
Timing Attacks for Recovering Private Entries
From Database Engines

Ariel Futoransky, Damián Saura, and Ariel Waissbein1

Core Security Technologies, Humboldt 1967, Cda. de Buenos Aires 1414, Argentina.

Abstract. Dynamic content for Web applications is typically managed
through database engines, including registration information, credit cards
medical records and other private information. The web applications
typically interface with web users and allow them to make only certain
queries from the database while they safeguard the privacy where ex-
pected, for example, they may allow to add data in a column of the
database but not to view the complete contents of this column. We will
describe a new technique that allows executing a timing attack which re-
covers entries from a private column in a database and only requires the
ability to insert data in this private column. During the presentation, we
will show the experiments that led us to developing exploit code for the
MySQL engine that demonstrates this technique, give details for the au-
dience to understand the underlying algorithm, analyze the results and
discuss future work. We will also discuss how to protect from or detect
this exploit.

Vulnerability Description

Database management systems are prone to a design vulnerability in their in-
dexing and insertion/update algorithms.

An attacker which is allowed to insert new entries in a database table and
time their response can exploit this vulnerability and recover all the entries from
the table under attack.

The problem derives from an information leak caused by the data struc-
ture used for indexing table columns and the underlying data manipulation and
storing functions.

This vulnerability is present in the MySQL v5 when used with the InnoDB
storage engine. Earlier versions have not been checked. This vulnerability could
also affect every database configuration where a table column is indexed by a
data structure and algorithms set which leak information, including but not
limited to, those that implement the B-tree data structure. This has not been
checked.

Vulnerable systems

MySQL is vulnerable when used with InnoDB storage system. MySQL is the
most popular free and open source database engine, with a great success in

web applications, it is the database engine in the LAMP/WAMP platforms
(Linux/Windows-Apache-MySQL-PHP), and used in the popular Youtube, flickr,
Wikipedia and Bugzilla.

If a MySQL engine is configured with the InnoDB storage engine (see [MyS07]),
a nonempty table is configured to store one of its fields using clustered indexes
(i.e., as primary keys) and the attacker is able to insert records, then the attack
is successful and the attacker is able to retrieve the complete table field.

We have not tested our attack technique against other database engines or
configurations. However, we conjecture that it is possible to successfuly instan-
tiate our attack against most database management systems that store data
indexed by primary keys and using the B-trees data structure (and possibly
other data engine configurations which leak information).

Nonvulnerable systems

The attack technique we describe in this article was only instantiated to attack
the MySQL engine v5.0.26-5.0.37 when used with the InnoDB storage system.
Other MySQL versions and configurations were not tested.

Stating what scenarios are nonvulnerable to this attack technique is a difficult
task. Clearly, this attack cannot be applied to table columns that are indexed
by data structures (and insertion algorithms) which do not leak information.
Each systems and configuration should be examined carefuly before claiming it
is nonvulnerable.

Presumably, databases that can only be accessed remotely and through noisy
channels are not vulnerable to this attack. In the next sections we will give
advices which allow to determine whether a channel is noisy.

Solution/mitigation

In order to secure a MySQL-InnoDB engine the easiest countermeasure to im-
plement is not indexing the table columns that you want to protect; so first, one
should make sure if this is an option. However this might be impractical, and
certain applications might require other countermeasures. One could use trans-
action throttling, e.g., limiting the number of data manipulation operations that
a given user is allowed to make (or doing this for each IP address). Also, one
could monitor every command that is sent to the MySQL server (at network
level), examine every data manipulation operation and block a user when more
than n � 1 consecutive inserts are made; or simply insert small time delays after
each data manipulation operation (see, e.g., the Appendix section).

A more disruptive countermeasure is redesigning or reconfiguring index stor-
age functionalities. To stop the attack from working, no information should be
leaked after table inserts. This means that every data manipulation operations
should require the same amount of time (or independently distributed values).

Notice that these countermeasures can be applied to the MySQL-InnoDB
system but also to other database management system implementations.

Technical description

Preliminaries: MySQL & InnoDB

Generally speaking a database is a structured collection of data. In a relational
database ([Cod69,Cod70]), data is structured in different sets of n-relations
and data extraction is done through the evaluation of predicates. Relations are
collected in tables, each member of a table (i.e., an n-relation) is called a record,
and each of the n elements that define the relation is called a field record. Often,
tables are pictured as bidimensional arrays, of an arbitrary number of rows and
n columns.

A database management system (DbMS) is a collection of programs
that enable you to store, modify and extract information from databases. Its
main capabilities can be summarized in persistent storage, a programming in-
terface and transaction management. A DbMS handles two types of users, autho-
rized users and administrators, where authorized users connect to make queries
and/or modify the content of tables, while administrators can also create and
configure tables and the DbMS settings. We are specially concerned with the
MySQL database management system, which uses a storage engine for stor-
ing (it can be configured to use the InnoDB engine or others) and a variant of the
SQL language for its programming interface. Currently, it is being distributed
in its version 5.0.

Structured Query Language (SQL) ([CB74]), is a computer language
designed for interacting with the DbMS and it is inspired in relational database
management systems. Roughly speaking, the SQL language can be divided in the
following classes of commands: Queries (e.g., operations that extract data from
the database); Data manipulation (e.g., insert, update, merge); Transaction
controls (e.g., begin work, commit, rollback); Data definition operations
(e.g., create, drop, alter); etcetera.

In DbMSs data is stored in the hard disk. Queries and data manipulation
commands are processed by a query compiler, which forwards optimized in-
structions to an execution environment. When required to access the tables
in the database, the execution environment will ask for a given index (or file, or
record) to the Index/file/record manager, which in turn will command the
buffer manager for disk pages (or blocks), which in turn a retrieved (as a
whole) from storage by the storage manager. (These last three components
are loosely refered to as the storage engine.) Disk pages are the smallest amount
of data that can be retrieved from (permanent) storage. (See [GMUW00] for
more on this.)

The computer reads/writes in one of these disk pages at a time, and typically
goes from one to the other during its many processes —taking more time to go
from one page disk to a page disk that is further in the hard disk than one
that is nearer. These disk pages, and the information contained therein, must be
efficiently located so that the insert, delete and select operations can be made
efficiently.

Historically and up to this date several data structures have been proposed
for storing indexes, with B-trees ([BU77], [BM71]) being the most popular (for
strings and small pieces of data; other type of data, such as spatial data, are
better approached by other data structures). MySQL stores permanent data in
the hard disk using a storage engine (these include the index, buffer and storage
managers mentioned above), and which can be selected from list including Inn-
oDB, MyISAM, MEMORY/HEAP. The first three allow only the B-tree data
structure for primary indexes, while the latter also allows the use of the hash
tables.

We are concerned with InnoDB, which stores indexes using a variant of the
B-tree data structure. Each node is stored in a page disk. In B-trees, data is
organized in blocks and these blocks in a tree. Each node contains n search-key
values and n + 1 pointers, for a fixed integer n that is called the block length
and whose value is determined by the DbMS ([GMUW00] and [MyS07, Section
14.2.13]). At the root, except in a border case, there are at least two pointers:
one pointing to each block below.

Each leaf consists of n + 1 pointers, with the last of these pointers pointing
to the block of leafs next to the right, and the other pointers being either empty
or pointing to data records. Pointers are used from left to right, and at least
b(n + 1)/2c should be used.

In internal nodes, the n + 1 pointers point to blocks in the next level and at
least d(n + 1)/2e of these should be used. Pointers are ordered increasingly and
they represent consecutive nodes in the level immediately after. Explicitly, for
j + 1 pointers used there exist j keys, K1, . . . ,Kj such that all the keys in the
first node are smaller than K1, all the keys in the second node are between K1

and K2, and so forth.
According to design principles, after data manipulations (e.g., insertions,

updates or deletions), we might require to add or delete nodes. When a node
(i.e., a disk page) is added to the tree —say, because a key was inserted and it
belonged to the range of an already full node— we call this action a a node
split or a split. There are several design and implementation decisions which
are particular to InnoDB. For example ([MyS07, Section 14.2.13.1]): “If index
records are inserted in a sequential order (ascending or descending), the resulting
index pages are about 15/16 full. If records are inserted in a random order, the
pages are from 1/2 to 15/16 full. If the fill factor of an index page drops below
1/2, InnoDB tries to contract the index tree to free the page.”

In analyzing the MySQL-InnoDB engines, we discovered that the following
properties, essential to our attack, are verified:

– Starting from a node with ordered key values [A, r, s] where A represents
a sequence of keys (respectively [s, r, A]) and adding keys r + 1, r + 2, . . .
(respectively r− 1, r− 2, . . .) until there is a split after adding the key r +m
(respectively r − m), then as a result two nodes are produced [A, r, r +
1, . . . , r+m−1] and [r+m, s] (respectively [s, r+m] and [r−(m−1), . . . , r−
1, r, A]).

– Starting from a node with ordered keys [A, r, S] (respectively [S, r, A]) where
A and S represent sequences of keys, the size of S is bigger than 1, and
adding values r + 1, r + 2, . . . (respectively r − 1, r − 2, . . .) until there is
a split after adding the key r + m (respectively r − m), then as a result
two nodes are produced [A, r, r + 1, . . . , r + m] and [S] (respectively [S] and
[r − m, . . . , r − 1, r, A]).

These properties were discovered experimentally through instrumentation of the
MySQL/InnoDB source code. We have described the instrumentation and the
effect of this instrumentation in the Appendix section.

Attack Design

Let us fix a MySQL configuration with the InnoDB storage engine, a nonempty
table and a table column. Let us assume that this column is indexed by primary
keys (which use the B-tree index structure) and a user (the attacker) has the
ability to make INSERT operations over this table column, and measure the
time they take. The attack can be executed by a probabilistic1algorithm, which
receives as input a value x0 in the range of the table column under attack (e.g.,
x0 = 0 if the table column stores integers, or the string x0 = a if it stores
strings), and returns the smallest value y in this table column which is larger
than x0.

For the sake of simplicity, let us assume that the table column under attack
stores integer numbers.

If we want to retrieve all the keys in the table column, we simply start
by executing the algorithm a first time with x0 = 0, computing the smallest
key y in the column, next set x0 = y + 1 and execute the algorithm once again.
Continuing in this way, we are able to retrieve all the keys form the table column
under attack.

The algorithm uses as parameters, a step base b and an exponent r. It starts
with an input x0 and returns a key y. Let us write the b-base representation of y
as y =

∑
kib

r, with 0 ≤ bi < b. The algorithm first computes k0 (i.e., an interval
[k0 · br, (k0 + 1) · br], with 0 ≤ k1 < b, such that y belongs to this interval).
Next, for ` = 1, 2 . . ., it will recursively compute the digits k1, k2, . . . of y (e.g.,
it computes nested intervals containing y and of size br−`). Each step requires
making a number of inserts proportional to n, the number of entries that fit in
a page disk2, and, |y|, the size of the key y.

When the size of the interval br−` is smaller than the page size n, the algo-
rithm continues searching in this interval examining all its members. Notice that,
since indexes are stored as primary keys, when the attack attempts to insert a
key with the same value as an existent key, it will receive an error. This error
indicates that the attack was successful and a key was found.
1 The algorithm might fail in some cases, depending on the input parameters and the

keys in the table. Describing these cases is out of the scope of this work.
2 In InnoDB page disks are of size 16kB, and depending on the length of the data

stored in these keys one can determine this value n.

We designed and developed the attack in two steps which can be analyzed
separately. First, we assumed that a split detection algorithm was available (i.e.,
an algorithm that can decide whether an insert operation produced a split or
not), and designed an attack that was able to recover any number of fields from
the table under attack. Next, we designed and implemented a split detection
algorithm which can be composed with the previous algorithm.

Let us assume, for now, that for each insert made, the user also knows whether
this operation produced a node split. This assumption will be waived, and re-
placed by a split detection algorithm in the next section. Then, the following
algorithm recovers y.

Algorithm 1:
Input: x (starting point), b (base of the steps) and B (a power of b which is the
biggest step size).
Output: A key y.

simple tuning
The page containing key y
For i=1 to 3 do:
{
Insert a,a+1,a+2... until a split occurs.
Set a as the next value after the split.
}

First step computes the interval I=[k B, (k+1)B] that contains y
Repeat
{
Insert a,a+1,a+2... until a split occurs
Set k the number of inserts made
a = a + B
} Until k != PageSize

Tuning so that there is one page whose leftmost value is the sought key
Insert a-2B-1,a-2B-2,a-2B-3,... until a split occurs

Second step, narrowing.
Set a = a-3B.
B = B/b.
Repeat
{
Repeat
{
Insert a,a+1,a+2... until a split occurs

Set k the number of inserts made
a = a + B
} Until k != PageSize

a = a - B + k
B = B / b
If B < n
{
Insert entries a,a+1,a+2... until key is found
}

}

During the execution of the algorithm described in the previous page, we
only fall in the four cases of page splits we describe above (except perhaps in the
first step). We can argument that in this way, the algorithm correctly computes
the key y.

More generally, assume that during the run of the above algorithm we add
a, a+1, . . . and miss a split or more, but eventually correctly detect a split, then
the algorithm also correctly retrieves the key.

Attack Implementation

In order to finish the attack, we experimented with MySQL and InnoDB and
discovered that splits were statistically noticeable only by measuring the time
taken by the insert, but not with %100 accuracy.

Our split detection algorithm starts by estimating a “threshold” value t∗
such that most of the inserts that produce splits take more time than t∗ and
most of the inserts that do not produce splits take smaller time than t∗. In
fact, our algorithm simply records the time taken by the last few inserts made,
and computes the 90th percentile, and sets this value as t∗. (Experimentally,
we discovered that the 90th percentile has this property when storing the time
taken by a few thousand inserts.)

Consider consecutive ascending or descending inserts which took time t1, t2 . . .
respectively. Let i be such that ti, ti+n, ti+2n are all bigger than t∗. Then, our
algorithm detects a split at ti+2n. (From the experimental data, one can easily
argue that the probability of “thee inserts taking time greater than t∗ and being
separated by n − 1 inserts” correspond to a node splitting event is close to 1.)

We tested our split detection algorithm and discovered its accuracy was suf-
ficient for executing the attack successfully. On the other hand, sometimes the
number of inserts made in order to detect a split were much larger than expected
(e.g., i + 2n � 3n).

Finally, we composed the attack algorithm with this split detection procedure
(using the remark made after Algorithm 1) and executed several successful
attacks. Explicitly, we fixed a computer and executed the attack against different
scenarios. We executed our attack against a table with a single column of 64 bit

integers with 1, 101 and 1001. The results of these attacks are summarized in
the following table.

of keys Result # of inserts time elapsed

1 Success 3/3 14291 09:48
1 Success 14864 11:13
1 Success 13145 10:52

101 Success 13145 10:54
101 Success 13145 10:53
101 Success 13145 10:11

1001 Success 12858 09:56
1001 Failed 10590 08:34
1001 Failed 20094 15:47
1001 Success 12592 08:33
1001 Success 15723 11:09

References

[BM71] Rudolf Bayer and Edward M. McCreight. Organization and maintenance
of large ordered indexes. In Record of the 1970 ACM SIGFIDET Workshop
on Data Description and Access, November 15-16, 1970, Rice University,
Houston, Texas, USA (Second Edition with an Appendix). ACM, 1971.

[BU77] Rudolf Bayer and Karl Unterauer. Prefix b-trees. ACM Trans. Database
Syst., 2(1):11–26, 1977.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A structured
english query language. In Randall Rustin, editor, Proceedings of 1974
ACM-SIGMOD Workshop on Data Description, Access and Control, Ann
Arbor, Michigan, May 1-3, 1974, Vol. 1, pages 249–264. ACM, 1974.

[Cod69] Edgar F. Codd. Derivability, redundancy and consistency of relations
stored in large data banks. IBM Research Report, San Jose, California
RJ599, 1969.

[Cod70] Edgar F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

[GMUW00] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
System Implementation. Perntice Hall, 2000.

[MyS07] MySQL. MySQL 5.0 Reference Manual, 2007.

Appendix: MySQL Instrumentation

In order to design our attack, we instrumented the InnoDB code so that we were
able to detect with %100 accuracy when a node was split, and to know what
keys were included in each node. Also, we configured MySQL to store data (and
indexes) in a ramdrive, instead of the hard disk. This allowed us to remove noises
coming from undetermined delays.

Below, we copied the most important changes that appear by making a diff
between the instrumented and the original code. In fact, we only modified the
function btr_page_split_and_insert (in \innobase\btr\btr0btr.c). The
name is self explanatory: this function is called every time an insert is made
to a full page.

First, we added a significant delay after the split is made.

...
heap = mem_heap_create(1024);
n_uniq = dict_index_get_n_unique_in_tree(cursor->index);

func_start:
if(strcmp(cursor->index->name, "Index_0") == 0) // if this is

// the index we are working with
{
Sleep(100);
}

mem_heap_empty(heap);
offsets = NULL;
tree = btr_cur_get_tree(cursor);

...

Second, at the beginning of the function we added some code that dumps
the b-tree into a file (c:\pages.txt).

...
FILE *f;
ulong keyAux;
int keyIsNumber = TRUE; // this is a constant that needs to be modified

// indicating if our column data has numbers or strings
byte *bufAux;
tree = btr_cur_get_tree(cursor);
if(strcmp(cursor->index->name, "Index_0") == 0) // if this is

// the index we are working with
{
f = fopen("c:\\pages.txt", "at");
if(f != NULL)
{
fprintf(f, "=== BEFORE SPLIT TREE");
// dump the tree

btr_print_tree(f, tree, 1000);

fclose(f);
}

}
...

Finally, we added at the end of the function (just before it returns) code that
dumps the b-tree into the file if a split is made (in this way, we have the state
of the b-tree before and after a split).

...
if(strcmp(cursor->index->name, "Index_0") == 0) // if this

// is the index we are working with
{
f = fopen("c:\\pages.txt", "at");
if(f != NULL)
{
// show the value of the insert that generated the split
if(keyIsNumber)
{
keyAux = 0;
for(i = 0; i < tuple->fields->len; i++)
{
keyAux += (((ulong)((byte*)tuple->fields->data)[i])

<< ((tuple->fields->len-i-1)*tuple->fields->len));
}

fprintf(f, "=== SPLITED INSERTING: %ld\n", keyAux);
}

else
{
bufAux = malloc(tuple->fields->len + 1);
memcpy(bufAux, tuple->fields->data, tuple->fields->len);
bufAux[tuple->fields->len] = 0;
fprintf(f, "=== SPLITED INSERTING: %s\n", bufAux);
free(bufAux);

}
btr_print_tree(f, tree, 1000);
fclose(f);
}

}
...

