®

IBM Internet Security Systems

Debugger Detection = OllyDbg: Guard Pages

= Solution: Deliberately trigger an exception so that the

exception handler will be called
— In the last example, perform a INT3, then a RETN

If the exception handler checks the exception code,

reverser needs to set a breakpoint in the exception
handler, then change ExceptionRecord.ExceptionCode

to STATUS PAGE_GUARD_VIOLATION manually

= (Demo)

© Copyright IBM Corporation 2007

IBM Internet Security: Systems X-Force = The Art Of Unpacking

The Art Of Unpacking

Breakpoint and
Patching Detection

IBM Internet Security Systems
Ahead of the threat.™

© Copyright IBM Corporation 2007

Software breakpoints are set by replacing the
Instruction at the target address by OxCC (INT3 /
Breakpoint interrupt)

Packers identify software breakpoints by searching for
OxCC in the unpacking stub or API code

Some packers apply operation on the compared byte
value so the check is not obvious:

if(byte XOR 0x55 == 0x99) then breakpoint found
Where: 0x99 == OxCC XOR 0x55

Solution:

Use hardware breakpoints

Set a breakpoint in UNICODE versions of the API
(LoadLibraryExXW instead of LoadLibraryA) or Native APIs

IBM Internet Security Systems

1§
@

Breakpoint/Patching Detection > Hardware Breakpoints

Hardware breakpoints are set via Debug Registers

Debug Registers:
— DrO — Dr3: Address of breakpoints

— Dr6 — Debug Status: Determine what breakpoint had been
triggered

— Dr7 — Debug Control: Flags to control the breakpoints such
as break on-read or on-write, etc.

Debug registers are not accessible in Ring 3

Debug registers are checked via the CONTEXT record
passed to the exception handler

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

[[T]
T
@

Breakpoint/Patching Detection > Hardware Breakpoints

= Example: Setup exception handler and check
Context.Drx

; set up exception handler

.exception_handler

; initialize marker
;EAX = CONTEXT record

Xor eax,eax

; throw an exception mov _eax,[esp+0x?]
mov dword [eax],0 ;check 1T Debug Registers are not zero
; restore exception handler cmp dword [eax+0x04],0
. o jne -hardware_bp_ found
; test if EAX was updated cmp dword [eax+0x08],0
; (breakpoint identified) Jne -hardware_bp_found
test eax,eax cmp dword [eax+0x0c],O0
jnz .breakpoint found jne -hardware_bp_ found
- cmp dword [eax+0x10],0
jne -hardware_ bp_ found
jmp .exception_ret

-hardware_ bp_ found
;set Context.EAX to signal
; breakpoint found
mov dword [eax+0xbO],OxFFFrffff

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Identifies if part of the unpacking stub had been
modified (eg: checks are disabled by the reverser)

Detects software breakpoints as a side effect

Involves performing a checksum on a specific range
of code/data

Some use simple checksums, while other use intricate
checksum/hash algorithms

Solution:

Avoid setting software breakpoints if checksum routines
exists

On patched code, try setting an on-access breakpoint on the
modified code, once the breakpoint is hit, analyze the
checksum code and change the resulting checksum to the
correct value

1 el RN " A P I . I
B O A AR SR -t -—- S 41

E i |1 i e .

. 1 IBM Internet Secu [
WM (1t 1) e R = o~ — Yo

A e N e b - s o i 54 £

| N A R S AR T R D B S S E

g R TR

The Art Of Unpacking
Anti-Analysis

IBM Internet Security Systems
Ahead of the threat.™

© Copyright IBM Corporation 2007

IBM Internet Security Systems

5
!l:l
g
®

Anti-Analysis = Encryption and Compression

= Encryption: Packers usually encrypt both the
unpacking stub and the protected executable

= Algorithms to encrypt ranges from very simple XOR
loops to complex loops the perform several
computations

= Decryption loops are easy to recognize: fetch ->
compute -> store operation

= Encryption algorithms and unpacking stub varies on
polymorphic packers

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Anti-Analysis = Encryption and Compression

= Example: Polymorphic packer decryption loop
(register swapping, garbage codes)

00476056 MOV BH,BYTE PTR DS: [EAX] 0040C045 MOV CH,BYTE PTR DS:[EDI]
00476058 INC ESI 0040C047 ADD EDX,EBX
00476059 ADD BH,O0BD 0040C049 XOR CH,AL
0047605C XOR BH,CL 0040C04B XOR CH,0D9
0047605E INC ESI 0040C04E CLC
0047605F DEC EDX 0040C04F MOV BYTE PTR DS:[EDI],CH
00476060 MOV BYTE PTR DS: [EAX] ,BH 0040C051 XCHG AH,AH
00476062 CLC 0040C053 BTR EDX,EDX
00476063 SHL EDI,CL 0040C056 MOVSX EBX,CL
:: More garbage code ::: More garbage code
00476079 INC EDX 0040C067 SAR EDX,CL
0047607A DEC EDX 0040C06C NOP
0047607B DEC EAX 0040C06D DEC EDI
0047607C JMP SHORT 0047607E 0040CO6E DEC EAX
0047607E DEC ECX 0040CO6F JMP SHORT 0040C071
0047607F JNZ 00476056 0040C071 JNZ 0040C045

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

1§
@

Anti-Analysis = Encryption and Compression

= Compression: Reduce the size of the protected
executable

= Obfuscation side effect because both the protected
executable code and data became compressed data

= Examples:
— UPX: NRV (Not Really Vanished), LZMA
— FSG: aPLib
— Upack: LZMA

= Solution:

— Determine how the decryption/decompression loop ends and
set a breakpoint

— Remember, breakpoint detection code may exist on the
decryption/decompression loop

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Anti-Analysis > Garbage Code and Permutation

Garbage code: Garbage codes are effective way to
confuse a reverser

They hide the real purpose of the code

Adds effectiveness to other anti-reversing techniques
by hiding them

Effective garbage code are those that look like
legitimate/working code

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Anti-Analysis > Garbage Code and Permutation

0044A21A JMP SHORT sample.0044A21F
= Exal I Iple 0044A21C XOR DWORD PTR SS: [EBP],b6E4858D

. 0044A223 INT 23
. 0044A225 MOV ESI,DWORD PTR SS: [ESP]
Garbage OperathnS 0044A228 MOV EBX,2C322FF0
IMPs 0044A22D LEA EAX,DWORD PTR SS:[EBP+6EE5B321]
- 0044A233 LEA ECX,DWORD PTR DS: [ESI+543D583E]
0044A239 ADD EBP,742COF15
0044A23F ADD DWORD PTR DS: [ESI],3CB3AA25
0044A245 XOR EDI,7DAC77F3
0044A24B CMP EAX,ECX

0044A225 MOV ESI,DWORD PTR SS: [ESP] 0044A24D MOV EAX,5ACAC514
0044A23F ADD DWORD PTR DS: [ESI],3CB3AA25 0044A252 JMP SHORT sample.0044A257
00442268 SUB ESI,-4 0044A254 XOR DWORD PTR SS: [EBP] ,AAE47425
0044A280 XOR DWORD PTR DS:[ESI],33B568E3 [0044A25B PUSH ES
0044A25C ADD EBP,5BAC5C22
0044A29D MOV ERX, 4 00442262 ADC ECX,3D71198C
0044A2A2 ADD ESI,EAX 0044A268 SUB ESI,-4
0044A2B0 NOT DWORD PTR DS: [ESI] ::: more garbage code:::

00442280 XOR DWORD PTR DS: [ESI],33B568E3
0044A286 LEA EBX,DWORD PTR DS: [EDI+57DEFEE2]
0044A28C DEC EDI

0044A28D SUB EBX,7ECDAE21

0044A293 MOV EDI,185C5C6C

0044A298 MOV EAX,4713E635

0044A29D MOV EAX,4

0044A2A2 ADD ESI,EAX

0044A2A4 MOV ECX,1010272F

0044A2A9 MOV ECX,7A49B614

0044A2AE CMP EAX,ECX

0044A2B0 NOT DWORD PTR DS: [ESI]

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Anti-Analysis > Garbage Code and Permutation

= Code Permutation: Simple instructions are
translated into more complex series of instructions

= Used by more advanced packers — requires

understanding of the instructions
= Simple illustration:

mov eax,ebx
test eax,eax

:]

push ebx
pPop eax
or eax, eax

IBM Internet Security: Systems X-Force = The Art Of Unpacking

© Copyright IBM Corporation 2007

IBM Internet Security Systems

Anti-Analysis > Garbage Code and Permutation

= Example: Code permutation

00401081
00401087
0040108A
0040108E
00401090

MOV EAX,DWORD PTR FS: [18]
MOV EAX,DWORD PTR DS: [EAX+30]
MOVZX EAX,BYTE PTR DS: [EAX+2]
TEST EAX,EAX

JNZ SHORT 00401099

-

IBM Internet Security: Systems X-Force = The Art Of Unpacking

004018A3
004018A8
004018AD
004018B2
004018B3
004018B6
004018B8
004018BA
004018BC
004018BE
004018BF
004018C1
004018C3
004018cC8
004018CB
004018D1
004018D6
004018DC
004018DE
004018E0
004018E5
004018EA
004018EF
004018F1
004018F6
004018F8
004018FB
004018FD

MOV EBX,A104B3FA

MOV ECX,A104B412

PUSH 004018C1

RETN

SHR EDX,5

ADD ESI,EDX

JMP SHORT 004018BA

XOR EDX,EDX

MOV EAX,DWORD PTR DS: [ESI]
STC

JB SHORT 004018DE

SUB ECX,EBX

MOV EDX, 9A01AB1F

MOV ESI,DWORD PTR FS: [ECX]
LEA ECX,DWORD PTR DS: [EDX+FFFF7FF7]
MOV EDX, 600

TEST ECX,2B73

JMP SHORT 004018B3

MOV ESI,EAX

MOV EAX,A35ABDE4

MOV ECX,FAD1203A

MOV EBX, 51ADS5EF2

DIV EBX

ADD BX,44A5

ADD ESI,EAX

MOVZX EDI,BYTE PTR DS: [ESI]
OR EDI,EDI

JNZ SHORT 00401906

© Copyright IBM Corporation 2007

IBM Internet Security Systems

L
@

Anti-Analysis > Garbage Code and Permutation

= Solutions:

— Try using “trace markers” by setting breakpoints on mostly
used APIs by packers (eg:VirtualAlloc/LoadLibrary/
GetProcAddress/etc.), an API logger tool can be used. If
something went wrong between trace markers, then, it is
time to perform a detailed trace

— OllyDbg + VMWare is useful to save trace state so the
reverser can go back to a specific state

— On-memory access/write breakpoints on interesting
code/data are also useful

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Obfuscate the disassembly produced by
disassemblers/debuggers

One method involves:
Inserting a garbage byte

Add a conditional branch to the garbage byte
The condition for the conditional branch will always be FALSE

The disassembler will follow and disassemble the
garbage byte and produce an incorrect output

More anti-disassembly information: Reversing:
Secrets Of Reverse Engineering (Confusing
Disassemblers) by Eldad Eilam

R A R L S e
() 1BV InteingESeculity Systems Force - il
P e A R i s i oy e .

IBM Internet Security Systems

1"
@

Anti-Analysis > Anti-Disassembly

;Anti-disassembly sequence #1

- Example: push .jmp _real 01
— Debugger Detection via he imp fake 01
PEB.BeingDebugged flag retn
.Jmp fake 01:
db Oxff
.Jmp_real Ol:
mov eax,dword [fs:0x18] kel
mov eax,dword [eax+0x30] mov eax,dword [fs:0x18]
movzx eax,byte [eax+0x02]
test eax,eax ;Anti-disassembly sequence #2
jnz .debugger found push .Jmp real 02
clc
jc .Jmp_fake 02
retn
.Jmp_fake 02:
db Oxff

.Jmp_real 02:

mov eax,dword [eax+0x30]
movzx eax ,byte [eax+0x02]
test eax,eax

jnz .debugger found

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Anti-Analysis > Anti-Disassembly

= Example: WinDbg and OllyDbg Disasm Output

0040194a
0040194f
00401950
00401952
00401953
00401957
00401959
0040195c¢
0040195f
00401960
00401962
00401963
00401969
0040196a

push
stc
jnb
ret
Jmp
add
add
sbb
clc
jb
ret
dec
inc
add

0x401954

image00400000+0x1953 (00401953)

dword ptr [ecx+0x18]

[eax] ,al
[eax+0x64] ,ch
[eax] ,eax

image00400000+0x

dword ptr [ebx+(
eax
al, [ebp+0x31077¢

0040194A
0040194F
00401950
00401952
00401953
00401957
00401959
0040195C
0040195F
00401960
00401962
00401963
00401969
0040196A

IBM Internet Security: Systems X-Force = The Art Of Unpacking

PUSH 00401954

STC

JNB SHORT 00401953

RETN

JMP DWORD PTR DS:[ECX+18]

ADD BYTE PTR DS:[EAX],AL

ADD BYTE PTR DS:[EAX+64],CH

SBB DWORD PTR DS:[EAX],EAX

CLC

JB SHORT 00401963

RETN

DEC DWORD PTR DS:[EBX+B60F3040]
INC EAX

ADD AL,BYTE PTR SS:[EBP+310775CO]

© Copyright IBM Corporation 2007

IBM Internet Security Systems

Anti-Analysis > Anti-Disassembly

= Example cont.: IDAPro Disassembly Output

0040194A push (offset loc_401953+1)

0040194F stc

00401950 jnb short loc_401953

00401952 retn

00401953 ; ————— -
00401953

00401953 loc_401953: ; CODE XREF: sub_401946+A
00401953 ; DATA XREF: sub_401946+4
00401953 jmp dword ptr [ecx+18h]

00401953 sub_401946 endp

00401953

00401953 ; ————— -
00401957 db 0

00401958 db 0

00401959 db 0

0040195A db 68h ; h

0040195B dd offset unk_ 401964

0040195F db OF8h ; °

00401960 do 72h ; r

00401961 db 1

00401962 db 0OC3h ; +

00401963 db OFFh

00401964 unk_401964 db 8Bh ; T ; DATA XREF: text:0040195B

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

The Art Of Unpacking
Debugger Attacks

IBM Internet Security Systems
Ahead of the threat.™

© Copyright IBM Corporation 2007

L
@

IBM Internet Security Systems

Debugger Attacks = Misdirection/Stopping via Exceptions

= Packers employ several techniques so that tracing is
not linear, and so that the code is not easily
understandable

= One common technique is by throwing caught
exceptions

= The exception handler will set the next EIP

= Packers also uses exceptions to pause execution if
process is being debugged

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

[[T]
T
@

Debugger Attacks > Misdirection/Stopping via Exceptions

= Example: Misdirection via Exception (Demo)

; set up exception handler

push .exception_handler
push dword [fs:0]
mov [fs:0], esp
; throw an exception
mov ecx,1
-loop:
rol ecx,1
into
Jjmp -loop
; restore exception handler
pop dword [fs:0]

add esp,4

.exception_handler
;EAX = CONTEXT record

mov eax, [esp+0xc]

;set Context._EIP upon return
add dword [eax+0xb8],2
Xor eax,eax

retn

IBM Internet Security: Systems X-Force = The Art Of Unpacking

© Copyright IBM Corporation 2007

IBM Internet Security Systems

|||

Il
||u|
@

Debugger Attacks = Misdirection/Stopping via Exceptions

= Solution: If the exception is only for transferring
execution to different parts of the code, exceptions
can be automatically passed to exception handler

H Debugging options
Commands I Disasm | CPU | Hegistersl Stack I Analysis 1 | AnalysisZ] Analys
The reverser can Set Secuity | Debug | Events Ewceptions l Trace | SFX | Stings | Addres

a breakpoint on the
exception handler,
then press Shift+
F7/F8/F9

IBM Internet Security: Systems X-Force = The Art Of Unpacking

[V lgnore memory access violations in KERNEL32

Ignore [pass to program) following exceptions:
[V INT3 breaks
IV Single-step break
IV Memory access violation
IV Integer division by 0
IV Invalid or privileged instruction
IV &I FPU exceptions

[V lgnore also following custom exceptions or ranges:

C0000035 (INTEGER OVERFLOW)

Add last exception

© Copyright IBM Corporation 2007

IBM Internet Security Systems

Debugger Attacks = Blocking Input

= Prevent the reverser from controlling the debugger
= User32!BlockInput() block keyboard/mouse inputs
= Can be effective if hidden by garbage codes
= Can baffle the reverser if not identified
= Example: (Demo)

push TRUE

call [BlockInput] ;Block i1nput

; ---Unpacking code...

push FALSE
call [BlockInput] ;Unblock 1nput

= Solution: Patch user32!Blocklnput() to just perform a
RETN

= Pressing CTRL+ALT+DELETE to manually unblock
Input

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

Prevents debugging events from reaching the

debugger

Can be set by ntdllINtSetinformationThread(
ThreadHideFromDebugger)

Internally, it sets the HideThreadFromDebugger field
of the ETHREAD kernel structure

Example:

push
push
push
push
call

- (Demo)
0 ; InformationLength
NULL ;Threadlnformation
ThreadHideFromDebugger ;Ox11
OxfFffffffe ;GetCurrentThread()

[NtSetInformationThread]

Solution: Set a breakpoint on
NtSetIinformationThread(), and then prevent the call
from reaching the kernel.

R A R L S e
() 1BV InteingESeculity Systems Force - il
P e A R i s i -:_‘::_t.;_::_-_-_-_::_-_-:-r,..’_if

Hardware breakpoints are disabled via the CONTEXT
record passed to exception handlers

Software breakpoints can also be disabled by
replacing identified OXCC (INT3s) with a
random/predefined byte, thus, also causing a
corruption

Solution:

If hardware breakpoints are detected, use software
breakpoints, vice versa

Also try using on access/write memory breakpoint feature of
OllyDbg

Try setting software breakpoints inside UNICODE versions or
native APIs since they are not being checked by some
packers

1 e RN i A PV . RN
AR i % N -
. 1 IBM Internet Secu - —=Th
R 1 e R o ¥
P R AR I o o 1 T 1 = e e — — SR —— e
L B e i e e e e * b

LUV 7 s A R

IBM Internet Security Systems

1"
@

Debugger Attacks = Disabling Breakpoints

= Example: Clearing DrO-Dr7 via ContextRecord

; set up exception handler

push .exception_handler
push dword [fs:0]
mov [fs:0], esp
.exception_handler
; throw an exception ;EAX = CONTEXT record
xor eax,eax mov eax, [esp+0xc]
mov dword [eax],0
;Clear Debug Registers:
; restore exception handler ; Context.Dr0O-Dr3,Dr6,Dr7
pPopP dword [fs:0] mov dword [eax+0x04],0
add esp,4 mov dword [eax+0x08],0
I mov dword [eax+0x0c],O0
mov dword [eax+0x10],0
mov dword [eax+0x14],0
mov dword [eax+0x18],0

;set Context._EIP upon return

add dword [eax+0xb8],6
Xor eax,eax
retn

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

MSDN: If an exception reached the unhandled
exception filter and that the process is being
debugged, the registered top level exception filter will
not be called

kernel32!SetUnhandledExceptionFilter() sets the top
level exception filter

Some packers manually set the exception filter by
setting kernel32! BasepCurrentToplLevelFilter

Solution: Similar to the solution to the DebugPort
debugger detection technigue — manipulate return
value of ntdlI'NtQuerylnformationProcess()

UnhandledExceptionFilter calls NtQuerylnformationProcess
(ProcessDebugPort) to determine if process is being
debugged

B AL KBE g
{0 1 IBM Internet Secur
LSl I A O e T = 1~ — - i

i g [e R e — 1~)

1 NP e 02350 oo s e e

IBM Internet Security Systems

@

Debugger Attacks = Unhandled Exception Filter

= Example: Throw an exception and set Context.EIP on
exception filter

;set the exception filter

push .exception_filter

call [SetUnhandledExceptionFilter]
mov [.original_ filter] , eax
;throw an exception

Xor eax,eax

mov dword [eax],0

;restore exception filter
push dword [.original filter]
call [SetUnhandledExceptionFilter]

.exception_filter:
;EAX = Exceptionlnfo.ContextRecord

mov eax, [esp+4]

mov eax, [eax+4]

;set return EIP upon return

add dword [eax+0xb8],6

;return EXCEPTION_CONTINUE_EXECUTION
mov eaX ,OXFFfFfrfrfff

retn

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

I
@

Debugger Attacks = OllyDbg: OutputDebugString() Format
String Bug

Specific to OllyDbg

OllyDbg is known to be vulnerable to a format string
bug which can cause it to crash or execute arbitrary
code

Triggered by an improper string parameter passed to
kernel32!0utputDebugString()

Example:

push .SzFormatString
call [OutputDebugStringA]

.szFormatString db "%s%s',0

Solution: Patch OutputDebugString() to just perform
a RETN

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

The Art Of Unpacking

Advanced and
Other Technigues

IBM Internet Security Systems
Ahead of the threat.™

© Copyright IBM Corporation 2007

IBM Internet Security Systems

LU
@

Advanced / Other Techniques = Process Injection

% NTPacker

NTPacker by ErazerZ

= Process injection became
a feature of some packers cszor st com

Choose your crypting method:

@ aPlib - Compress and crypt your server
O XOR - Crypt your server with random Key
O aPLib and XOR - Compress and crypt
Inject into other Process (Default: None)

| brogramfiles%MSN Messengerimsnmsgr .exe |

= Involves selecting a host process (eg: itself,
explorer.exe, iexplore.exe), then injecting code into
the host process

= A method to bypass some firewalls

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

LU
@

Advanced / Other Techniques = Debugger Blocker

= Introduced by the Armadillo packer

= Prevents a debugger from attaching to a protected
process

= Method involves a spawning and debugging a
protected process

= Since the protected process is already being
debugged, another debugger can’t attach to the
process (Demo)

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

i
@

IBM Internet Security Systems

Advanced / Other Techniques > TLS Callbacks

= A technique for code to execute before the actual
entry point

= TLS callbacks can be identified by PE file parsing tools
(eg: pedump)

TLS directory:
StartAddressOfRawData: 00000000

EndAddressOfRawData: 00000000
AddressOfIndex: 004610F8
AddressOfCallBacks: 004610FC
SizeOfZeroFill: 00000000
Characteristics: 00000000

¢t Select Hiew: C:\sample.exe

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

LU
@

Advanced / Other Techniques > TLS Callbacks

= TLS callbacks can be traced by breaking inside

ntdll! _LdrplnitializeProcess (system breakpoint) just
before TLS callbacks are called:

= Debugging options

Commands | Disasm | CPU | Fiegistersl Stack | Analysis 1 | AnalysisZI Ana|ysis3|
Security | Debug Events l Exceptions | Trace I SFX I Strings I Addresses |

Make first pause at:

(+ System breakpoint

" Entry point of main module

" WinMain (if location is known)

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Advanced / Other Techniques > Stolen Bytes

= Prevent complete reconstruction via process dumping
= Portions of the code (usually entry point) is removed

(stolen) by the packer and executed from an
allocated memory

004011CB POP EBX

004011CC CMP EBX,EBX
004011CB MOV EAX,DWORD PTR FS: [0] 004011cE DEC Bop
004011D1 PUSH EBP 004011cE OB B
004011D2 MOV EBP,ESP 004011D0 JECXZ SHORT 00401169
004011D4 PUSH -1 004011D2 MOV EBP,ESP
004011D6 PUSH 0047401C 004011D4 PUSH -1
004011DB PUSH 0040109A lll} 004011D6 PUSH 0047401C
0040L1E0 " PUSH EAX 004011DB PUSH 0040109A
004011E1 MOV DWORD PTR FS:[0],ESP 004011E0 BUSH EAX
004011E8 SUB ESP,10 004011E1 MOV DWORD PTR FS: [0],ESP
004011EB PUSH EBX 004011E8 SUB ESP 10
004011EC PUSH ESI 00401158 DUSH BEX
004011ED PUSH EDI 004011EC PUSH ESI

004011ED PUSH EDI

IBM Internet Security: Systems X-Force = The Art Of Unpacking

© Copyright IBM Corporation 2007

IBM Internet Security Systems

I
@

Advanced / Other Techniques = APl Redirection

Prevents import table rebuilding
API calls are redirected to code in allocated memory

Parts of the API code are also copied and executed
from an allocated memory, then control is transferred
In the middle of the API code in the DLL image

Example: Redirected kernel32!CopyFileA()

004056B8 JMP DWORD PTR DS: [<&KERNEL32.CopyFileA>]

.]

004056B8 CALL 00D90000

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Advanced / Other Techniques = APl Redirection

= Example Cont.: lllustration of the redirected
kernel32!CopyFileA() API

Stolen instructions from kernel 32!CopyFileA

00D80003 MOV EDI,EDI

00D80005 PUSH EBP Actual kernel32!CopyFileA code
00D80006 MOV EBP,ESP

00D80008 PUSH ECX — 7C830053 MOV EDI,EDI

00D80009 PUSH ECX 7C830055 PUSH EBP

00D8000A PUSH ESI 7C830056 MOV EBP,ESP

00D8000B PUSH DWORD PTR SS[EBP+8] 7C830058 PUSH ECX

00D8000E JMP SHORT 00D80013 7C830059 PUSH ECX

00D80011 INT 20 7C83005A PUSH ESI

00D80013 PUSH 7C830063 ;return EIP | 7C83005B PUSH DWORD PTR SS;[EBP+8]
00D80018 MOV EDI,EDI P 7C83005E CALL kernel32.7C80E2A4
00D8001A PUSH EBP 7C830063 MOV ESI,EAX

00D8001B MOV EBP,ESP 7C830065 TEST ESI,ESI

00D8001D PUSH ECX 7C830067 JE SHORT kernel32.7C8300A6

00D800IE PUSH ECX
00D800IF PUSH ES|

00D80020 MOV EAX,DWORD PTR FS[18]
00D80026 PUSH DWORD PTR SS:[EBP+8]
00D80029 LEA ESI,DWORD PTR DS[EAX+BF8]
00D8002F LEA EAX,DWORD PTR SS[EBP-8]
00D80032 PUSH EAX

00D80033 PUSH 7C80E2BF

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

L
@

Advanced / Other Technigues > Multi-Threaded Packers

= Complicates tracing and the difficulty of
understanding the code increases

= Example: PECrypt uses a second thread to perform
decryption of a data fetched by the main thread

Thread 1 __ Sional Thread 2 Signale Thread 1
Fetch Data 'gna Decrypt Data 'gna Store Data

IBM Internet Security: Systems X-Force = The Art Of Unpacking

© Copyright IBM Corporation 2007

18
®

IBM Internet Security Systems

Advanced / Other Techniques = Virtual Machines

Eventually, the protected code needs to be decrypted and
executed in memory leaving it vulnerable to process dumping
and static analysis

Modern packers solves this by transforming the protected code
INto p-codes and executing them in virtual machines

Protected Executable

Illustration: S A .

Protected I Protected Virtual
Code —Convert+ Code =—Translatepm- Machine
(x86) (P-code)

x86

ute: . .
Execute e EEhpncaes

—_—)

reversing the p-code structure and translation

Example: Defeating HyperUnpackMe2 With an IDA Processor
Module, Rolf Rolles 111

http://www.openrce.org/articles/full view/28

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

» 0bh& = A
= =

The Art Of Unpacking ~— & & ,
Tools > v

IBM Internet Security Systems
Ahead of the threat.™

© Copyright IBM Corporation 2007

IBM Internet Security Systems

Tools = OllyDbg, OllyScript, Olly Advanced

. OI IyDbg OIyDg - sample.ex - [CP - main thread,
. File Yiew Debug Options Window Help
http://WWW.O”deq.de/ E[JIJIﬁﬂﬂjﬁ _‘_'li
— Powerful Ring 3 debugger. [e= Pusuenx
646 3345 ct MOY EAX,DWORD PTR $5:LE
ol 5| . 5@ PUSH ERX
HEMUZ'-‘ 37 E2 BBFSFFFF | CALL <JMP.&kernel32.lWri
= OllyScript
http://www.openrce.org/downloads/details/106/OllyScript B Reosont 0
— Allows automation of setting/handling oo
. ause
breakpoints Resume
: i . Step
— Useful in performing repetitive tasks -
ou

= Olly Advanced

http://www.openrce.org/downloads/details/241/0lly Advanced

Olly Advanced 1.26 Beta 12

. Bugfizes l Additional Options l
— An armor to Ollydbg against Addiionsl ptions 2 ;
anti-debugging and much | v Sz
Anti-Debug (NT-Based 05 only]

more... {r‘ Kill &nti-Attach (Hardcore method)
{7 UnhandledE xceptionFilter =8

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

IBM Internet Security Systems

Tools = OllyDump and ImpRec

= OllyDump

http:/Z//www.openrce.org/downloads/details/108/0IllyDump

— OllyDbg plugin for process [Ty
mpin nd impor |
du p g a d po L tab € Start Address: |l Size: |5000

rebuildi ng [1000 > Modiy: [1000 GetEIPasOEP | Cance

Entry Point;

= ImpRec
http://www.woodmann.com/crackz/Unpackers/Imprecl6.zip
— Stand-alone tool for process
dumping and excellent import
table rebuilding capability :
% Import REConstructor v1.6 FINAL

= (Demo)

(C) 2001-2003 MackT/

Attach to an Active Process

Ic: “documents and settings\user\desktop\sample.exe [00000404)

Imported Functions Found
B Lser32.dll FThunk:00003040 NbFunc:3 [decimal:3) valid:YES

-- kernel32.dll FThunk:00003108 NbFunc:15 (decimal:21) valid:YES
- ntdll.dll FThunk:00003168 NbFunc:1 (decimal: 1) valid:YES

IBM Internet Security: Systems X-Force = The Art Of Unpacking © Copyright IBM Corporation 2007

» . . a a
» @
S Tem~
o e
~es i -
= BOR ~SesT:
B pearaay — -
> oot ombd) < s
avod P pasl
S i———— Rl
v e— - - ~
G at t
—e o -
Bpytey PR 1S 5
ok = . v -
w— R
— . -
o~ ~
e .

Thank you! =

Questions?

Mark Vincent Yason

Malcode Analyst
X-Force Research & Development

myason@us.ibm.com

IBM Internet Security Systems
Ahead of the threat.™

© Copyright IBM Corporation 2007

