
Building and Breaking the Browser
Window Snyder
Mike Shaver



Overview
Who the @#&^@#$ are we?

A security process tested by millions

Lies, damned lies, and statistics

New security goodies in future Firefoxen

Tools you can use



About Mozilla
Mozilla is...

• a global effort to promote choice & innovation on 
the Internet

• the foremost advocate for users on the Web

• an open source project with thousands of code 
contributors and tens of thousands of non-code 
contributors

• home of the Firefox Web browser

• more than 100 million users worldwide



Who runs Firefox?
18% of Internet users worldwide; 100 million people.

http://www.xitimonitor.com April 2007



Who runs Firefox?
Almost 25% of Europe!

(Finland loves us: 41%!)



Aliens run Firefox…

(Market share numbers unavailable.)



A security process tested by millions

Opening up to lock it down



Approach to Security - 
Transparency
• Community supports security testing and review efforts

• Code and developer documentation is available to anyone

• Security researches can spend their time in analysis and 
not in reconnaissance

• External parties can check our work, do not need to rely 
on what we tell them

• Design online, open meetings (MSFT take great notes!)

• Real time updates on vulnerabilities



Security Process
Self-organizing Security Group is about 85 people 
representing all aspects of the community

Features are security reviewed to ensure 
compatibility with the overall security model

Designed with security in mind

Security testing is continuous throughout 
development process

Security updates every 6-8 weeks



Threat Modeling
Identify entry points into the system

Trace data flows through the application

Focuses penetration testing effort on specific 
components



Component Security Review
Review new features to determine how they impact 
the security of the product.  Sometimes effects can 
be indirect!

Determine if they introduce new vectors

Evaluate existing mitigations

Determine if mitigations are sufficient

Write tests to prove it

Develop additional mitigations when your tests find 
things you missed!



Code Review
Focused on components that:

•are most likely to handle user input directly
•perform complex memory management
•perform pointer arithmetic
•parse complex formats

Looking for: 
•Improper string handling 
•Integer arithmetic errors 
•Uninitialized variable utilization (esp. in error cases)
•Memory allocation/deallocation errors 
•Defense in depth



Make Code Review Scale
Include these checks as part of the peer-review 
system required before check-in

Develop a level of confidence in the new code.  Over 
time code at that confidence level grows, replaces 
lower confidence code

(Unless you keep all your legacy code…)



Make Code Review Scale (cont.)
Many environments have peer-review systems in 
place – never too late to start

Train the developers to recognize the kinds of code 
constructs that often result in vulnerabilities

Humans, and even software developers, are good at 
recognizing patterns



Engaging security consultants
Work with some of the best application security 
experts

Different perspective

Experience with other projects that have had to 
solve similar problems

Not personally invested in any design, decision, 
architecture, etc

We’ve worked with Matasano, Leviathan, IOActive, 
and others; ask around for references and good 
(and bad!) experiences



Automated Penetration Testing
Custom fuzzing code automates destruction

Specific to targeted components
•Leverage existing frameworks and libraries where possible
•Mimics normal format of input: attackers don’t care about 
standards!

Our targets include
•FTP protocol and list formats
•HTTP server responses
•JavaScript
•URI methods
•Content parsing and DOM: HTML, SVG, XUL, MathML
•Goal: all untrusted data sources



Manual Penetration Testing
Individual test cases

Negative testing

Validating issues identified through source code 
analysis

Scratch those hard to reach areas!

Identify new vectors of attack

Mostly by hand, but some tools are useful:
•Netcat – The network swiss army knife 
•Snark – Attack proxy and request/response editor 
•Windbg – Runtime editing of variables and data injection 



Security Updates
Most vendors ship security updates for 
vulnerabilities reported externally

•The bugs found internally (though QA, engaging penetration 
testers, etc) are rolled up in service packs in major releases

•Bugs get the benefit of a full test pass
•Takes a very long time for the fix to reach the user
•Can’t tell from the outside how many bugs get fixed this 
way

Mozilla is continuously looking for vulnerabilities, 
shipping security updates on a regular schedule

Don’t have to wait for a major release to get the 
benefit of the security work we’re doing



Try this at home…please!
Evaluate whether the benefit of the monster test 
pass for service packs and major revisions is really 
required for security fixes

It’s not nice to force customers to pay for an 
upgrade to get security fixes

Just because they were found internally doesn’t 
mean they are not known externally

Customers shouldn’t have to be exposed for a year 
if the fix is already checked in and just waiting for 
the right ship vehicle to be ready



Lies, damned lies, and statistics
Using numbers makes you smarter



Managers Need Data
Answers questions like:

“Should I be worried?” (Yes.)

“Are we getting better?”

“What is the top priority?”

“When will we get there?”



Metrics for Success
“Show me how you’ll measure me, and I’ll show you 
how I’ll perform.” – Eli Goldratt; physicist

How should we measure success and prioritize 
effort?

Just counting bugs doesn’t work.

And it doesn’t help the industry:
•Provides incentive to group bugs unhelpfully
•Provides incentive to keep quiet about bugs not otherwise 
disclosed

You don’t want those incentives!



Metrics for Success (cont.)
What metrics describe user safety for Mozilla?

Mozilla’s metrics:
• Severity
• Find Rate/Fix Rate
• Time to Fix
• Time to Deploy

What are your metrics?



Severity
Helps us prioritize what to fix first, and when to 
ship an emergency update

Every bug with any security risk gets fixed, even low 
– often easier to fix than prove exploitable

No industry standard for severity ratings – but there 
probably should be!

Consistent with ourselves over time



Mozilla Severity Ratings
Critical: Vulnerability can be used to run attacker code and 
install software, requiring no user interaction beyond 
normal browsing 

High: Vulnerability can be used to gather sensitive data 
from sites in other windows or inject data or code into 
those sites, requiring no more than normal browsing 
actions 



Mozilla Severity Ratings (cont.)
Moderate: Vulnerabilities that would otherwise be High or 
Critical except they only work in uncommon non-default 
configurations or require the user to perform complicated 
and/or unlikely steps

Low: Minor security vulnerabilities such as Denial of 
Service attacks, minor data leaks, or spoofs



Find Rate
How many security bugs have we found?  How 
severe in aggregate?

What methods were most productive? Quantity and 
severity both count

Are some methods inefficient?
•Automated source code analysis: high number of false 
positives (one tool was 0 for ~300!)

Who is really good at finding security bugs?

How do we scale?



Pretty Chart: Find Rate
Find rate by month, Jan 06 - Mar 07



Pretty Chart: Find Rate
Find rate by month, Jan 06 - Mar 07



Pretty Chart: Find Rate
Find rate by month, Jan 06 - Mar 07



Pretty Chart: Find Rate
Find rate by month, Jan 06 - Mar 07



(A brief interlude about tools)
“What methods were most productive?”
– Window Snyder

“What happens when I press here?”
– Jesse Ruderman

“Why do we even have that button?”
– Various Mozilla hackers

Tools capture expertise so that non-experts can 
behave more like experts



Fix Rate
How long does it take to fix bugs?

Which are hardest to fix?

Which components have the highest concentration 
of bugs?

Can we fix many bugs with a single architecture 
change?

Are we finding faster than we can fix?

Regressions? (part of the cost of the fix)



Pretty Chart: Fix Rate
Fix rate by month, Jan 06 - Mar 07



Window of Risk
Two factors:

1. How long does it take to fix the security 
vulnerability?

2. How long does it take for users to get the patch 
installed?

Users don’t care why they’re vulnerable, and neither 
do attackers



Time to Fix
Once a vulnerability is identified, how long does it 
take a vendor to ship a patch?

Are we getting better over time?

Community Support
•Nightly builds tested by 20,000 people
•Users, developers, security researchers



Time to Deploy
How long does it takes for users to get a patch 
installed once the fix is available from the vendor?

Auto-update is:
• vital for users; and
• a source of useful data for us

Measuring active users via AUS requests



Upgrade Cycle for 1.5.0.6



Upgrade Cycle for 2.0.0.4



Time to Deploy
Reduced time to deploy by 25% this year

Users get patches faster, stay safer

90% of active users updated within six days



In your development environment
These metrics apply to most software projects

Reduce FUD about number of vulnerabilities

Maybe there are more because you’ve gotten better 
at finding them…

Track progress over time – make pretty charts

Predict the future!



Security stuff from the future
A product designer’s work is never done



Designing Firefox for Security
What are the key user tasks for security?

How can we make them better?

How can we help users help us help users?



Key User Task: Apply an Update
We want to optimize time-to-deploy, remember!

The “last mile” is in the hands of the user

 Why do users decline updates?
• Too intrusive (“when I’m done with this blog post”)
• Worried about things breaking

Session restore is a security feature

API stability is a security feature



Security in Firefox 3
Enhanced phishing and malware protection

Extended Validation Certificates

Moving components to managed code

Security UI

Under the hood



Protect against phishing



...and malware/attack sites

(* Mockups change.  Don’t over-report.)



Help users help us help users (!)

48



Help users help us help users (!)

49



Extended Validation Certificates
SSL certificates intended to verify identity

Except that not verifying very well improves 
business for CAs (lower cost, high margin)

EV Certs are more thoroughly validated (higher 
confidence in site identity)



Meet Larry



Larry shows site identity

(* Mockups change.  Don’t over-report.)



...or that we don’t know much

(* Mockups change.  Don’t over-report.)



Security User Interface

Better indication of
–Encryption
–Identity
–Previous interaction
–Knowledge of site 
–Security/privacy context

•Summary of security signals
•Certificate presentation
•Dialogs and alerts





Under the Hood
Reflow rewritten, large test suite added (improve 
content and DOM resilience)

Simplifying and robustificating handling of events 
(defend against race condition attacks)

Cross-Origin wrappers (block “chrome” escalation)

Cycle collector (centralized memory management 
for correctness)

Moving to cairo (shared resource with other 
projects, large test base)



Mozilla2
• JS2 via Tamarin provides JITing VM

• move more code from fragile C++ to managed JS

• Replacing Mozilla-only C++ with standards
• libraries safer, easier ramp-up by new developers

• DeCOMtamination via Oink and friends
• better performance and static analysis

• Tool- and run-time security properties

• Even faster and fancier text and graphics

• Whitens teeth, still low-carb



Tools: free to every attendee!



Tools
Mozilla creates security tools to test Mozilla 
products.

HTTP Fuzzer

FTP Fuzzer

Javascript Fuzzer

But they can be useful to other environments!

Collaboration with Leviathan and 
Matasano

Mozilla Internal Tools



Sharing Tools
• Securing large software projects is difficult

• Most commercial vendors build internal tools, but 
are reluctant to make public

• Other development environments can benefit from 
security work at Mozilla

• This is the first set of security testing tools to be 
released



Sharing tools responsibly
Engaged other browser vendors in May (Microsoft, 
Apple, Opera)

Give everyone a chance to protect their users

Release tools once everyone has time to evaluate, 
react, and respond

Solicit and incorporate feedback

Iterate with other tools and updates



Protocol Fuzzers
These tools can be used to identify problems in 
code that implements HTTP or FTP

Not specific to Firefox



HTTP Protocol Fuzzer – Michael 
Eddington
Emulates an HTTP server to test how an HTTP client handles 
unexpected input.

Written in Python on top of the Peach Fuzzing Framework.

http.py
– Test case generation

Httpfuzzer.py
– Serves test cases to browser 


Httpfuzzer.html
– Drives browser to test server 


Gentestcases.py
– Creates file for each test case containing HTTP message 





FTP Protocol Fuzzers- Michael 
Eddington
Client and Listing fuzzers

Emulate server to test how an FTP client handles 
unexpected data

Built using RACKET ruby fuzzing framework

server.rb 
 FTP fuzzing server 


fuzz.rb 
RACKET fuzzing library 


list.rb 
 FTP listing module 



JavaScript Fuzzer – Jesse Ruderman
jsfunfuzz creates JavaScript function bodies and 
runs them. (Also decompiles them!)

Creates the functions using a bunch of mutually 
recursive functions: 

  makeStatement 
  makeExpr 
  makeFunction 
  makeSwitchBody 
  makeTryBlock 
  ... 



JavaScript Fuzzer – Jesse Ruderman
Found 280 bugs in Firefox (~27 exploitable):
•It knows a lot about the JavaScript language
•It breaks all the rules
•It is not scared to nest very deeply
•It can accumulate state
•It tests correctness, not just crashes
•It works when Jesse is sleeping



JavaScript Fuzzer – Jesse Ruderman
Bug 352606 

y = ({toString: gc}); 
new Function("y--;")(); 

Bug 353079 

for (let a in [1]) let (x) { for(let y in 
((function(id2) { return id2; })(''))) 
{ } } 

Bug 361346 

this.x setter= new Function; 
this.watch('x', function(){}); 
gc(); 
x = {}; 



Get Mozilla security tools
Permanent home coming soon!  Watch the Mozilla 
Security Blog for details: http://blog.mozilla.com/
security/

JavaScript fuzzer lives in bug “jsfunfuzz”:

https://bugzilla.mozilla.org/show_bug.cgi?
id=jsfunfuzz



Mozilla Security Sites
Security Blog

http://blog.mozilla.com/security/

Security Advisories

http://www.mozilla.org/projects/security/known-
vulnerabilities.html

Security Projects

http://www.mozilla.org/projects/security/



Get Involved
How?

• Spread the word!

spreadfirefox.com

• Give us feedback

• Write an add-on

developer.mozilla.org

• Become a contributor

• Join MoCo!

Security folks like you
•Design

•Implementation

•Code review and penetration 
testing

•Develop tools

•Report bugs

•Run nightlies



Thank You
window@mozilla.com
shaver@mozilla.com


