
Toward an Information Theoretic Secure
Anonymous Communication Service

The Pynchon Gate Pseudonymous Mail System

Len Sassaman1, Nick Mathewson2, Brian Warner3, Bram Cohen4, and Bart
Preneel1

1 Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{len.sassaman,bart.preneel}@esat.kuleuven.be
2 The Free Haven Project
nickm@freehaven.net

3 Allmydata, Inc.
555 De Haro Street, Suite 400, San Francisco CA, 94107 USA

warner-pynchon@lothar.com
4 BitTorrent, Inc.

201 Mission Street, Suite 900, San Francisco, CA 94105
bram@bittorrent.com

Abstract. We describe the Pynchon Gate, a practical pseudonymous
message retrieval system. Our design uses a simple distributed-trust pri-
vate information retrieval protocol to prevent adversaries from linking
recipients to their pseudonyms, even when some of the infrastructure
has been compromised. This approach resists global traffic analysis sig-
nificantly better than existing deployed pseudonymous email solutions,
at the cost of additional bandwidth. This design improves upon previous
versions by being resistant to Byzantine servers. We provide a review of
related work, and evaluate it in comparison to our approach. We exam-
ine security concerns raised by our model,and propose solutions. Special
emphasis is placed on ease of implementation and deployment of the
system, as well as end-user usability issues.

1 Introduction

Over the last several decades, there have been numerous systems proposed which
aim to preserve the anonymity of the recipient of some data. Some have involved
trusted third-parties or trusted hardware; others have been constructed on top
of link-layer anonymity systems or mix networks.

Pseudonymous messaging services allow users to send messages that originate
at a pseudonymous address (or “nym”) unlinked to the user, and to receive mes-
sages sent to that address, without allowing an attacker to deduce which users
are associated with which pseudonyms. These systems can be used for parties
to communicate without revealing their identities, or can be used as a building-
block for other systems that need a bi-directional anonymous communication



channel, such as Free Haven [27]. But, as we will argue below, most existing de-
ployed solutions are either vulnerable to traffic analysis or require unacceptably
large amounts of bandwidth and storage as the number of users and volume of
traffic increase.

We review the architecture and design of our proposed solution: the Pynchon
Gate [58], a design that uses private information retrieval (PIR) [13] primitives
to build a secure, fault-tolerant pseudonymous mail retrieval system.

In our system, pseudonymous users (or “nym holders”) use an existing anony-
mous email network (such as Mixmaster [52] or Mixminion [22]) to send authen-
ticated requests to a nym server, which delivers outgoing messages to the email
network and handles administrative commands. The nym server also receives in-
coming messages and passes them to a collator component, which encrypts the
messages and periodically packages them into regular batches. These batches are
then replicated at a number of distributor servers, which use a private informa-
tion retrieval protocol to allow nym owners to receive mail while maintaining
unlinkability between a message and its recipient.

Goals. First, our design must be secure: we want the Pynchon Gate to resist
active and passive attacks at least as well as the state of the art for forward
message anonymity. Thus, we should try to protect users’ identities from a global
eavesdropper for as long as possible; to hinder active attackers who can delay,
delete, or introduce traffic; and to resist an attacker who has compromised some
(but not all) of the servers on the network.

In order to provide security, however, we must ensure that the system is
deployable and usable: since anonymity and pseudonymity systems hide users
among each other, fewer users means less protection [1]. Thus, we should handle
node failure without loss of mail; we must not require more bandwidth than
volunteer servers can provide or users are willing to use; and we should not
require a complicated interface.

In this paper. We begin in Section 2 with a discussion of related work, and an
overview of known attacks against existing pseudonymity systems. (To motivate
our work, section 5.2 presents new analysis on the effectiveness of passive traf-
fic analysis against current reply-block based nym servers.) Section 3 presents
the Pynchon Gate in more detail, describing its organization, design rationales,
and network formats. We describe our simple PIR protocol in Section 4, and
discuss methods of extending it to resist Byzantine server actions. In Section 5
we analyze security, and in Section 6 we discuss optimizations and performance
qualities of our solution. We close with an evaluation of our design in Section 7.

2 Background

Here we present a brief outline of existing pseudonymity solutions and discuss
their limitations and attacks against them.



2.1 Related Work

First, we discuss existing designs for pseudonymous message delivery. Many as-
sume the existence of a “forward” anonymous channel that a sender can use to
send a message to a known recipient while preventing the recipient, the infras-
tructure, and any attackers from knowing who is communicating with whom.
Currently deployed designs are based on Chaum’s mix [12] architecture, and
include the Mixmaster [52] and Mixminion [22] anonymous remailer networks.
It is trivial to use these systems to send pseudonymous messages: the sender
can make an anonymous message pseudonymous by signing it with a public key
associated with her pseudonym. Thus, these designs focus on how to receive
messages sent to a pseudonymous address.

Other descriptions of the use of PIR in preserving recipient anonymity have
been independently proposed but not deployed. Earlier work by Jim McCoy
describes a similar architecture to the Pynchon Gate, but does not use an
information-theoretic primitive for preserving privacy [50]. Independent work
by Cooper and Birman [15] describes a PIR-based message service for mobile
computing systems, and Berthold, et al. have presented work [5] which shows
that simple optimizations to the PIR protocol are possible.

Reply blocks and return addresses. In 1981, Chaum [12] described a method
of using return addresses in mix-nets: recipients encode a reply path, and allow
senders to affix messages to the encoded path. As the message moves through
the network, the path is decoded and the message encoded at each hop, until
an encoded message reaches its eventual recipient. This system relies upon all
selected component nodes of the chosen path remaining operational in order for
mail to be delivered, which can make the system too unreliable for practical use
if significant time elapses between path generation and message origination.5

In addition to reliability issues, some implementations of these “reply blocks”
suffer from a pseudonym management perspective. Cypherpunk nym servers
based on the first generation implementation of Chaum’s mix-nets (Type I re-
mailers [31]), such as alpha.c2.net [3] and nym.alias.net [49], implement a
central reply-block repository that allowed the pseudonym holders to receive
messages delivered to a email address. Unfortunately, Type I remailers allow
multiple uses of their reply blocks, which are vulnerable to replay and flooding
attacks as discussed in [16, 48]. Type II (Mixmaster) and Type III (Mixmin-
ion [22]) systems do not permit multiple-use reply blocks, and prevent replay
attacks [17].

Single-use reply blocks. While the Type II system does not support anony-
mous reply blocks, the Type III (Mixminion) system introduces single-use reply
5 Forward-only messages through a mix-net, however, are sufficiently reliable. The

client software can evaluate network health information [54, 42] before sending a
message, and thus can construct robust remailer chains based on the current health
of the remailer network.



blocks (SURBs) [41] to avoid replay attacks. The Type III protocol requires the
recipient to create a large number of reply blocks for senders to use. In prac-
tice, this is likely to be automated by a nym server [44] that stores a number
of SURBs and uses them to deliver pseudonymous mail to to the recipient—one
such design is Underhill [46]. Type III also has the property that the forward and
reply messages share the same anonymity set, and recent work has been done by
Danezis and Laurie on attack-resistant anonymous packet formats suitable for
reply messages [23]. However, since reply blocks are still used, reliability issues
remain: if any given node in the pre-selected SURB’s path is defunct during the
interval in which the mail is to be delivered, the mail is lost. Reply block sys-
tems are also susceptible to intersection attacks [7]: a global observer can collect
data on who is sending and receiving mail, and given enough time and data, can
reliably determine who is talking to whom [19].

Network-level client anonymity. The ZKS Freedom Network [8] provided
anonymous access to a POP3 server [51], enabling its users to maintain pseudonyms
using standard email protocols. Freedom was discontinued due to high operating
expenses, especially in bandwidth. Other network-level anonymity systems, such
as Pipenet [18], Onion Routing [35], the Java Anon Proxy [6], or Tor [29], could
be used in much the same fashion; unfortunately, they face the same barriers to
widespread deployment [34]. Attempts to address the practical barriers to de-
ployment of low-latency anonymity systems have resulted in designs which are
at greater risk to traffic analysis methods such as end-to-end timing attacks [21,
20, 53, 25] It is possible that such a low-latency system may be developed which
is both secure against end-to-end analysis and cost-effective to operate, but no
such system has yet been proven feasible.

Network-level server anonymity. The second generation implementation of
Onion Routing, Tor [29], implements rendezvous points [33] that allow users to
offer location-hidden services. A user wishing to anonymously receive messages
can use this to receive mail at a hidden location: messages are delivered to the
server over the Onion Routing network, and successful delivery does not require
the sender to know the IP address of the destination server.

Rendezvous points offer an alternative method of leveraging network-level
anonymity systems for anonymous mail receipt; however, they do not address
the previously mentioned concerns with these anonymity systems.

Re-encryption mixes. Re-encryption mixes [37] aim to improve the reliabil-
ity of anonymous message systems. Recent work has shown that re-encryption
mixes can be used to facilitate anonymous message replies [36]. While reusable
anonymous return channels in re-encryption mixes do improve on the robust-
ness of simple reply blocks in a Chaumian mix-net, reliability problems are still
possible. Re-encryption mixes require that the security vs. reliability tradeoffs
be made by the sender at the time that the message is sent. A more desirable



property would be to allow the recipient to make security determinations at the
time the message is retrieved.

Broadcast messages and dead-drops. Chaum discusses a traffic-analysis
prevention method in which all reply mail in the anonymous mail system is
sent to all possible recipients. A less invasive optimization has already been
implemented in the form of Usenet mail drops [10]: an anonymous remailer
can deliver mail to a newsgroup, rather than to an email recipient. Such mail
can be encrypted to a recipient’s private key, and left for her to collect from
the newsgroup. If recipients use the same newsgroup and behave identically
(for instance, by downloading the entire set of newsgroup messages daily), the
possible statistical attacks on direct mail delivery of reply messages to individual
email addresses are avoided. This solution also removes the necessity for reply-
blocks, as the drop location can be established upon out-of-band.

Of course, this “send everything everywhere” approach suffers massive scala-
bility problems. As the number of users in the system increases, each user’s band-
width requirements become prohibitive. Users are thus encouraged to “cheat”
and only download sections of the newsgroup that they are sure contain their
messages, or not download on days that they do not expect messages. This al-
lows an attacker to gather information about messages in which an individual
has interest, and provides a way to attack the security of the system [2].

3 The Pynchon Gate Design

We present a design framework for the Pynchon Gate. A detailed implementation
specification can be found in [45].

3.1 Overview and Rationale

The Pynchon Gate is a group of servers that provide anonymous message re-
trieval capabilities (see Figure 1). A nym server receives messages for different
pseudonym accounts via email.6 Once every “cycle” (e.g., 24 hours), the nym
server passes these messages to a collator, which batches them into an indexed
“bucket pool,” and and passes these pools to each independently operated dis-
tributor node in the network. Each pseudonym holder then makes a series of
requests to k chosen distributor nodes, enabling her to receive her messages with-
out the individual distributors determining the pseudonym being requested. The
protocol used is resistant to collusion: even if the adversary controls (k − 1) of
the chosen distributors, the adversary cannot link the user to her pseudonyms.

6 The servers could also receive messages through any suitable medium for message
transfer, such as “instant message” systems [24]. We require a forward anonymity
protocol to allow the nym holder to communicate with the nym server, so at a
minimum the nym server must be able to receive email in addition to any optional
support for other protocols.



Encrypted emails

Sender Sender Sender

Mix net
Nym server

email to nym
email to nym

Collator

Distributor Distributor Distributor

Anonymous email to nym

...

...
Bucket pools (via BitTorrent)

Recipient

PIR operations

Anonymous
control messages,
outgoing email

Validator

Fig. 1. The Pynchon Gate Architecture

This distributed-trust PIR-based message retrieval system lets us keep the
reliability, and security of the “send everything everywhere” method, while bring-
ing the system into the realm of feasibility for users with limited resources.

We discuss the components of the Pynchon Gate architecture below.

3.2 The Nym Server

The public-facing side of the Pynchon Gate consists of a nym server that sends
and receives pseudonymous email. The nym server itself provides no sender
anonymity; rather, it relies on existing mix networks [22, 52]. The nym server
is visible to external email correspondents, and receives messages for the nym
owners at their specified email addresses.

Nym servers manage email accounts for pseudonyms. For each pseudonym,
the nym server stores a long-term public key used by the nym holder to en-
crypt and authenticate outgoing email and administrative messages. Similarly,
nym server stores a short-term shared secret for each account, used to encrypt
messages to the nym holder. This secret can be reset by the nym holder after
account creation.



The shared secret is updated every cycle, such that, if S[i] is the shared
secret in a given cycle i, then S[i+ 1] = H(S[i]|"NEXT CYCLE"), where H(·) is a
cryptographic hash and | denotes concatenation. From each S[i], the nymserver
derives a set of sub-secrets for individual messages received that cycle. The j’th
sub-secret on day i is Subkey(j + 1, i) = H(Subkey(j, i)|"NEXT SECRET"), with
Subkey(0, i) = H(S[i]|"NEXT SECRET").

Once it no longer needs a shared secret or a given subkey, the nym server
drops it immediately, to limit the impact of key compromise (at the server or
client) and improve forward security. We use a separate chain of keys for each
cycle so that it is easier for a user to resynchronize after missing a few cycles.

These subkeys are used to encrypt and identify the messages received on day
i. When the j’th message for the nym is received, the nym server compresses it,
encrypts it with the symmetric key H(Subkey(j, i)|"KEY"), and prefixes it with
the opaque identifier H(Subkey(j, i)|"ID"). By deriving the message keys and
identifiers in this way, we allow users to store keys and identifiers for pending
messages without risking exposure of messages encrypted in the same cycle.

Finally, the nymserver also generates an different independent identifier for
each user every cycle: UserID[i] = H(S[i]|"USER ID").

3.3 The Collator

At the end of each cycle, the nym server passes messages to the collator, which
typically resides on the same physical server. The collator organizes all previously
unretrieved messages into a three-level structure, consisting of a meta-index, a
set of fixed-size index buckets, and a set of fixed-size message buckets.

Each user’s messages are stored in a different set of message buckets, ordered
by UserID. The index buckets contain, for each UserID (in order), the first
message bucket containing that user’s messages, and a digest of that bucket.
Finally, the meta-index lists, for each index bucket, the first and last UserID
in that bucket, and a digest of that bucket (see Figure 2). The index buckets
and the message buckets together comprise the cycle’s “bucket pool.” To ensure
integrity, each bucket contains a hash of the next.

The metaindex is signed with the collator’s private key, along with the index
of the cycle to which it applies.

To prevent an attacker from flooding a nym and observing which user receives
a large volume of traffic, each nym has a maximum number of message buckets
that may be filled in a given cycle. If there are more pending messages than
will fit in the nym’s buckets, the collator defers some for a later cycle.7 Because
the encrypted messages are prefixed with H(Subkey(j, i)|"ID"), the user can tell
which key to use for messages that are delivered out of order.

7 As an extension to save bandwidth and prevent denial of service attacks, the nym
server can build a special “summary message” containing the headers of pending
emails, and their opaque identifiers, and include this message in the user’s message
bucket. The user can then send a signed control message to the nym server requesting
that unwanted emails be deleted and desired ones given priority.



Meta-index

Index block

First UserID, 
Hash

Message 
block

Index block

First UserID,
Hash

...

...

UserID, 
Hash

...

Message 
block

Message 
block

Message 
block

...

Hash Hash Hash Hash

...

Fig. 2. The meta-index and bucket pool

The collator should use S-expressions [56] for representing the structure of
the database. More details on the exact data format used can be found in the
byte-level spec [45].

3.4 Distributors and clients

Once the collator is done, it relays the signed meta-index, and the entire bucket
pool, to a set of independently operated distributor nodes. (This data should be
transmitted using a bandwidth-sparing protocol such as BitTorrent [14], so that
the collator does not need to send the entire pool to each distributor.)

At this point, clients can download their messages for the cycle. First, a
given client downloads the meta-index from a randomly chosen distributor, and
verifies its signature. The client then computes its UserID for the day, and uses
the meta-index to tell which index bucket will contain an entry for that UserID.

The client then uses the PIR protocol described in Section 4 to retrieve the
correct index bucket, checks that the bucket’s digest is as expected, and uses the
index bucket to learn which message buckets will contain the client’s messages.
The client downloads these buckets with using PynGP, and checks their digests.
If the client has received fewer buckets this cycle than her maximum, she per-
forms extra PIR operations up to that maximum, to prevent an observer from
learning how many messages she has received.



Depending on the length of the cycle, clients may not be able to down-
load messages every cycle. Therefore, distributors must retain meta-indexes and
bucket pools for a reasonable window of time, to be sure that all clients have
time to download their messages.

The message integrity and tagging attack protection mechanism described
in Section 5.1 also ensures that malicious distributors will be discovered if they
attempt to execute denial of service attacks by dropping or garbling messages.

Since it is not necessary for every distributor to be operational or honest
at the given point that a client wishes to retrieve mail, the system handles
distributor node failure in a graceful manner.

4 The PIR Protocol

We present the PIR protocol used in this system in two parts. In Section 4.1
we describe a simplified version of the protocol that does not consider denial
of service attacks as part of its threat model. In Section 4.2 we present the
extensions to the first protocol, first proposed in [59], which permit probabilistic
detection of misbehaving servers.

4.1 PynGP 1.0: The Byzantine-naive PIR protocol

Using PynGP 1.0, the user submits a PIR query to ` distributors, and his message
is returned with none of the distributors able to deduce any information about
the user’s query unless all ` distributors collude. This form of PIR is referred
to as an information-theoretic (`− 1)-private `-server PIR protocol. The
protocol runs as follows: after choosing distributors, the client establishes an
encrypted connection to each (e.g., using TLS [26]). These connections must be
unidirectionally authenticated to prevent man-in-the-middle attacks, and can be
made sequentially or in parallel.

The client sends a different “random-looking” bit vector ~νsβ to each distrib-
utor s for each message block β to be retrieved. Each bit vector has a length
equal to the number of message blocks in the database. Each distributor s then
computes R(~νsβ) as the exclusive-or of all message blocks whose positions are
set to 1 in ~νsβ . The resulting value is then returned to the client.

Thus, in order to retrieve the β’th message block, the client need only choose
the values of ~νsβ such that when all ~νsβ are xored together, all values are 0 at
every position except β. (For security, ` − 1 of the vectors should be generated
randomly, and the bit vectors should be sent in a random order so that the `’th,
specially-crafted vector cannot be distinguished.) When the client receives the
corresponding R(~νsβ) values, she can xor them to compute the message block’s
contents.

As an optimization, a client may send k − 1 of the distributors a key for a
stream cipher instead of a bit vector. The distributors can use the stream in
place of the vector [4, 5]; only one still needs to receive a full vector.8

8 Obviously, this introduces a reliance on cryptographic security with regard to the
stream cipher, and the PIR protocol can no longer be considered fully ”information-



4.2 PynGP 2.0: Byzantine server detection extensions for PynGP

We have modified PynGP 1.0 only as much as necessary to address its known se-
curity flaws, originally reported in [60]. The revised version of the protocol retains
the same security properties set forth in the original design paper. We address
the issue of Byzantine nodes [43] by introducing a cut-and-choose methodol-
ogy [55, 9]. To support this addition, we modify the query algorithm and add a
response validation algorithm (to be run if the reconstruction algorithm fails) at
the cost of trivial computation expense and a doubling in the bandwidth needed
to perform queries of the database.9 Finally, we introduce a new component in
the Pynchon Gate architecture, known as the validator.

Thus, PynGP 2.0 is identical to PynGP 1.0 as described in Section 4.1, with
the following modifications to the protocol:

Each time the protocol runs, the client prepares two sets of bit vectors to
send to the chosen distributors. The first set, {~α}, is used to obtain the private
mailbox data via the PIR protocol; the second set, {~η}, is used to challenge the
honesty of each distributor.

At the step in the PynGP 1.0 protocol where the client would transmit the
“random-looking” bit vector to each distributor, the client submits two “random-
looking” bit vectors instead, one from {~α} and one from {~η}, transmitted in a
random order.

Upon receiving these bit vectors, the distributor performs the operations as
described in Section 4.1, and then returns two responses, in the same order which
the requests were received (or otherwise in such a manner that the responses are
linkable to the requests which generated them). The client caches the response
for the {~η} request, then performs the PIR operation as previously described
using the {~α} results from all distributors.

4.3 An additional architecture component: The Validator

We now introduce a new component in the Pynchon Gate architecture, known
as the validator. This component is essentially a distributor, except that it only
exists to confirm that the other distributors are not Byzantine. This specialized
distributor validates the “cut-and-chosen” responses as being correct, deterring
the operation of Byzantine nodes and probabilistically uncovering them should
they exist.

To ensure that additional trust is not required of this new component to the
system, the validator must be operated by the same entity who operates the
collator. The operator of the collator is already empowered to perform a denial

theoretically secure.” However, the benefits of this optimization can be argued to
justify the potential reduction in security.

9 While this is indeed a significant increase in system overhead, it is still feasible,
especially given the Pynchon Gate’s resource tuning properties which permit a linear
trade-off between bandwidth and storage, adjusted simply by changing the size of
the message blocks stored in the database. Doubling the size of the message blocks
halves the bandwidth necessary to perform a query.



of service attack by simply unplugging the power cord of the server running the
collator. Ergo, the balance of power in this distributed trust system is maintained
by placing the validator (whose operator could also force a denial of service
attack, though not as easily) under the control of the same entity.10 Note that
communication with the validator occurs over an encrypted link, just as with
normal distributors.

Auditing the distributors. The requests comprising set {~η} are crafted such
that they return a specific validation block when the PIR algorithm is performed.
Under normal circumstances, the contents of this block are of no interest to the
user. The individual responses are cached by the client, along with the corre-
sponding request that was sent to the distributor to generate them as well as
an identifier for the distributor which returned the responses. To verify that a
distributor is not attempting to behave in a Byzantine manner, the same bit
vectors in {~η} that had been submitted to each distributor can subsequently be
submitted to the validator, and the validator should return a response identi-
cal to that which the original distributor returned for each request. (The entire
{~η} needs to be submitted, as there may be multiple Byzantine servers acting
simultaneously.) Should the validator return a response that differs from the
one received by the client from a given distributor, that distributor should be
suspected of being Byzantine.11

Auditing the Validator. The addition of the validator component does raise
the concern that a corrupt nym-server/collator/validator coalition may attempt
to mount an attack on a user’s anonymity by systematically framing honest
distributors as Byzantine nodes so that the user selects only nodes operated
by the coalition. As one of the main premises behind the security of the Pyn-
chon Gate design is that the nym-server operator not be trusted to preserve the
user’s anonymity, a way to confirm that the validator is honest is needed. This
confirmation procedure is simple:

If the {~η} responses from the distributors differ from the {~η} responses from
the validator, the client should first attempt to verify the correctness of the {~η}
response by performing the PIR protocol and comparing the result to the known
validation block. If the correct block is returned, there is nothing to be learned
by querying the validator. If the responses to the {~η} requests yield an incorrect

10 The validator is never provided the contents of {~α} queries, since the validator, col-
lator, and nym server are not considered trusted with regard to a user’s privacy, and
knowledge of the contents of {~α} queries (or responses) could provide information
about the user’s identity.

11 Strictly speaking, the {~η} vectors should always be sent to the validator, regardless
of the outcome of the PIR operation using the {~α} results, to guard against the
scenario where an additional adversary not in collusion with the Byzantine server
might learn additional information about the state of the network. However, this
level of paranoia may not be affordable until bandwidth and computation become
less expensive.



validation block, the presence of at least one Byzantine distributor is verified.
The client then proceeds as described above, submitting each {~η} query to the
distributor one query at a time and recording the results. When a differing result
is received for a given query, it should be swapped in for the original result, and
the PIR protocol performed. The substitution of the validator’s response for
the original response should yield the correct validation block if the validator is
honest. In cases where the validator’s responses differ for more than one query,
this challenge should be performed for each differing response both individually,
and as a whole.

5 Attacks against Pseudonymity Systems

We present the common types of attacks against pseudonymity systems, and
present novel analysis of the effectiveness of one kind of traffic analysis against
the most popular currently deployed design. We also highlight security concerns
specific to the Pynchon Gate design.

5.1 Attack categories

Most known attacks on pseudonymity systems fall into one of the following
categories.

Legal and hacking attacks. Attackers may attempt to coerce the operators
of pseudonymity systems through lawsuits or other means [49, 62, 40, 38, 32], or
may attempt to surreptitiously obtain information about nym holders.

We limit these effects of these attacks by greedily encrypting incoming mes-
sages and deleting encryption keys. All sensitive data is deleted as the bucket
pool is generated, ensuring that the collator has as little information useful to
an attacker as possible.

Without dynamic key rotation it would be trivial for an attacker to archive
all data sent to distributors, and then at some later time obtain the nym’s col-
lator address and key from the nym server though an active attack on those
components. The attacker could then read all messages that nym has ever re-
ceived. In the interest of retaining little information for an attacker, implemen-
tations should discard old secrets as soon as they are no longer needed. Thus,
at the start of each cycle i, a nymserver should derive S[i + 1], UserID[i], and
Subkey(0, i), and immediately discard S[i]. After using each Subkey(j, i), the
nymserver should calculate Subkey(j+ 1, i) and discard Subkey(j, i). After each
cycle, the nymserver should discard the last Subkey(j, i), and UserID[i].

Mix attacks. Since we rely on mix networks, we must be concerned with at-
tacks against them. Furthermore, reply-block-based nym server systems require
additional security properties that normal mix-net systems may not have [23].

The Pynchon Gate uses mix-nets for forward message delivery only. Attacks
that do not work against a mix-net in normal forward-delivery mode will not
impact the Pynchon Gate.



Man-in-the-middle attacks. An attacker able to pose as a user’s chosen
distributors could trivially see all k PIR requests. We use TLS authentication to
prevent this attack.

Replay attacks. An attacker capable of monitoring the communications net-
work may attempt to obtain information about nym holders by comparing net-
work and user behavior when a given message or packet is transmitted multiple
times.

The Pynchon Gate uses TLS when communicating between components and
the client, so that data is encrypted with a short-lived session key. The topology
of the Pynchon Gate infrastructure further eliminates areas of potential replay
attack risk.

Tagging and known-cleartext attacks. An attacker may alter a message, or
observe the cleartext of a message, so that he may be able to later link an input
message with a given output retrieved by the nym holder.

The Pynchon Gate’s message and link encryption prevents an attacker from
observing the cleartext of a message. Tagging attacks are ineffective, as TLS
protects data integrity on the wire. The metaindex provides the client with the
hash of the index bucket. Each message bucket provides the hash of the next
message bucket, and with this information, the client can verify the integrity of
information downloaded from distributors and respond to garbled data without
leaking information about which bucket it was requesting.12

“Who am I?” attack. An attacker may send messages intended for nym Alice
to nym Bob instead, so that if “Alice” responds, the attacker will know they are
the same nym holder [20].

This attack relies primarily upon the ability to link one nym, Alice1, with
another nym, Alice2, by sending a message encrypted to Alice1’s to Alice2’s
address. The Pynchon Gate avoids this, though a similar social engineering at-
tack may be performed if the nym holder is using a separate message encryption
protocol such as PGP [11]. More research needs to be done to improve the area
of privacy-preserving human-computer interaction [57, 63].

Usage pattern and intersection attacks. An attacker may analyze network
usage and anonymity set members over time to sub-divide anonymity sets such
that a given user is identified. In addition to passive observation of the network,
there are a number of active attacks. For example, an attacker could flood a nym
to observe a corresponding increase in traffic by the recipient.

Users of the Pynchon Gate select distributors from which to receive data at
random, each time the nym holder retrieves her messages. Unlike systems where
12 If a client does notice a corrupt bucket, it should not re-attempt the PIR operation

until it has received all buckets, to avoid leaking which bucket it was reading through
the timing of its response.



the pseudonym infrastructure initiates the delivery of messages, the Pynchon
Gate Client initiates the retrieval of messages, and thus message retrieval cannot
be correlated to a given nym by a malicious sender.

Message buckets are of a fixed size, to protect against active flooding at-
tacks [61] as well as simple usage pattern analysis. If the volume of messages is
too great to fit in a users’ buckets, delivery continues by trickling the pending
messages to the distributors over the next several tree distributions. To prevent
denial of service attacks, users can selectively retrieve or delete excess messages.13

A hash tree of variable depth would risk leaking usage information about
nym-holders. The Pynchon Gate uses a tree of a fixed depth.

Since the time between sending a message and receiving a reply may leak
information about the nym holder, traffic from the client to the distributors is
regulated by the client, which queries the distributors only at given intervals. To
thwart active attacks against the distributor targeting a specific client, clients
should choose these intervals randomly.

5.2 Statistical disclosure against reply-block-based nym servers

Nym servers based on reply blocks (discussed in Section 2.1 above) are currently
the most popular option for receiving messages pseudonymously. Nevertheless,
they are especially vulnerable to end-to-end traffic analysis.

Suppose an adversary is eavesdropping on the nym server, and on all recipi-
ents. The attacker wants to know which user (call her Alice) is associated with a
given pseudonym (say, nym33). The adversary can mount an intersection attack,
by noticing that Alice receives more messages, on average, after the nym server
has received a message for nym33 than when it has not.14 Over time, the adver-
sary will notice that this correlation holds for Alice but not for other users, and
deduce that Alice is likely associated with nym33.

Recent work [19, 47] has studied an implementation of these intersection at-
tacks called statistical disclosure, where an attacker compares network behavior
when Alice has sent to network when she is absent in order to link an anonymous
sender Alice to her regular recipients Bob1...BobN . Against pseudonymous recip-
ients, however, these attacks are far easier: in the anonymity case, many senders
may send to any given recipient Bobi, but with pseudonymous delivery, only one
user sends or receives messages for a given pseudonym.

To examine this effect, we ran a version of the attack simulations described
in [47], assuming a single target pseudonym and N non-target pseudonyms pro-
viding cover. In order to make the attack as difficult as possible (and thus estab-
lish an upper bound on security), we assume that users behave identically: they

13 If a client will be retrieving large amounts of data on a regular basis, this method
will not work. Instead, the client should at account creation time request a sufficient
number of buckets to receive all data destined to it. Pending data queued on the
collator should be expired after a reasonable amount of time.

14 This task is especially easy if the adversary can distinguish reply messages from
non-reply messages, as is possible with Type I remailers.



receive messages with equal probability according to independent geometric dis-
tributions in each unit of time (receiving no messages with probability 1−PM );
they use identical reply blocks with path length ` through mixes in a steady
state that delay each message each round with probability PD.

We ran the simulated attack with different values for PM , PD, and `, against a
nym server with N = 216 active pseudonymous users. (This is probably an over-
estimate of the number of users on typical nymserver today [49].) We performed
100 trials for each set of parameters. In the worst case (for the nym holder), when
PM = 0.5, ` = 1, PD = 0.1, the lack of mix-net delay variance allowed the simu-
lated attacker to guess the user’s identity correctly after the user received an aver-
age of only 37 messages. In the best simulated case (PM = 0.5, PD = 0.9, ` = 4),
the user received an average of only 1775 messages before the attacker guessed
correctly. For an active user, this is well within a month’s expected traffic.

Although there are ways to use dummy traffic to resist statistical disclosure
attacks, these difficult to implement perfectly in practice (due to outages) and
even slight imperfections render users vulnerable to attack [47].

5.3 System availability attacks

Attacks against the security of an anonymous communication system are not the
only concern designers of such systems must address. It may simply be enough for
an attacker to render such systems unusable by reducing the reliability or uptime
of the system to such a degree that users seek other, possibly weaker or compro-
mised, means of communication. We do not address all possible denial of service
attacks in this paper, as most are commonly known in the information security
community, and are either attacks against lower-layers on the network protocols
upon which the Pynchon Gate system operates, or commonly-generalizable tech-
niques for denying access to a given network service. More information on these
general attacks can be found in RFC 4732 [39]. Instead, we limit our discussion
of this topic to attacks specific to PynGP or those which must be performed by
malicious servers operating as part of a Pynchon Gate deployment.

Byzantine server protection. In a distributed-trust anonymity system such
as the Pynchon Gate, there exists the possibility that some servers may be
Byzantine, i.e., they may behave incorrectly, either due to intentional malice
or simple error.15 In the case of the Pynchon Gate, the Byzantine behavior we
are concerned with is an incorrect response to a PIR query of a distributor’s
database.

All n distributors in the system have the exact same copy of the database, and
the system is designed such that any attempt by a Byzantine server to modify
its response to the PIR query will be detected by the user when he verifies the
root of the hash tree. This is crucial to preserving the anonymity properties of
the system, for if an attacker can alter a message or observe the cleartext of a
15 This concern is present in many other anonymity systems, including Chaumian mix-

nets [12, 52, 22] and systems built on top of them [49, 46].



message, he may potentially be able to later link an input message with a given
output retrieved by the nym holder.

The Pynchon Gate’s message and link encryption prevents an attacker from
observing the cleartext of a message. Active attacks that are dependent upon
the attacker’s ability to alter some of the data being transmitted to the user
such that the attacker may later link the user to his pseudonym based either on
a variance in the user’s response to altered versus unaltered data, or by simply
recognizing the product of the altered data as it is processed by the system
(collectively known as tagging attacks [30]) are ineffective, as TLS protects data
integrity on the wire. Thus, any tagging attacks an attacker wished to attempt
against a user would have to occur through the use of a corrupt distributor. To
protect against the case where a distributor provides (intentionally or otherwise)
an incorrect response to the PIR query, the client verifies that the hash of the
message block it has received can be authenticated through the hash tree with
the verified hash root.

Byzantine server detection. It is not enough, however, for the Pynchon client
to simply detect when a Byzantine action has occurred; ideally the user would
have a way of learning the identity of the Byzantine server, to avoid relying upon
it for future requests.

The hash tree verification system does not prevent a corrupt distributor from
creating, either through malice or error, a denial of service attack on the system
by responding with incorrect data to a client’s query. While the client will detect
that the message block is invalid after performing the final step of the PynGP
PIR protocol, and thus can conclude that some server was Byzantine, the client
cannot determine which server or servers returned the incorrect response. The
client cannot safely pass the message block contents (assuming they consist of
anything other than garbage) to the user, lest the user’s anonymity be potentially
compromised.

Furthermore, if attacks on portions of the pseudonymity infrastructure affect
some users differently than others, an attacker may exploit such attacks on
components of the system to facilitate an intersection attack against a user
of the system as a whole [28]. In the Pynchon Gate, if a Byzantine distributor
selectively performed denial of service attacks against certain users by returning
garbage results to their queries, but correctly responded to other users’ queries,
the attacker would increase his chances of learning the identity of certain users,
based on which users responded to messages that were successfully delivered.16

In other cases, a passive adversary could observe the actions of Byzantine servers
not under his control (and perhaps not even behaving maliciously, but simply

16 This type of attack is present (in a slightly different form) in non-PIR-based nym
server systems as well. For instance, in a reply-block system, an attacker could disable
certain mixes and observe which nyms ceased receiving traffic. If the nym holder has
a fixed-route reply-block, this would enable the attacker to identify the mixes used
in the nym holder’s reply-block path, and increase his chances of successfully linking
the nym with the nym holder’s true name [61].



incorrectly) to help facilitate intersection attacks [64]. Additionally, if a user
cannot know with confidence which server is behaving in a Byzantine fashion,
she is more likely to change the nodes she uses on a regular basis, both increasing
her exposure to long-term intersection attacks and increasing the probability
of selecting a server-set that consists of nodes operated entirely by a single
adversary.

We address this potential attack through the cut-and-choose protocol de-
scribed above, in Section 4.2.

Probability of Byzantine detection. As proposed, PynGP 2.0 gives a Byzan-
tine server a 50% chance of being discovered each time it attempts to behave in
a Byzantine manner. That threshold can be increased at the expense of greater
bandwidth overhead; however, we feel that a 50% detection rate is sufficient to
deter this sort of attack, due to the inherent reputation system involved with the
distributor network.17 This probability of detection is based on the assumption
that the Byzantine server considers it acceptable that its Byzantine action may
be ineffective. If the server wishes to guarantee a successful Byzantine operation,
it can do so by providing Byzantine answers to all the client’s requests, but the
probability of detection in that case is 100%.

One Byzantine action by a distributor verifiable as such to the collator,
validator, or nym server operator should be sufficient to blacklist a Byzantine
distributor. Care must be taken to ensure that an attacker does not frame an
honest server as Byzantine to have it blacklisted. Multiple reports identifying a
given server as Byzantine might simply indicate a Sybil attack being performed
to achieve the blacklisting of an innocent server.

5.4 Other security concerns

The information used for authentication of the system components (such as the
certificates and the hash tree root and metaindex) must be published widely to
prevent either the collator or any of the distributors from attacking clients by
tricking them into thinking that the hash root of the tree is something other
than what all of the other clients know it to be. Distributors should do basic
sanity checks, such as verifying tree integrity. The distributors should also send
audit messages of their own to verify that the messages correctly appear in the
system. Finally, clients should make sure that each of the distributors they use
agree about the value of the hash root.

6 System Performance, Scalability and Optimizations

In this protocol, the size of requests is linearly proportional to the total number
of messages and the size of responses is the bucket size. If one or the other of these
17 A Byzantine server’s chances of successfully providing a Byzantine response of

unidentified origin decreases in an manner inversely proportional to its probabilty
of detection.



values is large enough to cause scaling problems, then the collator can trade off
bucket size for bit field size by doubling the bucket size, which halves the bit field
size. With this approach, if the number of buckets becomes very large, then the
message size rises proportionately to the square root of the number of buckets.
This scales well, although it may necessitate multiple collators if the number of
buckets gets extremely large. (Note that while different collators may share the
same distribution nodes for architecture or resource reasons, their anonymity
sets would remain separate.)

The PIR algorithm in this paper does not have optimal asymptotic perfor-
mance, especially in bandwidth. We present it nonetheless because it is easy to
explain, implement, and analyze, and offers sufficient scalability to be useful.

Another potential bottleneck lies in the fact that distributors have to perform
a linear scan of the entire bucket pool in order to fulfill a request. However, they
can use a single linear pass to compute the results of many requests in parallel.
Thus, a distributor can fulfill a large number of requests at once, though the
latency to answer those requests is limited by the total size of the bucket pool,
and the throughput to the distributor’s hard drive (unless the bucket pool fits in
RAM). Also, by performing continuous linear scans of the entire database, the
distributor can begin computing the result of a request at any point during the
scan, finishing when the next scan returns to that same point. Thus, the latency
is exactly the time of one full scan.

Latency in the PIR protocol can be reduced by allowing the client to retrieve
all its buckets at once with a single execution of the PIR protocol on a column
vector of all its messages. This approach makes the whole database be the same
size for each publication period (given the same user set) which could waste
bandwidth and storage space, though unused sections could be optimized out,
at the cost of requiring some compression to distribute everything to the dis-
tributors efficiently. Other similar tradeoffs between latency, bandwidth, storage,
and computation also exist.

6.1 Performance comparison between PynGP 1.0 and PynGP 2.0

As previously stated, PynGP 2.0 has a higher performance cost than its prede-
cessor. We have attempted to strike a balance between security and excessive
resource consumption when the security issues are unlikely to be problematic, or
the resource requirements too great to qualify the protocol as “deployable”. Ar-
eas where security could be increased, if performance cost were no object, include
the addition of more than a single challenge-tor set to decrease the probability of
a Byzantine server successfully avoiding detection.18 Also, as previously noted, it
would be ideal, were it affordable, for the challenge-vectors to be validated every
time a PynGP protocol run was performed. This is likely cost-ineffective, though,
given that knowledge of the user’s failure to validate the hash root is unlikely to
give an adversary any significant advantage, let alone lead to a user-level privacy

18 For n challenge-vector sets, the probability of avoiding detection is 1
n+1

, and conse-
quently, the probability of failing to cause a Byzantine failure is n

n+1
.



vulnerability. It is far more important that all clients in the system behave ac-
cording to the same policy in this regard. Also, if the number of challenge-vector
sets is increased, the cost of validation increases proportionally.

The resource requirements for the validator must be more fully investigated,
and will not truly be known until the system is tested in a live environment
with actual Byzantine nodes. It is conceivable that the validator might best
be deployed as multiple load-balanced servers, should the level of resource con-
sumption warrant it. It is also conceivable that there may be few to no challenge
validations necessary under normal conditions. When challenge validations are
required, however, the bandwidth cost per challenge is non-trivial. (The valida-
tor receives (r · `) bits from a given client, and returns (n · `) bytes, where r is
the number of message blocks (and thus the length of any given bit vector) and
n is the size of a message block.) Though a client must validate its challenge-set
in its entirety, the client should avoid sending the entire set at once, however. It
is advisable to submit each element of the challenge-set to the validator succes-
sively, so that the validator can impose rate-limiting on the incoming validation
requests to cope with instances of sudden high load.

The capability to gracefully address the issue of Byzantine nodes is itself an
anti-Byzantine measure; one possible approach when a Pynchon Gate system
is first deployed might be to use PynGP 1.0 until evidence of the existence of
Byzantine servers in the system is observed. It is possible that merely having
PynGP 2.0 implemented in the software and able to be enabled instantly could
serve as a deterrent to a casual attacker whose goal is to deny service to the
system, as the only effect such an attacker would have by deploying a Byzantine
node would be to increase the network communication and verifier computation
costs to a level that we have already deemed acceptable.

7 Conclusions

We have presented a system for anonymous message retrieval that provides
stronger anonymity assurance and more robustness than other theorized or de-
ployed high-latency pseudonymous message retrieval systems. Our system re-
sists traffic analysis better than current deployed systems, and offers convenient
scalability options. Additionally, it discourages Byzantine servers by offering a
technique for detecting misbehaving servers without compromising or weakening
the system’s security.

We have proposed a client protocol that does not rely upon an obtrusive
user interface. Much work remains in the field of effective user interface design
for privacy and anonymity systems, particularly when the privacy component is
viewed by the user as optional.

8 Acknowledgments

Numerous individuals have contributed to the Pynchon Gate project in one form
or another over the years. We owe a debt of gratitude to all of them, especially



Elena Andreeva, Sonia Araña, Adam Back, Nikita Borisov, David Chaum, Roger
Dingledine, Orr Dunkelman, Lucky Green, Markulf Kohlweiss, Ben Laurie, Jim
McCoy, David Molnar, Russell O’Connor, Peter Palfrader, Meredith L. Patter-
son, Adam Shostack, Bryce Wilcox-O’Hearn, Shar van Egmond, and Julia Wolf,
and many others.

Additionally, we thank the Free Haven Project for graciously providing mail-
ing list and code repository resources.

The work of Bart Preneel and Len Sassaman was supported in part by the
Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish Govern-
ment and by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy). Len Sassaman’s work was supported in part by the EU within
the PRIME Project under contract IST-2002-507591.

This whitepaper should be considered a work in progress. An earlier version
of this work [58] was published by the Association for Computing Machinery, and
is c© 2005 by ACM, Inc. Other material included in this paper is taken from tech-
nical reports published by Katholieke Universiteit Leuven and are c© 2007 K.U.
Leuven Research and Development. Please contact the first author for requests
for reproduction of this work.

References

1. Alessandro Acquisti, Roger Dingledine, and Paul Syverson. On the economics of
anonymity. In Rebecca N. Wright, editor, Financial Cryptography. Springer-Verlag,
LNCS 2742, 2003.

2. Anonymous. alt.anonymous.messages considered harmful. Mailing list post,
November 1995. http://cypherpunks.venona.com/date/1995/11/msg00089.

html.

3. Andre Bacard. FAQ for the ALPHA.C2.ORG Remailer. Usenet post, Oc-
tober 1995. http://groups.google.com/groups?selm=4q4tsr%248ui%40crl14.

crl.com&output=gplain.

4. Adam Back. Personal communication, April 2003.

5. Oliver Berthold, Sebastian Clauß, Stefan Köpsell, and Andreas Pfitzmann. Effi-
ciency improvements of the private message service. In Ira S. Moskowitz, editor,
Proceedings of Information Hiding Workshop (IH 2001), pages 112–125. Springer-
Verlag, LNCS 2137, April 2001.

6. Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes: A system
for anonymous and unobservable Internet access. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 115–129. Springer-Verlag, LNCS 2009, July
2000.

7. Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. The disadvantages of
free MIX routes and how to overcome them. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 30–45. Springer-Verlag, LNCS 2009, July
2000.

8. Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems 2.0 archi-
tecture. White paper, Zero Knowledge Systems, Inc., December 2000.



9. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

10. Rick Busdiecker. Message pool: alt.anonymous.messages. Mailing list post, August
1994. http://cypherpunks.venona.com/date/1994/08/msg00185.html.

11. J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP Message Format.
Request for Comments: 2440, November 1998.

12. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

13. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-
mation retrieval. In IEEE Symposium on Foundations of Computer Science, pages
41–50, 1995.

14. Bram Cohen. Incentives Build Robustness in BitTorrent. In Workshop on Eco-
nomics of Peer-to-Peer Systems, Berkeley, CA, USA, May 2003. http://www.

sims.berkeley.edu/research/conferences/p2pecon/papers/s4-cohen.pdf.
15. David A. Cooper and Kenneth P. Birman. Preserving privacy in a network of

mobile computers. In Proceedings of the 1995 IEEE Symposium on Security and
Privacy, May 1995.

16. Lance Cottrell. Mixmaster and remailer attacks. http://www.obscura.com/~loki/
remailer/remailer-essay.html.

17. Lance Cottrell. Re: Strengthening remailer protocols. Mailing list post, September
1996. http://cypherpunks.venona.com/date/1996/09/msg00730.html.

18. Wei Dai. Pipenet 1.1. Usenet post, August 1996. http://www.eskimo.com/

~weidai/pipenet.txt.
19. George Danezis. Statistical disclosure attacks: Traffic confirmation in open envi-

ronments. In Gritzalis, Vimercati, Samarati, and Katsikas, editors, Proceedings
of Security and Privacy in the Age of Uncertainty, (SEC2003), pages 421–426,
Athens, May 2003. IFIP TC11, Kluwer.

20. George Danezis. Better Anonymous Communications. PhD thesis, University of
Cambridge, 2004.

21. George Danezis. The traffic analysis of continuous-time mixes. In Proceedings of
Privacy Enhancing Technologies workshop (PET 2004), LNCS, May 2004.

22. George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a
Type III Anonymous Remailer Protocol. In Proceedings of the 2003 IEEE Sympo-
sium on Security and Privacy, May 2003.

23. George Danezis and Ben Laurie. Minx: A simple and efficient anonymous packet
format. In Proceedings of the Workshop on Privacy in the Electronic Society
(WPES 2004), Washington, DC, USA, October 2004.

24. M. Day, S. Aggarwal, G. Mohr, and J. Vincent. Instant Messaging / Presence
Protocol Requirements. Request for Comments: 2779, February 2000.

25. Claudia Dı́az, Len Sassaman, and Evelyne Dewitte. Comparison between two
practical mix designs. In Proceedings of 9th European Symposium on Research in
Computer Security (ESORICS), LNCS, France, September 2004.

26. T. Dierks and C. Allen. The TLS Protocol. Request for Comments: 2246, January
1999.

27. Roger Dingledine, Michael J. Freedman, and David Molnar. The Free Haven
Project: Distributed anonymous storage service. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability. Springer-Verlag, LNCS 2009, July 2000.

28. Roger Dingledine and Nick Mathewson. Anonymity loves company: Usability and
the network effect. In Proceedings of the Fifth Workshop on the Economics of
Information Security (WEIS 2006), Cambridge, UK, June 2006.



29. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

30. Roger Dingledine and Len Sassaman. Attacks on Anonymity Systems: Theory and
Practice. In Black Hat USA 2003 Briefings, Las Vegas, NV, USA, July 2003.

31. Hal Finney. New remailer... Mailing list post, October 1992. http://cypherpunks.
venona.com/date/1992/10/msg00082.html.

32. Independent Centre for Privacy Protection. AN.ON still guarantees
anonymity. http://www.datenschutzzentrum.de/material/themen/presse/

anonip_e.htm, 2003.
33. Ian Goldberg. A Pseudonymous Communications Infrastructure for the Internet.

PhD thesis, UC Berkeley, December 2000.
34. Ian Goldberg. Privacy-enhancing technologies for the Internet, II: Five years later.

In Roger Dingledine and Paul Syverson, editors, Proceedings of Privacy Enhancing
Technologies workshop (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

35. David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing
information. In Information Hiding, pages 137–150, 1996.

36. Philippe Golle and Markus Jakobsson. Reusable anonymous return channels. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2003),
Washington, DC, USA, October 2003.

37. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal re-
encryption for mixnets. In Proceedings of the 2004 RSA Conference, Cryptogra-
pher’s track, San Francisco, CA, USA, February 2004.

38. Thomas C. Greene. Net anonymity service back-doored. The Register, 2003. http:
//www.theregister.co.uk/2003/08/21/net_anonymity_service_backdoored/.

39. M. Handley, E. Rescorla, and Internet Architecture Board. Internet Denial-of-
Service Considerations. Request for Comments: 4732, November 2006.

40. Johan Helsingius. press release announcing closure of anon.penet.fi. http://www.

penet.fi/press-english.html.
41. Mike Ingle. Interoperability, one-use remailer tickets. Mailing list post, December

1994. http://cypherpunks.venona.com/date/1994/12/msg00245.html.
42. Klaus Kursawe, Peter Palfrader, and Len Sassaman. Echolot and leuchtfeuer:

Measuring the reliability of unreliable mixes. Technical report esat-cosic 2007-005,
Katholieke Universiteit Leuven, 2007.

43. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

44. Andrew Loewenstern. Re: Strengthening remailer protocols. Mailing list post,
September 1996. http://cypherpunks.venona.com/date/1996/09/msg00898.

html.
45. Nick Mathewson. Pynchon Gate Protocol draft specification, September 2004.

http://www.abditum.com/pynchon/.
46. Nick Mathewson. Underhill: A proposed type 3 nymserver protocol specification,

August 2004. http://www.mixminion.net/nym-spec.txt.
47. Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and

resisting statistical disclosure. In Proceedings of Privacy Enhancing Technologies
workshop (PET 2004), LNCS, May 2004.

48. Tim May. Re: Strengthening remailer protocols. Mailing list post, September 1996.
http://cypherpunks.venona.com/date/1996/09/msg00167.html.

49. David Mazières and M. Frans Kaashoek. The Design, Implementation and Opera-
tion of an Email Pseudonym Server. In Proceedings of the 5th ACM Conference on
Computer and Communications Security (CCS’98). ACM Press, November 1998.



50. Jim McCoy. Anonymous mailbox servers. Presentation, HIP’97, August 1997.
51. Roger McFarlane, Adam Back, Graydon Hoare, Serge Chevarie-Pelletier, Bill Hee-

lan, Christian Paquin, and Deniz Sarikaya. Freedom 2.0 mail system. White paper,
Zero Knowledge Systems, Inc., December 2000.

52. Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster Protocol
— Version 2, July 2003. http://www.abditum.com/mixmaster-spec.txt.

53. Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy. IEEE CS, May
2005.

54. Peter Palfrader. Echolot: a pinger for anonymous remailers. http://www.

palfrader.org/echolot/.
55. M. O. Rabin. Digitalized signatures. In R. Lipton and R. De Millo, editors,

Foundations of Secure Computation, pages 155–166, New York, 1978. Academic
Press.

56. Ron Rivest. SEXP—(S-expressions), May 1997. http://people.csail.mit.edu/

rivest/sexp.html.
57. Len Sassaman. The promise of privacy. Invited talk, LISA XVI, November 2002.
58. Len Sassaman, Bram Cohen, and Nick Mathewson. The Pynchon Gate: A Secure

Method of Pseudonymous Mail Retrieval. In Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2005), Arlington, VA, USA, November
2005.

59. Len Sassaman and Bart Preneel. Solving the Byzantine Postman Problem. Tech-
nical Report ESAT-COSIC 2007-004, Katholieke Universiteit Leuven, June 2007.

60. Len Sassaman and Bart Preneel. The Byzantine Postman Problem: A Trivial
Attack Against PIR-based Nym Servers. Technical Report ESAT-COSIC 2007-
001, Katholieke Universiteit Leuven, February 2007.

61. Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In Fabien Petitcolas, editor, Proceedings of
Information Hiding Workshop (IH 2002). Springer-Verlag, LNCS 2578, October
2002.

62. Robyn Wagner. Don’t Shoot the Messenger: Limiting the Liability of Anonymous
Remailer Operators. New Mexico Law Review, 32(Winter):99–142, 2002.

63. Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In 8th USENIX Security Symposium, 1999.

64. Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. Defending
anonymous communication against passive logging attacks. In Proceedings of the
2003 IEEE Symposium on Security and Privacy, May 2003.


