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Offensive Computing, LLC

• Community Contributions
– Free access to malware samples
– Largest open malware site on the Internet
– 350k hits per month

• Business Services
– Customized malware analysis
– Large malware data-mining / access
– Reverse Engineering
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Introduction

• Debugging Malware is a powerful tool
– Trace Runtime Performance
– Monitor API Calls
– Dynamic Analysis == Automation

• Malware is getting good at preventing it
– Debugger Detection
– VM Detection
– Legitimate Software Pioneered these 

Techniques
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Overview of Talk

• Software Armoring Techniques
• Covert Debugging Requirements
• Dynamic Instrumentation for Debugging
• OS Pagefault Assisted Covert Debugging
• Application – Generic Autounpacking
• Results
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Software Armoring

• Packing/Encryption
• VM Detection
• SEH Tricks
• Debugger Detection
• Shifting Decode Frame
• Example: Microsoft’s Patchguard



Offensive Computing - Malware Intelligence

Packing/Encryption

• Self-modifying Code
– Small Decoder Stub
– Decompresses the main executable
– Restores imports

• Play Tricks with Portable Executables
– Hide the Imports
– Obscure relocations
– Encrypt/compress the executable



Offensive Computing - Malware Intelligence

Normal PE File
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Packed PE File
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Virtual Machine Detection

• Single instruction detection
– SLDT, SGDT, SIDT
– See: Redpill, Scoopy-Doo, OCVmdetect

• Instructions for Privileged/Unprivileged 
CPU mode
– VMs try to be efficient, some instructions 

insecure
– Do not fully emulate x86 bug for bug
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Debugger Detection

• Windows API
– IsDebuggerPresent() API call
– Checks PEB for magic bit (EFLAGS)
– Bit toggling works

• Timing Attacks
– Issue RDTSC instruction, compare to known 

values
– Amazingly effective
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Debugger Detection (cont.)

• Breakpoint Detection
– Int3 (0xCC) Instruction Scanning
– Checksumming of executable

• Hardware Debugging Detection
– Check CPU Flags for debug bit

• SoftICE Detection
– Modification of Int3 Scanning
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SEH Tricks

• Structured Exception Handler
• Used to handle error in running code
• Malware will overload this function to 

unpack code
• Debugger thinks SEH exceptions are for it
• Debugger dies
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Shifting Decode Frames

• Execution is split at the basic block level
• Block is decoded, executed, and then 

encoded again
• Hard to defeat!
• Implemented in Patchguard for Vista 64 

and Windows Server 2003 64-bit



Offensive Computing - Malware Intelligence

So What?

• These are all variations on a theme
• There should be a generic way to debug
• Need to modify at a fundamental level
• Solution should be:

– Generic – Work across set of executables
– Efficient – Good performance for non-debug
– Undetectable (as much as possible)
– Extensible – Automation is the key
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Software Armoring Achilles Heel

If it executes, 
it can be unpacked.

[http://www.security-assessment.com/files/presentations/Ruxcon_2006_-_Unpacking_Virus,_Trojans_and_Worms.pdf]
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Unpacking

• How an Unpacker Works:
– Writes to an area of memory (decode)
– Memory is read from (execute)
– More writes to memory (optional re-encoding)

• CPU Only Executes Machine Code
• This process can be monitored
• Unpacking is directly related to timing

– At some point, it must be unpacked
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Manual Unpacking Process

• Consists of several stages
– Identify Packer Type
– Find OEP or get process to unpacked state in 

memory
– Dump process memory to file
– Fixup file / rebuild Import Address Table (IAT)
– Ensure file can now be analyzed 
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Manual Unpacking Process

• Several methods to identify packer type
– Peid
– Msfpecan / OffensiveComputing.net
– Manually look at section names
– Other packer scanners like

• Protection-id
• Pe-scan
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Manual Unpacking Process
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Manual Unpacking Process

• Methods to find OEP / unpacked memory
– OllyScripts

• http://www.tuts4you.com
• http://www.openrce.org

– OEP finder tools
• OEP finders for specific packers
• OEP Finder (very limited)
• PE Tools / LordPe
• PEiD generic OEP finder

http://www.tuts4you.com/
http://www.openrce.org/
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Manual Unpacking Process
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Manual Unpacking Process
– Dump process memory to file

• OllyDump
• LordPE
• Custom tools

– Example:
void DumpProcMem(unsigned int ImageBase, unsigned int ImageSize,LPSTR filename, 

LPSTR pid) {
SIZE_T ReadBytes = 0; SIZE_T WriteBytes = 0;
unsigned char * buffer = (unsigned char *) calloc(ImageSize, 1); 
HANDLE hProcess = OpenProcess(PROCESS_VM_READ, FALSE, (DWORD)atoi(pid));
ReadProcessMemory(hProcess, (LPCVOID) ImageBase, buffer, ImageSize, 
&ReadBytes);
HANDLE hFile = CreateFile(TEXT("oc_dumped_image.exe"),   

GENERIC_READ|GENERIC_WRITE,         
0,      
NULL,                 
OPEN_ALWAYS,        
FILE_ATTRIBUTE_NORMAL,
NULL);                

WriteFile(hFile, buffer, ImageSize, &WriteBytes, NULL);
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Manual Unpacking Process
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Manual Unpacking Process
– Fixup file / rebuild Import Address Table (IAT)

• ImportRec probably best tool
• Revirgin by +Tsehp
• Manually with a hex editor (tedious)

– IAT contains list of functions imported
• Very useful for understanding capabilities
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Manual Unpacking Process
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Manual Unpacking Process

• Ensure file can now be analyzed 
• Clean disassembly should be available
• IAT should be visible
• Functions should be found
• Strings clear and useful
• Manual unpacking process can be tedious
• Hardest part is generally finding the OEP
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Manual Unpacking Process
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Unpacking: The Algorithm

• Track written memory
• If that memory is executed, it’s unpacked
• Must monitor:

– Memory writes
– Memory Executions

• Break on execute useful here
• Automate the process
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Dynamic Instrumentation

• Allows a running process to be monitored
• Intel PIN

– Uses Just-In-Time compiler to insert analysis code
– Retains consistency of executable
– Pintools – Use API to analyze code
– Good control of execution

• Instruction
• Memory access
• Basic block

– Process Attaching / Detaching
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Dynamic Instrumentation
• Instruction tracing for the following packers

– Armadillo
– Aspack
– FSG
– MEW
– PECompact
– Telock
– UPX

• Created Simple Hello World Application
• Graphed results with Oreas GDE
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Results

Aspack 2.12 
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Results

• Unpacking loop is easy to find
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Dynamic Instrumentation Results

• Generic Algorithm Described Previously 
works well

• All address verified by manual unpacking
• Addresses display clustering, which must 

be taken into account
• Attach / Detach is effective for taking 

memory snapshots of an executable
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Dynamic Instrumentation Problems

• Detectable
– Memory checksums
– Signature scanning

• Extend this to work generically, non- 
detectably

• Slow – ~1,000 times slower than native
• Need faster implementation
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Towards a Solution

• Core operating system component that:

– Monitors all memory

– Intercepts memory accesses

– Fast Interception and Logging

– Fundamental part of OS
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Introducing Saffron
• Intel PIN and Hybrid Page Fault Handler

• Extension of OllyBonE Kernel Code

• Designed for 32-bit Intel x86 CPUs

• Replaces Windows 0x0E Trap Handler

• Logs memory accesses



Offensive Computing - Malware Intelligence



Offensive Computing - Malware Intelligence

Virtual Memory Translation

• Each process has its own memory

• Memory must be translate from Virtual to 
Physical Address

• Non-PAE 32bit Processors use 2 page 
indexes and a byte index

• Each process has its own Page Directory
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Example Memory Translation
Virtual Address

0 (LSB)31

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

CPU References Virtual Memory Address
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Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]
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Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

PFN

CR3
Page Directories

(Contains the PDE)

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

CR3 contains process Page Directories
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Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

PFN PTE

CR3
Page Directories

(Contains the PDE)
Page Tables

(Contains the PTE)

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]
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Example Memory Translation
Page Directory Index Page Table Index

Virtual Page Number

10 Bits 10 Bits

Byte Index

12 Bits

0 (LSB)31

PFN PTE Address

CR3

Desired Page

Desired Byte

Page Directories
(Contains the PDE)

Page Tables
(Contains the PTE)

Physical Address
Space

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]
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MMU Data Structures

• Page Directory Entry is hardware defined
– Contains permissions, present bit, etc.

• Page Table Entry also hardware defined
– Permissions (Ring0 vs. all others)
– Present bit (paged to disk or not)
– “User” defined bits (for OS)
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Virtual Address Translation

• TLB is major source of optimization
• Hardware resolves as much as possible
• Invokes page fault handler when

– Page is not loaded in RAM
– Incorrect privileges
– Loaded, but mapped with demand paging
– Address is not legal (out-of-range)

• All indicated by special fields
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Intel TLB Implementation

• Two TLBs maintained
– Data - DTLB
– Instructions – ITLB

• ITLB more optimized than DTLB
– Less lookups for ITLB == faster code
– DTLB accessed less
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Process Monitoring

• Overloading of supervisor bit in page fault 
handler

• All process memory must be found
• Iterate through all pages for a process

– Windows application memory 
0x00000000 – 0x7FFFFFFF

• Mark supervisor bit on each valid PTE
• Invalidate the page in the TLB with INVLPG
• Hook heap allocation so new pages are watched
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Trap to Page Fault Handler

• Determine if a watched process

• Unset the supervisor bit

• Loads the memory into the TLB

• Resets supervisor bit
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Results

• Memory accesses are visible
• Reads, writes, and executes are exposed
• Program execution can be tracked, 

controlled
• Memory reads, writes are extremely 

apparent
• Executions only show for each individual 

page
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Modifying the Autounpacker

• Watch for written pages

• Monitor for executions into that page

• Mark page as Original Entry Point

• Dump memory of the process



Offensive Computing - Malware Intelligence

Video Demo of Unpacking

• Demonstrate Saffron
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Autounpacker Results

• Effective method for bypassing debugger 
attacks
– SEH decode problem is easily solved
– Memory checksum

• No process memory is modified
• p0wn3d!!!

• Shifting decode frame
– Slight modification under development, but 

effective
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Future Work

• Develop full-fledged API

• Problems
– Sometimes all page markings are lost
– Still detectable at some level
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Questions?

• Paper, presentation available at 

www.offensivecomputing.net

http://www.offensivecomputing.net/
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