Just Another Windows Kernel Perl Hacker

Joe Stewart

August 2, 2007

Copyright (c) 2007 SecureWorks, Inc. All Rights Reserved.

Abstract

In this paper I will discuss the basics of the Windows serial debugging
protocol, and introduce a cross-platform tool written in Perl to implement
the debug protocol without requiring the windbg program.

1 Introduction

The Microsoft Windows kernel has included code to allow developers to debug
the kernel itself since its inception, although until now, it required use of the
freely-available but proprietary windbg program to take advantage of it. Since
kernel debugging is best performed over a hardware connection from a second
system, a serial protocol was devised to allow remote interaction with the de-
bugging code. This serial protocol is not officially documented, but is also not
terribly complex, and has been described in some detail by Albert Almeida[l].
Using this information as a basis, I was able to reverse-engineer debugging ses-
sions using a serial-port sniffer, leading to the protocol implementation described
in this paper.

1.1 Windows kernel debugging setup

A remote kernel debug session requires two systems - a host (running the user-
land debugger) and a target (a system running in debug mode). The systems
are usually connected via a null modem serial cable, although recent versions
of Windows are capable of debugging over USB 2.0 or IEEE1394 connections.
The low-level packet-based debug protocol is the same, however.

The target system is booted into debug mode by addition of the /DEBUG
option to the boot.ini file. Additional options, such as serial port and baud rate
are also configured here. When the system is booted with the /DEBUG option,
the KdInitSystem subroutine handles the initialization of several variables and
tables, including the global variable KdDebuggerEnabled, which system mod-
ules and programs can use to tell when the kernel debugging code is in play. At
this point, the system is ready to handle debugging protocol packets from the
host system, but continues execution normally until such an event is received.



1.2 windbg

windbg (pronounced “windbag”) is the software provided by Microsoft as part
of the Windows DDK. It is a fairly feature-rich debugger, and provides an API
for extensions that can be loaded as dynamic link libraries. However, as I prefer
to use Windows as a reverse-engineering or development platform as little as
possible, it seemed prudent to understand the low-level details of the debugger’s
interaction with the debug code built into Windows.

2 Microsoft Debug Protocol

The serial debug protocol is packet-based, and uses a defined set of structures
to exchange information about the system and the debugger, as well as debug
commands and parameters. Packets received are replied to with an ACK packet
and are checksummed, in order to deal with corruption or data loss.

2.1 Basic packet data exchange

There are three classes of packets used in the protocol: normal packets, control
packets, and the break-in packet. Normal and control packets also contain a
packet type, defining the specific function of the packet. Control packet types
are:

PACKET TYPE KD ACKNOWLEDGE
PACKET TYPE KD _ RESEND
PACKET TYPE KD _ RESET

Normal packets may be one of:

PACKET TYPE KD _ STATE CHANGE32
PACKET TYPE KD STATE MANIPULATE
PACKET TYPE KD DEBUG IO

PACKET TYPE KD STATE CHANGE64

Exchange of kernel data/commands between the debugger and the target is ac-
complished with STATE MANIPULATE or STATE CHANGE normal pack-
ets. The flow of the protocol is maintained using the various control packet
types.

A typical exchange sequence might be a break-in packet, followed by a
STATE CHANGE packet from the target, which is ACKed by the debugger.
The debugger then might send a command inside a STATE MANIPULATE
packet, which is ACKed by the target. Any data that might result from the
command would be sent back to the host inside a STATE MANIPULATE
packet.



2.2 Packet headers

A packet header is constructed as shown:

Packet Leader (4 bytes)

Packet Type (2 bytes) Byte Count (2 bytes)

Packet ID (4 bytes)

Checksum (4 bytes)

The packet leader is 0x30303030 for a normal packet, and 0x69696969 for a
control packet. The packet ID does not have to be incremented by the debugger,
you need only ACK any packets received with the corresponding packet ID sent
from the host. The checksum value is calculated by a simple sum of the payload
bytes.

All packets utilize this packet header structure except for the break-in packet.
It consists of a single byte, 0x62. If the break-in is successful, the target will re-
spond with a STATE CHANGE packet informing the debugger that the system
execution has been halted and control is being passed to the debugger.

2.3 Protocol functions

There are two crucial control packet types, the ACK and the RESET packet.
Neither has a payload, so only the header is sent. For an ACK packet, the packet
type is set to 0x0004, and a RESET packet is type 0x0006. RESET packets are
used when the debugger and the target need to synchronize their operations.
There is a third control packet type, RESEND, but I have not considered its
use in my implementation, for reasons of keeping simplicity.

2.4 API functions

Using normal packets, we are able to access all of the exposed functionality of the
debug API. This includes reading and writing virtual memory, physical memory
or 10 space, accessing kernel variables and context, setting or removing break-
points, rebooting or resuming execution of the system, or forcing a kernel crash-
dump to occur. The APIs are accessed by formatting a STATE MANIPULATE
packet using the struct defined by DBGKD MANIPULATE STATE32 or
~ DBGKD MANIPULATE STATEG64. It in turn defines an 2-byte API num-
ber. The most commonly-used API numbers along with their corresponding
names are listed below:



Virtual memory

0x3130 DbgKdReadVirtualMemory Api
0x3131 DbgKdWriteVirtualMemoryApi
0x3156 DbgKdSearchMemoryApi
0x315b DbgKdFillMemoryApi

0x315c¢ DbgKdQueryMemoryApi

Physical memory

0x313d DbgKdReadPhysicalMemoryApi
0x313e DbgKdWritePhysicalMemoryApi

Control
0x3137 DbgKdReadControlSpaceApi

0x3138 DbgKdWriteControlSpaceApi
0x3132 DbgKdGetContextApi

0x3133 DbgKdSetContext Api

0x313b DbgKdRebootApi

0x3136 DbgKdContinueApi

0x3149 DbgKdCauseBugCheckApi

0x3146 DbgKdGetVersionApi

0x3150 DbgKdSwitchProcessor

0x3151 DbgKdPagelnApi (may not exist in all API versions)
0x3152 DbgKdReadMachineSpecificRegister
0x3153 DbgKdWriteMachineSpecificRegister
0x315d DbgKdSwitchPartition



I/0

0x3139 DbgKdReadloSpaceApi

0x3138 DbgKdWriteloSpaceApi

0x3144 DbgKdReadloSpaceExtended Api
0x3145 DbgKdWriteloSpaceExtended Api
0x3157 DbgKdGetBusDataApi

0x3158 DbgKdSetBusDataApi

Breakpoints

0x3134 DbgKdWriteBreakPoint A pi

0x3135 DbgKdRestoreBreakPoint A pi

0x3142 DbgKdSetInternalBreakPoint Api
0x3143 DbgKdGetInternalBreakPoint A pi
0x3147 DbgKdWriteBreakPointExApi

0x3148 DbgKdRestoreBreakPointExApi
0x315a DbgKdClearAllInternalBreakpointsApi

Each API number corresponds to a different payload structure containing argu-
ments, variables or raw data. However, a detailed layout of each API structure
is beyond the scope of this paper. This information can be found in the file
windbgkd.h, which is part of the ReactOS project.

3 Perl framework

Many of the essential debug APIs have been implemented in a Perl framework
I have developed called windpl (pronounced “windpill”). The source code is
available from http://www.secureworks.com /research/tools/windpl.html and is
GNU GPL licensed. At this time it is only procedural code. At some point it
might be warranted to create a full-blown object-oriented module with better
asynchronous I/O support, but as a proof-of-concept, the program does work
and can be used as a simple command-line debugging console.



3.1 Current featureset

Some of the advanced capabilities in windbg have been implemented in the
windpl framework, such as the ability to list processes and find import ad-
dresses in kernel or userspace modules. Another feature in windpl (which windbg
doesn’t have) is the ability to directly inject userspace threads into the system,
using the Windows asynchronous procedure call API. This technique was derived
from eEye’s paper on kernel exploitation[2], however in our implementation it
is accomplished by manipulating kernel structures only, there is no kernel-based
shellcode needed. An example function in the framework can inject a Windows
message box into explorer.exe as a demonstration of this technique.

3.2 Future development

There are numerous opportunities for extending the windpl framework to create
other useful tools for hacking the Windows kernel. For instance, one could use
the framework to create stealthier malware sandboxes or perform live memory
forensics or rootkit detection in malware-infected systems. Because the code
is freely available, with a little knowledge of Perl it should be easy to hack
in additional functionality. I also expect to see the protocol implemented in
other scripting languages as well, so it is doubtless that we will see windpy
(windpie?) before long (perhaps with even cleaner code and a more robust I/O
loop). Regardless, it should be interesting to see what other ring-0 enthusiasts
are able to devise in the future with only a null modem cable and a few lines of
code.

4 windpl command reference

bc <address> - clear breakpoint at address

bl - list breakpoints

bp <address> - set breakpoint at address

break - send break-in packet to host

g - resume execution from next instruction
continue - resume execution at current instruction
dw <address> - read dword at virtual address

eprocess <address> - parse the eprocess block at address



findprocessbyname <name> - find a process from process name

getcontext - get the current thread context

getprocaddress <module name> <api name> - locate an procedure’s import address
getpspcidtable - get the process/thread handle table

listexports <baseaddr> - list all the exports from the module at baseaddr
listmodules - list loaded modules

logical2physical <address> - convert a virtual address to a physical address
mb <title>|<text> - inject a messagebox into explorer.exe process

parsepe - <baseaddr> give some information about the PE file at baseaddr
processcontext <pid> - show the context info for the given pid

processlist - list running processes

quit - exit the debugger

r <register>=<value> - read or set the given register

dp <address> <length> - read physical memory

d <address> <length> - read virtual memory

reboot - reboot the target

reset - reset the debugger protocol stream

version - show debug API version information

writevirtualmemory <address> <data> - write bytes to virtual memory

References

[1] Albert Almeida. Kernel and remote debuggers, November 2003. Available
from World Wide Web: http://www.vsj.co.uk/articles/display.asp?
id=265.

[2] Barnaby Jack. Remote windows kernel exploitation - step into the ring 0,
February 2005. Available from World Wide Web: http://research.eeye.
com/html/Papers/download/StepIntoTheRing.pdf.



