
iSEC Partners
https://www.isecpartners.com

Blind Security Testing
An Evolutionary Approach

Black Hat USA 2007

Scott Stender

Vice President, iSEC Partners

iSEC Partners
https://www.isecpartners.com

Blind Security Testing
An Evolutionary Approach

• Who are you?

• Co-Founder and Vice President of iSEC Partners

• Security consultant and researcher

• Based in Seattle, WA

• Why listen to this talk?

• Security, especially software security, is tied to testing

• As software security improves, our testing methods must
improve as well

• This talk will be of interest for those who are involved in
creating security test tools

• No high-proflie bugs today, but you will be better able to
find your own!

iSEC Partners
https://www.isecpartners.com

Blind Security Testing
An Evolutionary Approach

• Blind Security Testing

• Blind testing is useful in several areas: baseline testing,
audit, closed systems…

• The techniques here need only to interact with the system
to be successful

• More information is always better, grey/white box analysis
techniques can make tests more efficient

• An Evolutionary Approach

• Testing is difficult, and security testing is especially so

• One problem I have encountered is test suite optimization

• This talk proposes a method of competition between test
classes and cases within those classes to optimize test
suites

iSEC Partners
https://www.isecpartners.com

Blind Security Testing
An Evolutionary Approach

• Background

• Problems Testing Software

• The Need for Optimized Test Sets

• Current Approaches

• Flaw-Specific Testing

• Random Testing

• Improved Heuristics

• The Evolutionary Approach

• Test Cases as Populations

• Test Case Organization and Competition

iSEC Partners
https://www.isecpartners.com

Background

• Problems Testing Software

• Even trivial applications can generate near-infinite test
cases

• One Classic Example*

• Consider a program with 5 logic paths that is wrapped in a
do…while loop

• The loop is executed up to 20 times

*Myers, Glenford. The Art of Software Testing

iSEC Partners
https://www.isecpartners.com

Background

Begin

Loop

End

Loop

A B EDC

iSEC Partners
https://www.isecpartners.com

Background

• Intractability of Testing

• This simple example can be represented in about 10-20
lines of C code (or one of perl)

• On each loop iteration, output will depend on the five
output states

• So…

• Test with one iteration has 51 = 5 outputs

• Up to two iterations has 51 + 52 = 30 potential outputs

• Up to twenty iterations has 51 + 52 + 53 + … + 520 potential

outputs

• This is approximately 100 trillion test cases!
• At one test / sec, they would take 3.2 million years to run

• Great coverage if we wait that long!

• Even then, one still cannot say that the program is “correct”

iSEC Partners
https://www.isecpartners.com

Background

• Security testing is even harder!

• Myers’ example was exercising functionality, something
that has a chance of being finite (though large)

• Security testing does not have that luxury

• Functional Security Testing

• Verify authentication and authorization behavior

• Verify proper use of cryptography for data protection

• Non-Functional Security Testing

• Verify system cannot be compromised

• Check for presence of current and as-yet-unknown
classes of flaws

iSEC Partners
https://www.isecpartners.com

Background

• Test For Buffer Overflows

• Supply long strings: 128 bytes, 256 bytes, 65536 bytes…

• Magic lengths: 232 – 1, 232 – 2, …

• Off the wall: Off by one that happens to occur in 436 bytes

• Pattern centric: First byte must be 0x1E, substring must
match…

• And those others…

• SQL Injection, XML injection, XSS, attacks against custom
serialization…

• Don’t forget the random fuzzing!

• A truly infinite test set

iSEC Partners
https://www.isecpartners.com

Background

• The Need for Optimized Test Suites

• Based on testing only non-functional cases we have
generated an infinite number of test cases

• Let’s just accept it now, comprehensive testing is
impossible

• A better goal: Optimized Test Suites

• Experienced security testers do this today

• Consider testing a web application

• First thing to try: type in that apostrophe

• Second thing: see if “ZZZZZ” gets reflected in input

• Why these over random data? They work

• Let’s see if we can automate the decision-making process

iSEC Partners
https://www.isecpartners.com

Blind Security Testing
An Evolutionary Approach

• Background

• Problems in Testing Software

• The Need for Optimized Test Sets

• Current Approaches

• Flaw-Specific Testing

• Random Testing

• Improved Heuristics

• The Evolutionary Approach

• Test Cases as Populations

• Test Case Organization and Competition

iSEC Partners
https://www.isecpartners.com

Current Approaches

• The Goal: Optimized Test Cases

• We cannot execute everything

• Let us execute what is most likely to cause flaws in the
time available

• Most security testing tools pull from a similar pool of

test cases:

• Flaw-Specific Testing

• Random Testing

iSEC Partners
https://www.isecpartners.com

Current Approaches

• Flaw-Specific Testing

• The goal is to identify specific, known classes of flaws

• The approach: identify test data and expected results for
security tests

• Consider the test suites for the following:

• Buffer Overflow

• Format String

• Integer Overflow / Boundary Conditions

• SQL Injection

• Cross-Site Scripting

• XML Injection

• Command Injection

• Encoding Attacks

iSEC Partners
https://www.isecpartners.com

Test Classes

A x 8
Buffer

Overflow … 128 … 128 …65536

Format

Strings %n %s %p %x

Integer

Overflow

XSS “

‘

;=<‘

SQL

Injection “ \

\

(,

<XML

Injection & “ = [

_Command

Injection ; | “ >

Encoding URL UTF-* B64 I18N

0 255* 65535* 2
x
-1*

iSEC Partners
https://www.isecpartners.com

Current Approaches

• Flaw-Specific Testing - Benefits

• They are surprisingly effective

• Just consider the number of SQL Exceptions and

EIP=41414141s you have seen!

• They are easily prioritized over random input

• If I know it is a managed web app, no test for buffer overflow

• If I know they use dynamic SQL strings everywhere, test for

SQL injection

• Flaw-Specific Tests – Drawbacks

• They cannot find flaws other than those expected

• Put another way, one could consider them a “local optima”

• Even simple flaw-specific tests can take a prohibitively
long time to execute (and still not test everything)

iSEC Partners
https://www.isecpartners.com

Current Approaches

• Random Testing

• The goal is to see how the system acts when subjected to
random input

• The approach: profile an application that is processing
random input and watch for unexpected behavior

• Consider the sets of test cases for random testing:

• Pure random data

• Parameter-specific random data

• Random mutations of legitimate data

• Bit-flipping

• Bitstream “sliding”

iSEC Partners
https://www.isecpartners.com

Current Approaches

ContentRandom Length

Parameter-

Specific Content Length

Mutation Bit filp Bit slide

iSEC Partners
https://www.isecpartners.com

Current Approaches

• Random Testing - Benefits

• They are surprisingly effective*

• Whether 1990 or 2007, apps fall to random data

• They avoid the problem of “local optima”

• Random Tests – Drawbacks

• Purely random attacks are horribly inefficient

• Instead of local optima, we choose no optima

• We luck out when test cases are cheap and apps are bad

• Test results are hard to define

• Application crashes are bad, but what about the variety of

other errors that could indicate a problem?

*B.P. Miller, L. Fredriksen, and B. So, "An Empirical Study of the Reliability of UNIX Utilities"

iSEC Partners
https://www.isecpartners.com

Current Approaches

• Improved Heuristics

• Simple heuristics and other evolutionary approaches can
go a long way towards improvement

• Flaw-Specific Testing Improvements

• Removing test cases based on equivalence classes

• Advanced algorithms for test case verification

• See Blind Exploitation Techniques for some great work here!

• Random Testing Improvements

• Use of evolutionary algorithms with feedback based on
debugging and/or code coverage

• Sidewinder from BlackHat 2006

• Evolutionary Fuzzing System from BlackHat 2007

iSEC Partners
https://www.isecpartners.com

Blind Security Testing
An Evolutionary Approach

• Background

• Problems in Testing Software

• The Need for Optimized Test Sets

• Current Approaches

• Flaw-Specific Testing

• Random Testing

• Improved Heuristics

• An Evolutionary Approach

• Test Cases as Populations

• Test Case Organization and Competition

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Evolutionary algorithms work well in this problem
space

• They are best applied when trying to avoid local optima
(as is the case with handcrafted Flaw-Specific Tests)

• They can make sense of purely random data (as
demonstrated by other researchers)

• First, a quick primer…

• Evolutionary algorithms use biological selection as a
model for computer systems

• Potential solutions are considered from populations

• Solutions are evaluated according to a fitness criteria

• Better solutions are created based on the available
populations and the fitness criteria

See Michalewicz, Z., and Fogel, D. How to Solve It: Modern Heuristics

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Evolution and Blind Security Testing

• Instead of maximizing code coverage, optimize test sets

• Use test case results as fitness criteria instead of code
coverage or debugging

• The goal: evolving an optimized test suite for a given
request or application based purely on test feedback

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Test Case Organization and Competition

• Need to define populations

• Need to define fitness algorithms

• Need to define next generation selection

• Population Design

• An optimized test set is made up of several test cases, not
just one case to rule them all

• The problem breaks down according to two questions:

• Which classes of test cases do we want to test?

• Within those classes, which tests are most effective?

• Think back to the manual optimization performed earlier:

• Avoid buffer overflow testing for managed apps

• Emphasize SQL injection testing when dynamic SQL used

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Populations as existing Test Sets

• Start with populations for both Flaw-Based and Random
test sets

• Such populations can be created using traditional
heuristics

• Test sets (e.g. SQL Injection) and test cases (e.g. the
apostrophe character) are evaluated for fitness

• Evolutionary competition between sets and cases

• Test sets and test cases “compete” to be executed more
often

• One gets executed more often based on prior results

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Fitness Algorithm Design

• The goal: make fitness accurate and determined by
generally-available criteria

• Other approaches

• System profiling via debugging or coverage is a natural
choice

• Code coverage and test set quality are often considered to
be correlated

• Downsides – not broadly available, and “code coverage =
good test cases” is a controversial metric

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• An alternative design

• Use system feedback

• Use natural properties of the test cases

• System Feedback Fitness Algorithms

• Difference from control case offers meaningful feedback
on the behavior of the test case

• Magnitude of difference

• Error detection within difference

• For Flaw-Based test populations, sophisticated methods of
error detection can be applied

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Consider a web application

• Capture a legitimate request without test data

• Execute a test case against same request

• Take a diff of the test vs. control

• Magnitude of change

• Magnitude = sizeof(added) + sizeof(removed)

• Effective and broadly applicable

• System stops responding

• System returns a stack trace

• Error detection

• Check “added” portion of the diff for general and specific
flaw evidence

• Check for general error strings

• Check for reflection of bad chars

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Choosing the next test

• Fitness criteria adjusts the natural priority of test cases

• Test class probability of execution is adjusted

• Test case within the class is adjusted within the prioritized

queue

• Next test case execution takes this priority into account

• Note that we never remove a case or class

• Remember one of the original goals – avoid local optima

• If a case isn’t initially successful, we want to leave the
option open to come back

• The end result

• Cases compete for execution time

• Better cases move to the top

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

• Test Set Stability

• This approach assumes that applications, as a whole, will
share common programming styles and therefore failures

• If this is not the case, you could “thrash” between test
classes

• One option – reduce the temperature

• Test classes are not assigned absolute probabilities, just
“scores” that determine probability

• One can, over the duration of the test run, reduce the
probability of test case flux

• Similar to “reducing the temperature” in Simulated Annealing

• This allows enough data to make a reasonable test set,
but avoid case-by-case thrashing

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

Using traditional test populations and fitness
algorithms, we produce an optimized test set

• Benefits of this approach:

• Broadly applicable to a number of systems

• Does not require interactive control on the process being
tested

• Drawbacks of this approach:

• Code coverage and debugging are great sources of data

• Using pure blind techniques will require significantly more
test cases to make meaningful sense out of purely random
test populations

• Test cases are not optimal or comprehensive, just
optimized

iSEC Partners
https://www.isecpartners.com

An Evolutionary Approach

Next Steps

• Improved fitness criteria

• Using code coverage/debug data

• Using log analysis

• Improved “breeding”

• Smart optimization of pure random data cases

• Splicing and joining of test set populations

• Stateful tests

• Improve test execution ordering in addition to data

iSEC Partners
https://www.isecpartners.com

Special Thanks

• For generously offering their time and feedback on
the ideas presented in this presentation:

• Brad Hill, iSEC Partners

• Andreas Junestam, iSEC Partners

• Tim Newsham, iSEC Partners

They are too many to list on one slide, but a special thanks to the
researchers cited in this slide deck and in the associated handouts.
One does not get far without standing on the shoulders of giants.

iSEC Partners
https://www.isecpartners.com

Blind Security Testing
An Evolutionary Approach

Questions and Answers

scott@isecpartners.com

