
Covert Debugging
Circumventing Software
Armoring Techniques

Offensive Computing, LLC

Danny Quist
Valsmith

dquist@offensivecomputing.net
valsmith@offensivecomputing.net

Offensive Computing - Malware Intelligence

Danny Quist

• Offensive Computing, Cofounder

• PhD Student at New Mexico Tech

• Reverse Engineer

• Exploit Development

• cDc/NSF

Offensive Computing - Malware Intelligence

Valsmith

• Offensive Computing, Cofounder

• Malware Analyst/Reverse Engineer

• Metasploit Contributor

• Penetration Tester/Exploit developer

• cDc/NSF

Offensive Computing - Malware Intelligence

Offensive Computing, LLC

• Community Contributions
– Free access to malware samples
– Largest open malware site on the Internet
– 350k hits per month

• Business Services
– Customized malware analysis
– Large malware data-mining / access
– Reverse Engineering

Offensive Computing - Malware Intelligence

Introduction

• Debugging Malware is a powerful tool
– Trace Runtime Performance
– Monitor API Calls
– Dynamic Analysis == Automation

• Malware is getting good at preventing it
– Debugger Detection
– VM Detection
– Legitimate Software Pioneered these

Techniques

Offensive Computing - Malware Intelligence

Overview of Talk

• Software Armoring Techniques
• Covert Debugging Requirements
• Dynamic Instrumentation for Debugging
• OS Pagefault Assisted Covert Debugging
• Application – Generic Autounpacking
• Results

Offensive Computing - Malware Intelligence

Software Armoring

• Packing/Encryption
• VM Detection
• SEH Tricks
• Debugger Detection
• Shifting Decode Frame
• Example: Microsoft’s Patchguard

Offensive Computing - Malware Intelligence

Packing/Encryption

• Self-modifying Code
– Small Decoder Stub
– Decompresses the main executable
– Restores imports

• Play Tricks with Portable Executables
– Hide the Imports
– Obscure relocations
– Encrypt/compress the executable

Offensive Computing - Malware Intelligence

Normal PE File

Offensive Computing - Malware Intelligence

Packed PE File

Offensive Computing - Malware Intelligence

Virtual Machine Detection

• Single instruction detection
– SLDT, SGDT, SIDT
– See: Redpill, Scoopy-Doo, OCVmdetect

• Instructions for Privileged/Unprivileged
CPU mode
– VMs try to be efficient, some instructions

insecure
– Do not fully emulate x86 bug for bug

Offensive Computing - Malware Intelligence

Debugger Detection

• Windows API
– IsDebuggerPresent() API call
– Checks PEB for magic bit (EFLAGS)
– Bit toggling works

• Timing Attacks
– Issue RDTSC instruction, compare to known

values
– Amazingly effective

Offensive Computing - Malware Intelligence

Debugger Detection (cont.)

• Breakpoint Detection
– Int3 (0xCC) Instruction Scanning
– Checksumming of executable

• Hardware Debugging Detection
– Check CPU Flags for debug bit

• SoftICE Detection
– Modification of Int3 Scanning

Offensive Computing - Malware Intelligence

SEH Tricks

• Structured Exception Handler
• Used to handle error in running code
• Malware will overload this function to

unpack code
• Debugger thinks SEH exceptions are for it
• Debugger dies

Offensive Computing - Malware Intelligence

Shifting Decode Frames

• Execution is split at the basic block level
• Block is decoded, executed, and then

encoded again
• Hard to defeat!
• Implemented in Patchguard for Vista 64

and Windows Server 2003 64-bit

Offensive Computing - Malware Intelligence

So What?

• These are all variations on a theme
• There should be a generic way to debug
• Need to modify at a fundamental level
• Solution should be:

– Generic – Work across set of executables
– Efficient – Good performance for non-debug
– Undetectable (as much as possible)
– Extensible – Automation is the key

Offensive Computing - Malware Intelligence

Software Armoring Achilles Heel

If it executes,
it can be unpacked.

[http://www.security-assessment.com/files/presentations/Ruxcon_2006_-_Unpacking_Virus,_Trojans_and_Worms.pdf]

Offensive Computing - Malware Intelligence

Unpacking

• How an Unpacker Works:
– Writes to an area of memory (decode)
– Memory is read from (execute)
– More writes to memory (optional re-encoding)

• CPU Only Executes Machine Code
• This process can be monitored
• Unpacking is directly related to timing

– At some point, it must be unpacked

Offensive Computing - Malware Intelligence

Manual Unpacking Process

• Consists of several stages
– Identify Packer Type
– Find OEP or get process to unpacked state in

memory
– Dump process memory to file
– Fixup file / rebuild Import Address Table (IAT)
– Ensure file can now be analyzed

Offensive Computing - Malware Intelligence

Manual Unpacking Process

• Several methods to identify packer type
– Peid
– Msfpecan / OffensiveComputing.net
– Manually look at section names
– Other packer scanners like

• Protection-id
• Pe-scan

Offensive Computing - Malware Intelligence

Manual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking Process

• Methods to find OEP / unpacked memory
– OllyScripts

• http://www.tuts4you.com
• http://www.openrce.org

– OEP finder tools
• OEP finders for specific packers
• OEP Finder (very limited)
• PE Tools / LordPe
• PEiD generic OEP finder

http://www.tuts4you.com/
http://www.openrce.org/

Offensive Computing - Malware Intelligence

Manual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking Process
– Dump process memory to file

• OllyDump
• LordPE
• Custom tools

– Example:
void DumpProcMem(unsigned int ImageBase, unsigned int ImageSize,LPSTR filename,

LPSTR pid) {
SIZE_T ReadBytes = 0; SIZE_T WriteBytes = 0;
unsigned char * buffer = (unsigned char *) calloc(ImageSize, 1);
HANDLE hProcess = OpenProcess(PROCESS_VM_READ, FALSE, (DWORD)atoi(pid));
ReadProcessMemory(hProcess, (LPCVOID) ImageBase, buffer, ImageSize,
&ReadBytes);
HANDLE hFile = CreateFile(TEXT("oc_dumped_image.exe"),

GENERIC_READ|GENERIC_WRITE,
0,
NULL,
OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);

WriteFile(hFile, buffer, ImageSize, &WriteBytes, NULL);

Offensive Computing - Malware Intelligence

Manual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking Process
– Fixup file / rebuild Import Address Table (IAT)

• ImportRec probably best tool
• Revirgin by +Tsehp
• Manually with a hex editor (tedious)

– IAT contains list of functions imported
• Very useful for understanding capabilities

Offensive Computing - Malware Intelligence

Manual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking Process

• Ensure file can now be analyzed
• Clean disassembly should be available
• IAT should be visible
• Functions should be found
• Strings clear and useful
• Manual unpacking process can be tedious
• Hardest part is generally finding the OEP

Offensive Computing - Malware Intelligence

Manual Unpacking Process

Offensive Computing - Malware Intelligence

Unpacking: The Algorithm

• Track written memory
• If that memory is executed, it’s unpacked
• Must monitor:

– Memory writes
– Memory Executions

• Break on execute useful here
• Automate the process

Offensive Computing - Malware Intelligence

Dynamic Instrumentation

• Allows a running process to be monitored
• Intel PIN

– Uses Just-In-Time compiler to insert analysis code
– Retains consistency of executable
– Pintools – Use API to analyze code
– Good control of execution

• Instruction
• Memory access
• Basic block

– Process Attaching / Detaching

Offensive Computing - Malware Intelligence

Dynamic Instrumentation
• Instruction tracing for the following packers

– Armadillo
– Aspack
– FSG
– MEW
– PECompact
– Telock
– UPX

• Created Simple Hello World Application
• Graphed results with Oreas GDE

Offensive Computing - Malware Intelligence

Results

Aspack 2.12

Offensive Computing - Malware Intelligence

Results

• Unpacking loop is easy to find

Offensive Computing - Malware Intelligence

Dynamic Instrumentation Results

• Generic Algorithm Described Previously
works well

• All address verified by manual unpacking
• Addresses display clustering, which must

be taken into account
• Attach / Detach is effective for taking

memory snapshots of an executable

Offensive Computing - Malware Intelligence

Dynamic Instrumentation Problems

• Detectable
– Memory checksums
– Signature scanning

• Extend this to work generically, non-
detectably

• Slow – ~1,000 times slower than native
• Need faster implementation

Offensive Computing - Malware Intelligence

Towards a Solution

• Core operating system component that:

– Monitors all memory

– Intercepts memory accesses

– Fast Interception and Logging

– Fundamental part of OS

Offensive Computing - Malware Intelligence

Introducing Saffron
• Intel PIN and Hybrid Page Fault Handler

• Extension of OllyBonE Kernel Code

• Designed for 32-bit Intel x86 CPUs

• Replaces Windows 0x0E Trap Handler

• Logs memory accesses

Offensive Computing - Malware Intelligence

Offensive Computing - Malware Intelligence

Virtual Memory Translation

• Each process has its own memory

• Memory must be translate from Virtual to
Physical Address

• Non-PAE 32bit Processors use 2 page
indexes and a byte index

• Each process has its own Page Directory

Offensive Computing - Malware Intelligence

Example Memory Translation
Virtual Address

0 (LSB)31

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

CPU References Virtual Memory Address

Offensive Computing - Malware Intelligence

Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

PFN

CR3
Page Directories

(Contains the PDE)

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

CR3 contains process Page Directories

Offensive Computing - Malware Intelligence

Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

PFN PTE

CR3
Page Directories

(Contains the PDE)
Page Tables

(Contains the PTE)

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

PFN PTE Address

CR3

Desired Page

Desired Byte

Page Directories
(Contains the PDE)

Page Tables
(Contains the PTE)

Physical Address
Space

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

MMU Data Structures

• Page Directory Entry is hardware defined
– Contains permissions, present bit, etc.

• Page Table Entry also hardware defined
– Permissions (Ring0 vs. all others)
– Present bit (paged to disk or not)
– “User” defined bits (for OS)

Offensive Computing - Malware Intelligence

Virtual Address Translation

• TLB is major source of optimization
• Hardware resolves as much as possible
• Invokes page fault handler when

– Page is not loaded in RAM
– Incorrect privileges
– Loaded, but mapped with demand paging
– Address is not legal (out-of-range)

• All indicated by special fields

Offensive Computing - Malware Intelligence

Intel TLB Implementation

• Two TLBs maintained
– Data - DTLB
– Instructions – ITLB

• ITLB more optimized than DTLB
– Less lookups for ITLB == faster code
– DTLB accessed less

Offensive Computing - Malware Intelligence

Offensive Computing - Malware Intelligence

Process Monitoring

• Overloading of supervisor bit in page fault
handler

• All process memory must be found
• Iterate through all pages for a process

– Windows application memory
0x00000000 – 0x7FFFFFFF

• Mark supervisor bit on each valid PTE
• Invalidate the page in the TLB with INVLPG
• Hook heap allocation so new pages are watched

Offensive Computing - Malware Intelligence

Trap to Page Fault Handler

• Determine if a watched process

• Unset the supervisor bit

• Loads the memory into the TLB

• Resets supervisor bit

Offensive Computing - Malware Intelligence

Results

• Memory accesses are visible
• Reads, writes, and executes are exposed
• Program execution can be tracked,

controlled
• Memory reads, writes are extremely

apparent
• Executions only show for each individual

page

Offensive Computing - Malware Intelligence

Modifying the Autounpacker

• Watch for written pages

• Monitor for executions into that page

• Mark page as Original Entry Point

• Dump memory of the process

Offensive Computing - Malware Intelligence

Video Demo of Unpacking

• Demonstrate Saffron

Offensive Computing - Malware Intelligence

Autounpacker Results

• Effective method for bypassing debugger
attacks
– SEH decode problem is easily solved
– Memory checksum

• No process memory is modified
• p0wn3d!!!

• Shifting decode frame
– Slight modification under development, but

effective

Offensive Computing - Malware Intelligence

Future Work

• Develop full-fledged API

• Problems
– Sometimes all page markings are lost
– Still detectable at some level

Offensive Computing - Malware Intelligence

Questions?

• Paper, presentation available at

www.offensivecomputing.net

http://www.offensivecomputing.net/

	Covert Debugging
	Danny Quist
	Valsmith
	Offensive Computing, LLC
	Introduction
	Overview of Talk
	Software Armoring
	Packing/Encryption
	Normal PE File
	Packed PE File
	Virtual Machine Detection
	Debugger Detection
	Debugger Detection (cont.)
	SEH Tricks
	Shifting Decode Frames
	So What?
	Software Armoring Achilles Heel
	Unpacking
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Manual Unpacking Process
	Unpacking: The Algorithm
	Dynamic Instrumentation
	Dynamic Instrumentation
	Results
	Results
	Dynamic Instrumentation Results
	Dynamic Instrumentation Problems
	Towards a Solution
	Introducing Saffron
	Slide Number 39
	Virtual Memory Translation
	Example Memory Translation
	Example Memory Translation
	Example Memory Translation
	Example Memory Translation
	Example Memory Translation
	MMU Data Structures
	Virtual Address Translation
	Intel TLB Implementation
	Slide Number 49
	Process Monitoring
	Trap to Page Fault Handler
	Results
	Modifying the Autounpacker
	Video Demo of Unpacking
	Autounpacker Results
	Future Work
	Questions?

