
Don’t Tell Joanna, The
Virtualized Rootkit Is Dead

Agenda

★ Who we are and what we do

★ Virtualization 101

★ Vitriol/Hyperjacking (and other HVM
Rootkits)

★ Why detecting HVMs aren’t as difficult as
you think

★ Pro Forma Punditry

★ Q & A

about:nate.lawson
★ Co-designer of the Blueray disc content

protection lay (at Cryptography Research)

★ FreeBSD Committer since 2002

‣ Author/maintainer of power management
and ACPI kernel code

★ Designer of ISS RealSecure NIDS

★ Now: independent security consultant (Root
Labs)

‣ Embedded and PC platform security, crypto
design (e.g.: Chumby microcontroller-
based authentication)

about:matasano
★ An Indie Security Firm: Founded Q1’05,

Chicago and NYC.

★ Research:

‣ hardware virtualized rootkits

‣ endpoint agent vulnerabilities

‣ windows vista (on contract to msft)

‣ storage area networks (broke netapp)

‣ a protocol debugger

‣ 40+ pending advisories

hidesrc
thompson
compiler
backdoor

rootkit highlights

libkvm

amodload

IAT
Rootkit

1998-

SSDT
Rootkit

1994 - 19961984

Back
Orifice

2006-

virtualized

firmware

matasano

lightning intro to VT

matasano

vmm

hardware

guest A

host os

guest B

hardware

vmm

guest A guest Bring 0

ring 3

ring 0

ring -1

software hardware

hardware shielded from
guest os by de-privileging

or binary translating
privileged instructions

hardware shielded from
guest os by trap-and-

emulate extension

matasano

ring -1
(root)

ring 0
(nonroot)

ring 3
(user)

VMCS

host state

guest state

controls

hypervisor

shadowed state

HW state (ivt,
pages)

OS state

OS web server

database

matasano

insn purpose
vmxon enable VT

vmxoff disable VT

vmclear initialize VMCS

vmptrld load current VMCS

vmptrst store current VMCS

vmread read values from VMCS

vmwrite write values to VMCS

vmlaunch start and enter virtual machine

vmresume re-enter virtual machine

vmcall exit virtual machine

sequence of events

★ (1) guest OS accesses an msr

★ (2) vt traps, looks up host eip

★ (3) host calls trap handler

★ (4) trap handler emulates msr access

★ (5) trap handler incrs guest IP

★ (6) trap handler issues vmresume

★ (7) guest OS continues

why this is interesting

★ VT is swapping entire OS-visible state in/out
of memory (with API for access)

★ Guests have direct device access (unless
you prevent them)

★ No software bit says “we’re virtualized”.

matasano

how we use VT

matasano

hardware

vmm

guest A guest B

intended
use case

“heavy” vmm runs full-
fledged guest machines

on servers

hardware

vmm

native OS

rootkit
use case

“thin” vmm proxies access
to hardware, keeps original

OS running

hyperjacking

matasano

web proxy web server

VMM CPU

browser

kernel

minimal implementation;
“client” and “server”
do most of the work.

hyperjacking
advantages

★ “Impossible to detect” (trap, emulate, and
evade detection attempts; MITM the CPU)

★ Actually easier than kernel object
manipulation

★ Potentially OS-independent (portable)

★ Potential shellcode payload (fully
weaponized)

vitriol: hyperjacking
darwin/FreeBSD

★ Installed on the fly (“fork” the CPU)

★ Hypervisor and guest share CPU state:
hypervisor can call into the OS

★ (Almost) no shadowed state (just one VM)

★ Pass (don’t trap) most events.

★ Proxy (don’t emulate/monitor) most traps.

vitriol: how it works
★ (1) get to cpl0

★ (2) check cpuid, feature msr for VMX

★ (3) allocate vmx and vmcs from IOMalloc

★ (4) initialize vmcs, call vmclear

★ (5) copy segments, stack, cr3 to vmcs host and
guest

★ (6) set host(/root/hypervisor) eip to trap handler

★ (7) set exec controls to pick events we want

★ (8) vmptrld to add vmcs

★ (9) (a) vmlaunch (b) vmcall (c) vmresume

matasano

Vitriol is less than 1000
lines of code.

compare to bluepill

★ Same concept (hyperjacking proxy vmm)

★ Joanna uses AMD SVM

★ We don’t support nested VMs

★ We don’t hook the network (localhost only)

★ We don’t load stealthily (darwin kext)

★ Vitriol is a toolkit for detection experiments

HVMs in 2007
★ Full Nesting Support

‣ Allow other hypervisors to operate

★ Timing Detection and Submarining

‣ Cat and Mouse Detect / Evade

‣ Detect Detection and Remove Itself

★ Direct Driver Access

‣ No need to hook the OS

★ Weaponized Hypervisor

‣ HVM as kernel BO payload “shellcode”

matasano

what do we think?

are hvm rootkits a win?

★ SIMPLE

★ PORTABLE

★ UNDETECTABLE

simple?

★ VT is 10 instructions.

★ No OS deps in our code

‣ except loader and payload

★ ~700 lines of boilerplate (expect all hvm
rootkits to share)

portable?

★ We haven’t yet ported to Win32.

★ It doesn’t look hard.

‣ Need to rewrite loader and payload

undetectable?
kernel: fingerprints vt: smoking gun

ssdt/syscall table

function pointers

ivt

hidden pages hyperjacked vm root

function detours

hidden threads

hidden processes

etc etc etc

matasano

VT-x may be hard to
detect.

matasano

VT-x plus a software
VMM isn’t.

detection heuristics

★ FUNCTIONAL: behavior or state changes
introduced by hypervisor.

★ SIDE-CHANNEL: timing variations
introduced by hypervisor.

detection goal

int is_virtualized(void);

backup goal

timing
window

trusted peer,
trusted clock

untrusted
machine

challenge

response

analog: sniffer detection

★ GOAL: Find hacked servers with
promiscuous sniffers.

★ TARGET: Promisc mode turns off MAC
filtering.

★ FUNCTIONAL: Target responds to ping with
wrong MAC.

★ SIDE-CHANNEL: Flood network with
nonexistent MAC, measure ping.

measurement strategies

★ DIRECT: time an instruction that causes a
vm exit.

★ INDIRECT: time state (cache, btb) before
and after instruction that causes vm exit.

direct measurement

★ (1) rdtsc

★ (2) cpuid 1,000,000 times

★ (3) rdtsc

★ if clean: ~200 cycles

★ if hyperjacked: ~40,000 cycles

the problem with direct
measurement

★ Hypervisor controls the TSC!

★ (1) on exit: save tsc

★ before re-entrance:

‣ (2) take delta + exit overhead

‣ (3) subtract from TSC offset

★ ~5 lines of code. This is a basic feature of
VT-x and SVM.

one workaround

★ Use counters they didn’t think of:

‣ HPET counters

‣ Performance counters

‣ ACPI timers

‣ MSRs that betray timing and latency

★ They all need to agree for attackers to win

★ But attackers do control all of them

crypto timing attacks

★ aciicmez, tromer, bernstein, seifert

★ indirect microarchitecture measurement
recovers secret crypto keys

cache timing

shared
feature

RSA

spy

populates cache,
evicts entries

saturates cache,
detects evictions

L2 cache, branch
prediction caches

indirect measurement

★ (1) saturate a cache

★ (2) baseline cache hits with rdtsc

★ (3) cpuid

★ (4) repeat baseline

★ if clean: (2) and (4) agree

★ if hyperjacked: stuff evicted from cache

advantages we have
over cryptanalysts

★ same cpu, same thread

★ not data-independent or oblivious

★ extensive shared state

★ don’t need to know chinese remainder
theorem

conclusions
★ How to make life hard for attackers:

‣ Introduce data-dependence
(many heuristics, not just one)

‣ Force them to emulate the
microarchitecture
(indirect timing of cache, branch buffers)

‣ Force them to emulate obscure features
(HPET, PerfCounters, AGP GART)

‣ Tie them to a single architecture
(Intel VT, not Broadcom, Op Roms, etc)

matasano

matasanochargen
www.matasano.com/log

