
Just Another Windows Kernel Perl Ha
kerJoe StewartAugust 2, 2007Copyright (
) 2007 Se
ureWorks, In
. All Rights Reserved.Abstra
tIn this paper I will dis
uss the basi
s of the Windows serial debuggingproto
ol, and introdu
e a 
ross-platform tool written in Perl to implementthe debug proto
ol without requiring the windbg program.1 Introdu
tionThe Mi
rosoft Windows kernel has in
luded 
ode to allow developers to debugthe kernel itself sin
e its in
eption, although until now, it required use of thefreely-available but proprietary windbg program to take advantage of it. Sin
ekernel debugging is best performed over a hardware 
onne
tion from a se
ondsystem, a serial proto
ol was devised to allow remote intera
tion with the de-bugging 
ode. This serial proto
ol is not o�
ially do
umented, but is also notterribly 
omplex, and has been des
ribed in some detail by Albert Almeida[1℄.Using this information as a basis, I was able to reverse-engineer debugging ses-sions using a serial-port sni�er, leading to the proto
ol implementation des
ribedin this paper.1.1 Windows kernel debugging setupA remote kernel debug session requires two systems - a host (running the user-land debugger) and a target (a system running in debug mode). The systemsare usually 
onne
ted via a null modem serial 
able, although re
ent versionsof Windows are 
apable of debugging over USB 2.0 or IEEE1394 
onne
tions.The low-level pa
ket-based debug proto
ol is the same, however.The target system is booted into debug mode by addition of the /DEBUGoption to the boot.ini �le. Additional options, su
h as serial port and baud rateare also 
on�gured here. When the system is booted with the /DEBUG option,the KdInitSystem subroutine handles the initialization of several variables andtables, in
luding the global variable KdDebuggerEnabled, whi
h system mod-ules and programs 
an use to tell when the kernel debugging 
ode is in play. Atthis point, the system is ready to handle debugging proto
ol pa
kets from thehost system, but 
ontinues exe
ution normally until su
h an event is re
eived.1



1.2 windbgwindbg (pronoun
ed �windbag�) is the software provided by Mi
rosoft as partof the Windows DDK. It is a fairly feature-ri
h debugger, and provides an APIfor extensions that 
an be loaded as dynami
 link libraries. However, as I preferto use Windows as a reverse-engineering or development platform as little aspossible, it seemed prudent to understand the low-level details of the debugger'sintera
tion with the debug 
ode built into Windows.2 Mi
rosoft Debug Proto
olThe serial debug proto
ol is pa
ket-based, and uses a de�ned set of stru
turesto ex
hange information about the system and the debugger, as well as debug
ommands and parameters. Pa
kets re
eived are replied to with an ACK pa
ketand are 
he
ksummed, in order to deal with 
orruption or data loss.2.1 Basi
 pa
ket data ex
hangeThere are three 
lasses of pa
kets used in the proto
ol: normal pa
kets, 
ontrolpa
kets, and the break-in pa
ket. Normal and 
ontrol pa
kets also 
ontain apa
ket type, de�ning the spe
i�
 fun
tion of the pa
ket. Control pa
ket typesare:PACKET_TYPE_KD_ACKNOWLEDGEPACKET_TYPE_KD_RESENDPACKET_TYPE_KD_RESETNormal pa
kets may be one of:PACKET_TYPE_KD_STATE_CHANGE32PACKET_TYPE_KD_STATE_MANIPULATEPACKET_TYPE_KD_DEBUG_IOPACKET_TYPE_KD_STATE_CHANGE64Ex
hange of kernel data/
ommands between the debugger and the target is a
-
omplished with STATE_MANIPULATE or STATE_CHANGE normal pa
k-ets. The �ow of the proto
ol is maintained using the various 
ontrol pa
kettypes.A typi
al ex
hange sequen
e might be a break-in pa
ket, followed by aSTATE_CHANGE pa
ket from the target, whi
h is ACKed by the debugger.The debugger then might send a 
ommand inside a STATE_MANIPULATEpa
ket, whi
h is ACKed by the target. Any data that might result from the
ommand would be sent ba
k to the host inside a STATE_MANIPULATEpa
ket. 2



2.2 Pa
ket headersA pa
ket header is 
onstru
ted as shown:Pa
ket Leader (4 bytes)Pa
ket Type (2 bytes) Byte Count (2 bytes)Pa
ket ID (4 bytes)Che
ksum (4 bytes)The pa
ket leader is 0x30303030 for a normal pa
ket, and 0x69696969 for a
ontrol pa
ket. The pa
ket ID does not have to be in
remented by the debugger,you need only ACK any pa
kets re
eived with the 
orresponding pa
ket ID sentfrom the host. The 
he
ksum value is 
al
ulated by a simple sum of the payloadbytes.All pa
kets utilize this pa
ket header stru
ture ex
ept for the break-in pa
ket.It 
onsists of a single byte, 0x62. If the break-in is su

essful, the target will re-spond with a STATE_CHANGE pa
ket informing the debugger that the systemexe
ution has been halted and 
ontrol is being passed to the debugger.2.3 Proto
ol fun
tionsThere are two 
ru
ial 
ontrol pa
ket types, the ACK and the RESET pa
ket.Neither has a payload, so only the header is sent. For an ACK pa
ket, the pa
kettype is set to 0x0004, and a RESET pa
ket is type 0x0006. RESET pa
kets areused when the debugger and the target need to syn
hronize their operations.There is a third 
ontrol pa
ket type, RESEND, but I have not 
onsidered itsuse in my implementation, for reasons of keeping simpli
ity.2.4 API fun
tionsUsing normal pa
kets, we are able to a

ess all of the exposed fun
tionality of thedebug API. This in
ludes reading and writing virtual memory, physi
al memoryor IO spa
e, a

essing kernel variables and 
ontext, setting or removing break-points, rebooting or resuming exe
ution of the system, or for
ing a kernel 
rash-dump to o

ur. The APIs are a

essed by formatting a STATE_MANIPULATEpa
ket using the stru
t de�ned by _DBGKD_MANIPULATE_STATE32 or_DBGKD_MANIPULATE_STATE64. It in turn de�nes an 2-byte API num-ber. The most 
ommonly-used API numbers along with their 
orrespondingnames are listed below:
3



Virtual memory0x3130 DbgKdReadVirtualMemoryApi0x3131 DbgKdWriteVirtualMemoryApi0x3156 DbgKdSear
hMemoryApi0x315b DbgKdFillMemoryApi0x315
 DbgKdQueryMemoryApiPhysi
al memory0x313d DbgKdReadPhysi
alMemoryApi0x313e DbgKdWritePhysi
alMemoryApiControl0x3137 DbgKdReadControlSpa
eApi0x3138 DbgKdWriteControlSpa
eApi0x3132 DbgKdGetContextApi0x3133 DbgKdSetContextApi0x313b DbgKdRebootApi0x3136 DbgKdContinueApi0x3149 DbgKdCauseBugChe
kApi0x3146 DbgKdGetVersionApi0x3150 DbgKdSwit
hPro
essor0x3151 DbgKdPageInApi (may not exist in all API versions)0x3152 DbgKdReadMa
hineSpe
i�
Register0x3153 DbgKdWriteMa
hineSpe
i�
Register0x315d DbgKdSwit
hPartition
4



I/O0x3139 DbgKdReadIoSpa
eApi0x3138 DbgKdWriteIoSpa
eApi0x3144 DbgKdReadIoSpa
eExtendedApi0x3145 DbgKdWriteIoSpa
eExtendedApi0x3157 DbgKdGetBusDataApi0x3158 DbgKdSetBusDataApiBreakpoints0x3134 DbgKdWriteBreakPointApi0x3135 DbgKdRestoreBreakPointApi0x3142 DbgKdSetInternalBreakPointApi0x3143 DbgKdGetInternalBreakPointApi0x3147 DbgKdWriteBreakPointExApi0x3148 DbgKdRestoreBreakPointExApi0x315a DbgKdClearAllInternalBreakpointsApiEa
h API number 
orresponds to a di�erent payload stru
ture 
ontaining argu-ments, variables or raw data. However, a detailed layout of ea
h API stru
tureis beyond the s
ope of this paper. This information 
an be found in the �lewindbgkd.h, whi
h is part of the Rea
tOS proje
t.3 Perl frameworkMany of the essential debug APIs have been implemented in a Perl frameworkI have developed 
alled windpl (pronoun
ed �windpill�). The sour
e 
ode isavailable from http://www.se
ureworks.
om/resear
h/tools/windpl.html and isGNU GPL li
ensed. At this time it is only pro
edural 
ode. At some point itmight be warranted to 
reate a full-blown obje
t-oriented module with betterasyn
hronous I/O support, but as a proof-of-
on
ept, the program does workand 
an be used as a simple 
ommand-line debugging 
onsole.
5



3.1 Current featuresetSome of the advan
ed 
apabilities in windbg have been implemented in thewindpl framework, su
h as the ability to list pro
esses and �nd import ad-dresses in kernel or userspa
e modules. Another feature in windpl (whi
h windbgdoesn't have) is the ability to dire
tly inje
t userspa
e threads into the system,using the Windows asyn
hronous pro
edure 
all API. This te
hnique was derivedfrom eEye's paper on kernel exploitation[2℄, however in our implementation itis a

omplished by manipulating kernel stru
tures only, there is no kernel-basedshell
ode needed. An example fun
tion in the framework 
an inje
t a Windowsmessage box into explorer.exe as a demonstration of this te
hnique.3.2 Future developmentThere are numerous opportunities for extending the windpl framework to 
reateother useful tools for ha
king the Windows kernel. For instan
e, one 
ould usethe framework to 
reate stealthier malware sandboxes or perform live memoryforensi
s or rootkit dete
tion in malware-infe
ted systems. Be
ause the 
odeis freely available, with a little knowledge of Perl it should be easy to ha
kin additional fun
tionality. I also expe
t to see the proto
ol implemented inother s
ripting languages as well, so it is doubtless that we will see windpy(windpie?) before long (perhaps with even 
leaner 
ode and a more robust I/Oloop). Regardless, it should be interesting to see what other ring-0 enthusiastsare able to devise in the future with only a null modem 
able and a few lines of
ode.4 windpl 
ommand referen
eb
 <address> - 
lear breakpoint at addressbl - list breakpointsbp <address> - set breakpoint at addressbreak - send break-in pa
ket to hostg - resume exe
ution from next instru
tion
ontinue - resume exe
ution at 
urrent instru
tiondw <address> - read dword at virtual addressepro
ess <address> - parse the epro
ess blo
k at address6



findpro
essbyname <name> - find a pro
ess from pro
ess nameget
ontext - get the 
urrent thread 
ontextgetpro
address <module name> <api name> - lo
ate an pro
edure's import addressgetpsp
idtable - get the pro
ess/thread handle tablelistexports <baseaddr> - list all the exports from the module at baseaddrlistmodules - list loaded moduleslogi
al2physi
al <address> - 
onvert a virtual address to a physi
al addressmb <title>|<text> - inje
t a messagebox into explorer.exe pro
essparsepe - <baseaddr> give some information about the PE file at baseaddrpro
ess
ontext <pid> - show the 
ontext info for the given pidpro
esslist - list running pro
essesquit - exit the debuggerr <register>=<value> - read or set the given registerdp <address> <length> - read physi
al memoryd <address> <length> - read virtual memoryreboot - reboot the targetreset - reset the debugger proto
ol streamversion - show debug API version informationwritevirtualmemory <address> <data> - write bytes to virtual memoryReferen
es[1℄ Albert Almeida. Kernel and remote debuggers, November 2003. Availablefrom World Wide Web: http://www.vsj.
o.uk/arti
les/display.asp?id=265.[2℄ Barnaby Ja
k. Remote windows kernel exploitation - step into the ring 0,February 2005. Available from World Wide Web: http://resear
h.eeye.
om/html/Papers/download/StepIntoTheRing.pdf.7


