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1 Introduction 
 
Emulators have existed since the modern computer systems they emulate.  In 1965 IBM 
released the first computer system based entirely on integrated circuits[1]. With it they 
packaged an emulator to aid in its adoption.  In modern days, emulators appear in all sorts 
of applications.  These applications range from complete virtual machines to old arcade 
systems.  In this paper, we will look at how the world of emulation pertains to, and helps 
the reverse engineering discipline. 
 

When one looks at emulation in modern computer science, it can be broken down 
into what is perceived as two main methods of operation system emulation and 
instruction emulation. 
 
1.1 System Emulation 
 
System emulation is a very attractive method for doing complete replication of how a 
normal system operates.  This includes not only emulating a processor and memory, but 
peripherals as well. 
 
 The most outstanding piece that differentiates this from instruction emulation is 
the peripheral emulation.  Since the goal of system emulation is to provide a complete 
environment for core software, such as an operating systems, to be installed the emulator 
must handle requests to video cards, disk controllers, network devices, as well as 
providing a BIOS. 
 
 A good example of this type of emulation is the bochs[2] IA-32 emulator.  It 
provides the user with the ability to install guest operating systems on a virtual disk 
managed by bochs.  As stated previously, this type of full system emulation will act just 
like a physical computer, providing keyboard/mouse input and output, as well as other 
devices. 
 



1.2 Instruction Emulation 
 
The second form of emulation is what can be considered instruction emulation.  In this 
sense instruction emulators only handle the tasks of translating CPU behavior to their 
equivalent logical and memory computations.  This type of emulation is best suited for 
specific use and will be the focus of this paper. 
 
 Instruction emulation may seem limiting at first glance.  However it is tailored to 
serve in the role of a tool, as opposed to a system emulator that works as an application.  
The benefit of this approach is openness and flexibility.  While keeping the purpose 
basic, it allows the user to define what it is emulating with greater control. 
 
 
2 Emulation as it applies to reverse engineering 
 
Since the focus of this paper is emulation as applied to reverse engineering, one must 
look at the current state of affairs and applications of this technology.  The state of 
reverse engineering is only getting more complex.  While application continue to evolve 
and take on more features, the needed time to comprehend an application via reverse 
engineering greatly increases.  These complexities often lead to frustration and 
hopelessness for someone trying to understand the assembly level actions of a program in 
static disassembly. 
 
2.1 Complex code paths 
 
An often insurmountable task when reversing software is complex code paths.  Any given 
binary may contain thousands of difficult to understand and time consuming functions.  
Whether this appears as one large function, or hundreds of branches, the problem persists.  
Code path understanding is essential to the overall comprehension of a program’s logic. 
Therefore, we may be able to utilize emulation to decipher cryptic nodes. 



Take the following example of a complex code path as displayed in IDA[3] 
 

 
 
 To statically reverse engineer this single function in the binary would take a large 
amount of time.  Instead, the function arguments can be identified and the behavior of the 
code emulated. The results can then be used to determine the modifications and logic 
taken based upon this information.  While this may seem like an oversimplification of a 
complex problem, it will be seen that PyEmu can easily achieve this through various 
methods. 



2.2 Ambiguous Code 
 
Another example we will briefly touch upon that hinders the process of reverse 
engineering is seemingly ambiguous code blocks.  This is a very common side effect of 
doing static analysis on a program and is not usually a problem for live analysis with a 
debugger.  However, in wanting to move to a purely static analysis method without 
having to fall back on live debugging, these problems must be addressed. 
 
An ambiguous code block example 
 

 
 
 This code snippet of a basic block really does not mean much to the naked eye.  
Even with the rest of the function in tact, this block has 7 branches, various local 
variables, and what appears to be an object or structure of some kind.  Currently, no tools 
exist to aid a researcher in organizing and understanding this basic block.  In this case a 
scriptable emulator will help greatly, by making the reverse engineering process more 
efficient. 
 
2.3 Code Obfuscation 
 
While not necessarily common in production services, code obfuscation is gaining 
significant ground with companies trying to protect intellectual property.  With the 
emergence and proliferation of reverse engineering as a means to gain an advantage over 
a competitor, often times a company may add road blocks to deter this and retain closely 
guarded secrets. 
 



 Code obfuscation techniques vary wildly from deceptive anti-disassembly 
methods tricking disassemblers and debuggers, to hand implemented functions to deceive 
a potential reverse engineer.  As this becomes commonplace in software, one must have a 
means of quickly reducing the complexity reveal the meaning of such things. 
 
A simple example of obfuscation 
 

 
 
 The above example demonstrates a potential attempt to thwart any onlookers as to 
what really might be happening.  It could also be an attempt to prevent the disassembler 
from properly analyzing the target binary.  In this instance one can use an emulator to run 
all code paths leading to this function and observe any values modified during its run.  
This can potentially speed up the process of determining how the values are being used, 
or if they have any significance at all. 
 
2.4 Time 
 
Time is the single most valuable and exploitable resource related to reverse engineering.  
Advancing the field must always include reducing the time it takes to fully examine 
pieces of a binary and reach the mythical 100% code coverage goal.  This will be 
achieved with a combination of scripts and tools helping focus manual analysis. 
 
 It is hard to quantify the time it may take to completely understand a given binary.  
Many factors must be considered when determining how much time may be spent.  Size, 
complication, proficiency, and organize all play major roles in the time equation when 
reverse engineering.  The following example is a snapshot of a major piece of software 
and its number of functions. 
 



 
 

As can be seen this binary has 27754 functions.  Take note of the length of the 
sorted functions.  In this example we see a functions of length 0x4A87 (19079) bytes!  
Assuming a skilled reverse engineer would take 10 minutes per function, an ambitious 
time frame, (this is ignoring the fact that 950 of the functions were well over 1024 bytes) 
the time taken to reverse this software is 
 

((27754 * 10) / 60) / 24 = 193 days 
 

Assuming it would take 10 minutes per function is absurd, but even with 
superman at the helm reversing it would take him 193 straight days to completely 
understand 100% of this piece of software.  As can plainly be seen, reducing the time to 
understand functions is a major priority. Emulation is one technique that can greatly help 
in this area. 
 
 
2.5 Current Tools 
 
The current list of available tools for reverse engineering, and Python based tools in 
particular grows daily.  With professionally developed tools like BinNavi[4],  open 
source community projects like PaiMei[5] and community contributed scripts and plugins 
for IDA Pro, there is a no shortage of options to help in the previous problems.  However 
there currently exists only one emulator targeted at reverse engineering.  The IDA Pro 
plugin idax86emu[6], by Chris Eagle, allows a user to add values to a stack, change and 
monitor registers, and even emulate library calls.  While this is a very good plugin and its 
obvious benefits, it does lack flexibility and extensibility.  The plugin being written in C, 



as all IDA plugins are, can be a blessing or a curse. It is hardly debatable whether you can 
dynamically control, monitor, or modify values on the fly with the inherent quickness, 
and ease of a scripting language.  It just does not allow one to easily expand and truly 
integrate it into their workflow. 
 
 
3 PyEmu Architecture 
 
Before going into architecture specifics related to PyEmu, we must first look at why 
Python as a programming language was chosen.  Obviously, it is not common practice to 
emulate low level code in a high level language.  Since low level assembly simply 
operates on basic computational logic I felt it would be straightforward to mimic this in a 
language such as Python.  Also, another determining factor in the language choice was 
current progress in other Python tools. 
 

Many people enjoy using Python and thus have created tools around it to aid in 
reverse engineering tasks.  IDAPython[7] exists to allow script access to the IDA Pro 
scripting language (IDC) and plugin SDK.  This alone allows for immeasurable amounts 
of options, one being the building of additional libraries on top of the language.  One of 
these libraries is PIDA[8].  An abstraction library for quickly accessing structural 
information about the current binary disassembled in IDA. 

 
 Besides IDA, other tools exist when doing live analysis, and binary processing.  
Pydbg[9] is a python library that wraps the native win32 debugging API allowing a 
researcher to implement flexible scripts for controlling a debugee including execution, 
memory access, and context information such as registers.  Pefile[10] is another library 
for processing PE executable file formats in Python.  This library allows the parsing of 
important information pertaining to an executable for disassembling including imports, 
code, and data sections as well as entry point addresses.  Finally, there is pydasm[11] 
which is a python interface to the disassembly library libdasm[12].  Pydasm can 
arbitrarily handle the disassembly of instructions and allow an emulator to be even more 
flexible in operation. 
 
3.1 Overview 
 
The PyEmu architecture works by providing the user with a flexible abstracted API in the 
form of the PyEmu class.  This class will handle execution of instructions, fetching of 
memory, and any user requested information.  The PyEmu architecture is separated into 
three classes including PyCPU, PyMemory, and of course PyEmu.  By separating these 
aspects of an emulator, we can provide control over how each subsystem operates.  This 
power is the essence of PyEmu.  As a user, the ability to control memory allocations, 
instruction execution, and execution via clean methods is fantastically flexible. 
 
 When PyEmu is tasked with executing, it instructs PyCPU to execute a single 
instruction.  PyCPU will request the memory for that instruction from PyEMU which will 
then pass the request to PyMemory.  The reverse happens when the request is returned.  



This may seem non-intuitive, but because the user is allowed to control all aspects of this 
process via PyEmu, it is required.  The interaction is demonstrated below. 
 

 
 

 This is the core modus operandi of the PyEmu package.  In general, a user should 
only interface with PyEmu classes, all useful information is exposed through public 
methods when instantiating the PyEmu derived class.  Nothing is to say one may not 
want to create new classes and new layers of abstraction. 
 
3.1 PyCPU 
 
PyCPU is the heart of the PyEmu emulator, PyCPU handles all of the instruction logic, 
execution and related processor tasks.  The job of the CPU is to execute a given 
instruction based strictly on the Intel reference specification[13].  As with every piece of 
the PyEmu architecture, the CPU code tries to autonomously handle all of these needed 
functions. 
 
 The most basic action is to execute an instruction.  To fetch this instruction we 
access memory for the current instruction pointer address and hand it to pydasm.  Pydasm 
allows us to properly decode the wanted instruction into its opcode, and operands.  This 
simple operation is the essence of PyEmu.  Allowing the emulator to arbitrarily decode 
instructions helps serve various function in any environment we want, including live 
analysis through Pydbg or statically via IDA Pro. 



 
    def execute(self): 
        # Save our old instruction pointer 
        oldeip = self.EIP 
         
        # Fetch raw instruction from memory 
        rawinstruction = self.get_memory(self.EIP, 32) 
        if not rawinstruction: 
            print "[!] Problem fetching raw bytes from 0x%08x" % 
(self.EIP) 
             
            return False 
         
        # Decode instruction from raw returning a pydasm.instruction 
        instruction = pydasm.get_instruction(rawinstruction, 
pydasm.MODE_32) 
        if not instruction: 
            print "[!] Problem decoding instruction" 
             
            return False 
         
        pyinstruction = PyInstruction(instruction) 
 
 As can be seen once we have grabbed the next instruction we can 
then call into our proper mnemonic handler. 
 
        pyinstruction.mnemonic = pyinstruction.mnemonic.split()[0] 
         
        if pyinstruction.mnemonic in self.supported_instructions: 
            if not 
self.supported_instructions[pyinstruction.mnemonic](pyinstruction): 
                return False 
        else: 
            print "[!] Unsupported instruction %s" % 
pyinstruction.mnemonic 
            return False 
             
        if self.EIP == oldeip: 
            #print "[*] Updating eip from 0x%08x -> 0x%08x" % 
(self.EIP, self.EIP + pyinstruction.length) 
            self.EIP += pyinstruction.length  
 
        return True 
 
 PyEmu uses mnemonics so that it can cleanly handle groups of opcodes within a 
mnemonic.  Since mnemonics have multiple ways of operating this allows developers 
extending PyCPU to easily add more if necessary and implement mnemonic and opcode 
level hooking.  Currently PyEmu supports 100+ Intel IA-32 instructions.  While one 
might note that the Intel specification contains over 400 mnemonics, its important to 
understand that in most cases roughly 50 instructions are ever used in real world 
applications. 



Once PyCPU has the proper mnemonic, it calls into the function that handles that 
particular instruction.  PyEmu strives to be easy to extend, most of the mnemonic and 
opcode handling has been pre-generated allowing for a uniform look and operation of all 
instructions. 
 

    def CMP(self, instruction): 
        op1 = instruction.op1 
        op2 = instruction.op2 
       op3 = instruction.op3 
 
        so = instruction.operand_so() 
        ao = instruction.address_so() 
 
        op1value = "" 
        op2value = "" 
        op3value = "" 
        op1valuederef = None 
        op2valuederef = None 
         
        #38 /r CMP r/m8,r8 Compare r8 with r/m8 
        if instruction.opcode == 0x38: 
 
            size = 1 
 
            if op1.type == pydasm.OPERAND_TYPE_REGISTER: 
                op1value = self.get_register(op1.reg, size) 
                op2value = self.get_register(op2.reg, size) 
 
                # Do logic 
                result = op1value - op2value 
 
                self.set_arithmetic_flags(op1value, op2value, 
result, size) 
 
            elif op1.type == pydasm.OPERAND_TYPE_MEMORY: 
                op1value = self.get_memory_address(instruction, 
1, size) 
                op2value = self.get_register(op2.reg, size) 
 
                # Do logic 
                op1valuederef = self.get_memory(op1value, size) 
                 
                result = op1valuederef - op2value 
 
                self.set_arithmetic_flags(op1valuederef, 
op2value, result, size) 
 
        #39 /r CMP r/m16,r16 Compare r16 with r/m16 
        #39 /r CMP r/m32,r32 Compare r32 with r/m32 
        elif instruction.opcode == 0x39: 
 
            if so: 
                size = 2 
            else: 
                size = 4 
 



            if op1.type == pydasm.OPERAND_TYPE_REGISTER: 
                op1value = self.get_register(op1.reg, size) 
                op2value = self.get_register(op2.reg, size) 
 
                # Do logic 
                result = op1value - op2value 
 
                self.set_arithmetic_flags(op1value, op2value, 
result, size) 
 
            elif op1.type == pydasm.OPERAND_TYPE_MEMORY: 
                op1value = self.get_memory_address(instruction, 
1, size) 
                op2value = self.get_register(op2.reg, size) 
 
                # Do logic 
                op1valuederef = self.get_memory(op1value, size) 
                 
                result = op1valuederef - op2value 
 
                self.set_arithmetic_flags(op1valuederef, 
op2value, result, size) 
 
        #3B /r CMP r16,r/m16 Compare r/m16 with r16 
        #3B /r CMP r32,r/m32 Compare r/m32 with r32 
        elif instruction.opcode == 0x3b: 
 
            if so: 
                size = 2 
            else: 
                size = 4 
 
            op1value = self.get_register(op1.reg, size) 
 
            if op2.type == pydasm.OPERAND_TYPE_REGISTER: 
                op2value = self.get_register(op2.reg, size) 
 
                # Do logic 
                result = op1value - op2value 
 
                self.set_arithmetic_flags(op1value, op2value, 
result, size) 
 
            elif op2.type == pydasm.OPERAND_TYPE_MEMORY: 
                op2value = self.get_memory_address(instruction, 
2, size) 
 
                # Do logic 
                op2valuederef = self.get_memory(op2value, size) 
                 
                result = op1value - op2valuederef 
 
                self.set_arithmetic_flags(op1value, 
op2valuederef, result, size) 
 
        #3C ib CMP AL, imm8 Compare imm8 with AL 
        elif instruction.opcode == 0x3c: 



 
            size = 1 
 
            op1value = self.get_register(0, size) 
            op2value = op2.immediate & self.get_mask(size) 
 
            # Do logic 
            result = op1value - op2value 
 
            self.set_arithmetic_flags(op1value, op2value, result, 
size) 
 
        #3D id CMP EAX, imm32 Compare imm32 with EAX 
        #3D iw CMP AX, imm16 Compare imm16 with AX 
        elif instruction.opcode == 0x3d: 
 
            if so: 
                size = 2 
            else: 
                size = 4 
 
            op1value = self.get_register(0, size) 
            op2value = op2.immediate & self.get_mask(size) 
 
            # Do logic 
            result = op1value - op2value 
 
            self.set_arithmetic_flags(op1value, op2value, result, 
size) 
 
        #81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32 
        #81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16 
        elif instruction.opcode == 0x81 and instruction.extindex 
== 0x7: 
 
            if so: 
                size = 2 
            else: 
                size = 4 
 
            if op1.type == pydasm.OPERAND_TYPE_REGISTER: 
                op1value = self.get_register(op1.reg, size) 
                op2value = op2.immediate & self.get_mask(size) 
 
                # Do logic 
                result = op1value - op2value 
 
                self.set_arithmetic_flags(op1value, op2value, 
result, size) 
 
            elif op1.type == pydasm.OPERAND_TYPE_MEMORY: 
                op1value = self.get_memory_address(instruction, 
1, size) 
                op2value = op2.immediate & self.get_mask(size) 
 
                # Do logic 
                op1valuederef = self.get_memory(op1value, size) 



                 
                result = op1valuederef - op2value 
 
                self.set_arithmetic_flags(op1valuederef, 
op2value, result, size) 
 
 
        #83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16 
        #83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32 
        elif instruction.opcode == 0x83 and instruction.extindex 
== 0x7: 
 
            if so: 
                size = 2 
            else: 
                size = 4 
 
            if op1.type == pydasm.OPERAND_TYPE_REGISTER: 
                op1value = self.get_register(op1.reg, size) 
                op2value = op2.immediate & self.get_mask(size) 
 
                # Do logic 
                result = op1value - op2value 
 
                self.set_arithmetic_flags(op1value, op2value, 
result, size) 
 
            elif op1.type == pydasm.OPERAND_TYPE_MEMORY: 
                op1value = self.get_memory_address(instruction, 
1, size) 
                op2value = op2.immediate & self.get_mask(size) 
 
                # Do logic 
                op1valuederef = self.get_memory(op1value, size) 
                 
                result = op1valuederef - op2value 
 
                self.set_arithmetic_flags(op1valuederef, 
op2value, result, size) 
 
        else: 
            return False 
 
        return True 

 
 This verbose listing of the CMP instruction should be very readable and 
understandable.  When PyCPU executes the mnemonic function, it then determines 
which opcode is requested, and based on the Intel specification, then determines which 
type of operand we are dealing with.  This executes the logic of that opcode and sets the 
appropriate registers, memory, and corresponding CPU flags if necessary. 
 
 PyCPU relies on a myriad of helper functions for cleanly reading register values 
and memory addresses.  The following synopsis helps explain the most common of the 
helper functions repeated throughout the source code.  PyCPU relies heavily on the size 



variable which determines how large the memory, or register will be.  This size is then 
handed to all of the helper functions in an attempt to make things more universal. 
 

- get_register(register, size) 
 

As can be inferred this will fetch the requested register by name or index and 
properly return the masked value according to the size parameter.  Using this 
will also trigger a handler if it is defined for the register. 
 

- set_register(register, value, size) 
 

Similar to get_register this function will set the register to the provided value. 
 

- get_memory_address(instruction, operand_index, size) 
 

This function will calculate the address a operand is requesting.  Based on the 
instructions ModRM/SIB byte and opcode, it will return the address being 
used in the operand. 
 

- get_memory(address, size) 
 

This will return the value address points to in memory.  Memory access will 
be covered in more detail later. 
 

- set_memory(address, value, size) 
 

Sets the requested address to value and size. 
 

- set_arithmetic_flags(operand_1_value, operand_2_value, result, size) 
 

A convenience function setting appropriate CPU flags for an arithmetic 
operation.  These flags include CF, OF, SF, PF, and ZF 
 

- set_shift_flags(result, size) 
 

Similar to set_arithmetic_flags except it updates only the flags used in a 
bitwise shift operation.  These flags include SF, PF, and ZF 

 
 The CPU class should not be used directly.  The emulator class will handle all 
calls to execute and memory requests. If a user wants to extend the supported instructions 
or behavior this would be the place to do it. 



3.2 PyMemory 
 
The second piece of the PyEmu puzzle is the memory handler.  PyMemory is responsible 
for handling any fetches or stores of memory locations including code.  This class is very 
basic in design as it relies heavily on user supplied functions that do the unknown 
memory fetching.  It operates by keeping a cache of already fetched memory pages 
locally.  If a page is not present in the cache, it will call the overloaded get_page() 
method.  Get_page() will handle the request how the user has defined it. 
 

def get_memory(self, address, size): 
    page = address & 0xfffff000 
    offset = address & 0x00000fff 
     
    # Check our cache if not fetch 
    if page in self.pages: 
        # Return from our cache 
        rawbytes = "" 
        for x in xrange(0, size): 
            rawbytes += self.pages[page][offset+x] 
         
        if size == 1: 
            return struct.unpack("<B", rawbytes)[0] 
        elif size == 2: 
            return struct.unpack("<H", rawbytes)[0] 
        elif size == 4: 
            return struct.unpack("<L", rawbytes)[0] 
        else: 
            return rawbytes 
    else: 
        # We need to fetch this 
        if not self.get_page(page): 
            print "[!] Problem getting page" 
            return False 
        else: 
            rawbytes = "" 
            for x in xrange(0, size): 
                rawbytes += self.pages[page][offset+x] 
             
            if size == 1: 
                return struct.unpack("<B", rawbytes)[0] 
            elif size == 2: 
                return struct.unpack("<H", rawbytes)[0] 
            elif size == 4: 
                return struct.unpack("<L", rawbytes)[0] 
            else: 
                return rawbytes 
            
    return False 

 
 When in live analysis via Pydbg the get_memory() method operates as displayed 
below. 
 

def get_page(self, page): 
    try: 



        mempage = self.dbg.read_process_memory(page, 
self.PAGESIZE) 
    except: 
        print "[!] Couldnt read mem page @ 0x%08x" % page 
        return False 
     
    self.pages[page] = mempage 
     
    return True 

 
 This fetch and cache method allows PyMem to easily control where the data is 
coming from and how it is stored.  It keeps the local copy separated from the real 
processes memory space.  A good use for this would be for dumping all of the pages used 
by the emulator or restoring the emulator memory back to the debugged process. 
 
 Setting memory is very similar in operation. 
 

def set_memory(self, address, value, size): 
    page = address & 0xfffff000 
    offset = address & 0x00000fff 
     
    if isinstance(value, int) or isinstance(value, long): 
        if size == 1: 
            packedvalue = struct.pack("<B", int(value)) 
        elif size == 2: 
            packedvalue = struct.pack("<H", int(value)) 
        elif size == 4: 
            packedvalue = struct.pack("<L", int(value)) 
        else: 
            print "[!] Couldnt pack new value of size %d" % 
(size) 
             
            return False 
    elif isinstance(value, str): 
        packedvalue = value[::-1] 
    else: 
        print "[!] Dont understand this value type %s" % 
type(value) 
         
        return False 
         
    # Check our page if not fetch 
    if page in self.pages: 
        newpage = self.pages[page][:offset] 
        for x in xrange(0, size): 
            newpage += packedvalue[x] 
        newpage += self.pages[page][offset + size:] 
         
        self.pages[page] = newpage 
         
        return True 
    else: 
        # We need to fetch this 
        if not self.get_page(page): 
            print "[!] Problem getting page" 



            return False 
        else: 
            newpage = self.pages[page][:offset] 
            for x in xrange(0, size): 
                newpage += packedvalue[x] 
            newpage += self.pages[page][offset + size:] 
             
            self.pages[page] = newpage 
             
            return True 
         
    return False 
 

 A powerful feature of PyMemory is the ability to implement your own memory 
manager.  For instance, if one is so inclined, filling memory requests with “A” can be 
done in very few lines of code.  To implement this simply overload the parent PyMemory 
class and provide a get_memory method for PyMemory. 
 

class MyMemory(PyMemory): 
    def __init__(self, fillchar=”A”): 
        self.fillchar = fillchar 
 
        PyMemory.__init__(self) 
     
    def get_page(self, page): 
        try: 
            mempage = self.fillchar * self.PAGESIZE 
        except: 
            print "[!] Couldnt read mem page @ 0x%08x" % page 
            return False 
         
        self.pages[page] = mempage 
         
        return True 

 
 PyMemory should not need any external modification unless implementing a 
custom manager.  PyMemory is extremely simple in that it gets and sets memory based 
on the manager you use.  This is also all handled for you by the emulator class you 
instantiate. 
 
3.3 PyEmu 
 
PyEmu is the main interface between the underlying CPU and Memory classes and the 
user.  In most cases, a user will instantiate the relevant PyEmu class and work with the 
provided methods in PyEmu.  This layer of abstraction provides a hassle free method of 
operation when writing a script using PyEmu. 
 
 The exposed PyEmu methods are growing daily, and include functions to execute, 
query, log, debug, dump and other various ways of accessing and controlling the 
emulator CPU.  The list below contains most of the important methods for use in PyEmu 
scripts and will be detailed later. 
 



 Execution: 
- execute 

            - set_breakpoint 
 
 Modification: 
            - set_register 
            - set_stack_argument 
            - get_stack_argument 
            - get_stack_argument 
            - get_stack_variable 
            - set_stack_variable 
            - get_memory 
 - set_memory 
 
 Handlers: 
            - set_register_handler 
            - set_library_handler 
            - set_exception_handler 
            - set_instruction_handler 
            - set_opcode_handler 
            - set_memory_handler 
            - set_pc_handler 
            - set_memory_write_handler 
            - set_memory_read_handler 
            - set_memory_access_handler  
            - set_stack_write_handler 
            - set_stack_read_handler 
            - set_stack_access_handler  
            - set_heap_write_handler 
            - set_heap_read_handler 
            - set_heap_access_handler 
 
 Misc: 
            - log 
            - debug 
            - dump_memory 
            - restore_context 
 
 This base class is intended to be inherited by a more specific emulator class.  For 
example when working in IDA Pro, a user will want to use the IDAPyEmu class as it 
provides the additional support needed during setup.  This is not always the case and the 
user can of course create their own emulation class.  



4 Using PyEmu 
 
Using PyEmu should be natural and flexible.  It tries to provide a logical layer to achieve 
goals the user may need to solve via emulation.  This section will cover in more detail 
how it can be used.  This includes creating the needed objects for emulation, setting up 
variables, memory, execution, and logging. 
 
4.1 Instantiation 
 
Instantiating a PyEmu object is the first step in creating a PyEmu script.  This will create 
the necessary class object for everything else that is achieved in the emulator.  When 
instantiating objects the first step is identifying what your environment will be. 
 
 There are currently three environments provided in the PyEmu package.  These 
are presented as an interface to IDA Pro, Pydbg, and a standalone PE file.  The IDA Pro 
interface allows a user to execute their script within IDA via IDAPython and setup 
necessary values for variables, arguments, and memory.  The Pydbg interface lets a user 
writing a pydbg script use the emulator seamlessly, querying real memory and process 
context information such as register values and flags.  The PE file represents a standalone 
method for utilizing an emulator without IDA, in a static analysis setting. 
 
 These classes all inherit from the base PyEmu class and are descriptively named 
after their environment.  In the case of IDAPyEmu a user would create the object like so: 
 

from PyEmu import IDAPyEmu 
 
emu = IDAPyEmu() 

 
 From here the user can then access all of the exposed methods for controlling the 
emulator and its associated properties.  The IDAPyEmu class can take many optional 
arguments and is defined as: 
 

class IDAPyEmu(PyEmu): 
    def __init__(self, stack_base=0x0095f000, stack_size=0x1000, 
heap_base=0x000a0000, heap_size=0x2000, frame_pointer=True): 
 
        self.stack_base = stack_base 
        self.stack_size = stack_size 
        self.heap_base = heap_base 
        self.heap_size = heap_size 
        self.frame_pointer = frame_pointer 
                 
        PyEmu.__init__(self) 
         
        self.setup_memory() 
 
    def setup_memory(self): 
        # Sets up memory of emulator 
        self.memory = IDAMemory() 
         



        # Do stack initialization 
        self.memory.get_page(self.stack_base) 
        self.cpu.set_register32("EBP", self.stack_base - 
self.stack_size / 2) 
        self.cpu.set_register32("ESP", 
self.cpu.get_register32("EBP") - 4) 
         
        return True 

 
 
4.2 Setup 
 
Setup is necessary for populating and organizing the associated properties the emulator 
will need to execute as expected.  This includes loading the code section and data section 
into memory. 
 
 For our IDAPyEmu example we would do the following using IDAPython’s 
access to IDC. 
 

textstart = SegByName(".text") 
textend = SegEnd(textstart) 
 
print "[*] Loading text section bytes into memory" 
 
currenttext = textstart 
while currenttext <= textend: 
    emu.set_memory(currenttext, GetOriginalByte(currenttext), 
size=1) 
    currenttext += 1 
 
print "[*] Text section loaded into memory" 
 
datastart = SegByName(".data") 
dataend = SegEnd(datastart) 
 
print "[*] Loading data section bytes into memory" 
 
currentdata = datastart 
while currentdata <= dataend: 
    emu.set_memory(currentdata, GetOriginalByte(currentdata), 
size=1) 
    currentdata += 1 
 
print "[*] Data section loaded into memory" 
 
emu.set_register("EIP", ScreenEA()) 

 
 This will populate the code and data section at the proper base addres in the 
IDAMemory class, and set the PyCPU register EIP to the current address selected in IDA 
Pro.  A few familiar methods are used to achieve this. 
 
 emu.set_register(register, value, name="") 
 



 Set register will set the indicated register to the value supplied.  Differing from 
the PyCPU class, it can only specify the register by name.  A size is not needed as it will 
automatically be determined based on the register name (i.e EAX, AX, AH, AL).  The 
keyword argument is useful to set a name to the register that may make more sense to the 
user.  For instance, the following: 
 
 emu.set_register(“EAX”, 2, name=”counter”) 
 
 Will set the ECX register to 2 and set up a name “counter” for it.  This register 
can then be simply queried by name using get_register(“counter”).  Hopefully this will 
allow a reverse engineer easily organize their information. 
 
 emu.set_memory(address, value, size=1) 
 
 Set memory will set the value in the memory manager’s cache to the provided 
value.  An optional size argument is used because in most cases PyEmu will 
automatically calculate the size of the value argument.  This is useful for tastslike setting 
string values of arbitrary length in memory. 
 
 emu.set_memory(0x41414141, “ABCDEFGHIJKLMNOP”) 
 
 This example would set the memory address of 0x41414141 to the string 
provided, automatically calculating its length.  This will also work with values of type 
‘long’ and ‘int’ in which they are determined to be of 4 byte lengths.  The set_memory 
function will then call the  memory managers set_memory function. 
 

def set_memory(self, address, value, size=0): 
    <…> 
     
    if not self.memory.set_memory(address, value, size): 
        return False 
     
    return True 

 
 This example using IDAPyEmu may seem complex at first glance.  However, all 
we are trying to accomplish is initializing the memory and cpu for use as it would if it 
were to be executing on the system.  Also we are telling PyCPU we want to execute from 
the currently selected address in our disassembly window. 
 
4.3 Handlers 
 
Handlers are one of the biggest benefits of using PyEmu.  A handler lets a user set up 
certain points that need to call back into their custom code.  This method of giving 
control to a user’s script allows the user to solve some of the problems mentioned 
previously.  PyEmu provides numerous handlers out of the box, while being designed 
with expansion in mind. 
 



 All of the handlers operate using function pointers.  To catch the call back a user 
must define a function, and pass the functions name to the handler creation routine for 
callback when that particular situation is met.  For instance 
 

def my_handler(emu): 
    print "[*] Hit my handler @ %x" % emu.get_register("EIP") 
     
    return True 

 
One current drawback to the handlers is that arguments are dependent on which 

handler you are defining.  In the future this may change and be easier via a defined 
handler event structure passed to the user defined callback.  One note is the fact all the 
handlers will be given an instance of the PyEmu class.  This lets the script have direct 
access to the CPU for modification, querying, or any other tasks that need to be 
completed. 
 

The following handlers are included with the PyEmu package and their associated 
methods are listed below. 

 
4.3.1 Register handlers 
 
 Register handlers are as you would expect them.  If the indicated register 

is modified, the script will receive the opportunity to act on, such as for logging the 
value, or modifying it. 

 
emu.set_register_handler("eax", my_register_handler) 
 
The register parameter mimics the set_register() method and can be used 

by name (i.e. EAX, AX, AL, AH) or “name” (i.e. “counter”).  Register handlers 
are powerful when tracking modifications of a known, or important register you 
may want to keep an eye on. 

 
def my_register_handler(emu, register, value, type) 
 
The handler definition will receive an emulator object, the value of the 

register, and the type.  Type is a string indicating a “read” or “write” of the 
register indicatied. 

 
4.3.2 Library handlers 
 
 Library handlers allow a user to catch any execution of a library call 

before it takes place.  In PyEmu, many standard library calls are emulated to provide 
seamless execution when calling imports.  A handler can be used to change that behavior 
‘on the fly’ for things such as controlling the location a malloc() may return. 

 
emu.set_library_handler("malloc", my_library_handler) 
 



The library name is the exported symbol name of the import.  This is case 
insensitive and allows the user to tailor execution even further. 

 
def my_library_handler(emu, library, address) 
 
The handler definition will receive an emulator object, the name of the 

import being called and the address of the associated import. 
 
 4.3.3 Exception handlers 
 
  Exception handlers act as one would expect.  Any time an exception is 
raised this function will be called.  An obvious example would be catching any general 
protection faults due to invalid memory access. 

 
emu.set_exception_handler("GP", my_exception_handler) 
 
As before the first argument is the Intel fault code of the exception being 

thrown by the CPU. 
 

def my_library_handler(emu, exception, address) 
 
The handler definition will receive an emulator object, the exception 

thrown, and the address of the violation. 
 
 4.3.4 Instruction handlers 
 
  Instruction handlers are present to allow catching of specific mnemonics 
after they have been completed.  Often, when reverse engineering an application certain 
instructions may be significant to the task.  A good example of this is the “cmp” 
instruction used in branch decisions.  If one wanted to log each “cmp” and what was 
being compared this would be simple using an instruction handler. 
 

emu.set_instruction_handler("cmp", my_instruction_handler) 
 
The handler needs only the mnemonic to be trapped on and the associated 

function pointer. 
 
def my_cmp_handler(emu, mnemonic, op1, op2, op3) 
 
The handler function will receive the emulator object, the mnemonic, and 

values of all the possible operands as dword integers. 
 
  



4.3.5 Opcode handlers 
 
  The opcode handler is a subset of the instruction handler.  This allows for 
more granular control over what is being accessed.  If you only want to be notified when 
a “cmp” mnemonic is executed, but only in cases when comparing against memory as is 
the case with opcode 0x39. 
 

emu.set_opcode_handler(0x39, my_opcode_handler) 
 
Again the handler setup is simple in that it only expects the opcode you 

are requesting and a handler function.  In the case of multi-byte opcodes  simply 
indicate it as a int of that length (i.e. 0x0f9c) 

 
def my_39_handler(emu, opcode, op1, op2, op3) 
 
The handler function will receive the emulator object, the opcode, and 

values of all the possible operands as dword integers. 
 
 4.3.6 Memory handlers 
 
  A memory handler is provided to allow a means for catching all access to 
a specific address of memory.  This can be either a read or write and will greatly inform 
the user tracking down specific memory access attempts on a known address. 
 

emu.set_memory_handler(0x41424344, my_memory_handler) 
 
And again we provide the dword size address of the memory we are 

interested in. 
 
def my_memory_handler(emu, address, value, size, type) 
 
The handler function will receive the emulator object, the address of the 

access, value being read, or written to the address, and size of the request.  The 
type argument is a string of value “read” or “write” 

 
 4.3.6 Program counter handler 
 
  The program counter handler is used to trigger a callback when execution 
reaches a specified address, allowing a user to set up points in a binary allowing control 
to transfer back to their script. 
 

emu.set_pc_handler(0x45464748, my_pc_handler) 
 
Set up is the same as the rest. 
 
def my_memory_handler(emu, address) 
 



The handler function will receive as usual the emulator object as well as 
the value of the program counter register (i.e. EIP) 
 
4.3.7 High level memory handlers 
 
 The high level memory handlers allow only one handler per action.  This 

is provided as a simple interface to monitor memory access.  These handlers monitor 
read, write, and access callbacks for any memory, any stack, or any heap requests from 
PyCPU. 

 
emu.set_memory_write_handler(my_memory_write_handler) 
emu.set_memory_read_handler(my_memory_read_handler) 
emu.set_memory_access_handler(my_memory_access_handler) 
 
emu.set_stack_write_handler(my_stack_write_handler) 
emu.set_stack_read_handler(my_stack_read_handler) 
emu.set_stack_access_handler(my_stack_access_handler) 
 
emu.set_heap_write_handler(my_heap_write_handler) 
emu.set_heap_read_handler(my_heap_read_handler) 
emu.set_heap_access_handler(my_heap_access_handler) 
 
There is no option to specify the address of the handler.  That would be 

better suited for the set_memory_handler() method.  Again these are convenience 
functions mostly for logging purposes. 

 
def my_memory_write_handler(emu, address) 
def my_memory_read_handler(emu, address) 
def my_memory_access_handler(emu, address, type) 
 
Sticking with the theme these handler functions receive an emulator object 

and in the case of a write or read handler the address being accessed.  In the case 
of a memory access the type is returned containing a string of “read” or “write”. 

 
 
 The handlers are simple to use and extremely powerful in practice.  Hopefully 
they convey their purpose clearly and help aid in any task done with PyEmu. 
 
4.4 Execution 
 
Execution is the means in which the whole process of emulating code under PyEmu is 
driven.  The basic idea is simple, we want our emulator to go from point a, to point b.  
This is achieved in several different ways.  The execute() method is the only way of 
advancing the CPU and is defined as 
 
 execute(self, steps=1, start=0x0, end=0x0) 
 



 All of the arguments are optional.  Used alone, it will advance based on the 
current program counter of PyCPU.  In the case of IDAPyEmu this is the current cursor 
location in the disassembly.  All of the optional arguments can be used in any 
combination and act as expected.  The “steps” keyword argument defines how many 
instructions to be executed.  Keeping an internal counter emulation ends when the steps 
count has been reached.  Start can be specified to establish a different location for 
emulation than is currently present.  “ end” allows us to set a termination point.  Note that 
“end” can seem misleading in a complex function as often times the address may 
accidentally be impossible to reach in cases where a branch or call does not return. 
 
 Execution is, and should be, simple.  Giving steps, start, and ending functionality 
provides us 99% of the cases we may need.  Again adding more is no problem. 
 
4.5 Modification 
 
The ability to modify and initialize data in an emulator is crucial.  PyEmu tries to provide 
the user with the ability to specify data in various places, and organize that data so it is 
meaningful during reverse engineering.  For most cases, data as the user sees it can be 
divided into 4 categories: registers, stack variables, stack arguments, and other memory.  
When looking at a function, these four are the biggest concern.  These four categories 
have supporting methods for setting, and getting their values. 
 
 emu.set_register("eax", 0x1234567, name="counter") 
 emu.get_register(“eax”) 
 emu.get_register(“counter”) 
 
 The register category has been addressed before.  In the case of setting a register, 
you must provide the name of the register being set, the value to set, and an option name 
for the register.  Finally we see how you can access that value by name in the future.  
Letting us easily label information in a human readable form. 
 
 emu.set_stack_variable(0x80, 0x12345678, name="var_80") 

emu.get_stack_variable(0x80) 
emu.get_stack_variable("var_80") 

 
This may seem confusing at first giving an innocuous value as the fist argument. 

This is simply the offset from the stack pointer or frame pointer in cases where we have a 
frame pointer.  This is easily identified in IDA as the label of the interesting local 
variable.  In live analysis this can be gleaned by getting an offset for the address from the 
pertinent stack register.  The “name” optional argument allows us to organize 
information. 
 
 emu.set_stack_argument(0x8, 0xaabbccdd, name="arg_0") 
 emu.get_stack_argument(0x8) 

emu.get_stack_argument("arg_0") 
 



Similar in almost every way to the stack_variable category of methods, the stack 
arguments operate in the same manner, except they are the addresses of the arguments 
pushed on the stack before the current function frame. 

 
emu.set_memory(0x12345678, "ABCDEFGHIJKLMNOP") 
emu.set_memory(0x12345678, 0x12345678, size=2) 
emu.get_memory(0x12345678, size=4) 
 
Setting and getting other pieces of memory is straightforward.  Providing an 

address and value, the memory address will be set to that value.  Size, again, can in most 
cases be automatically determined, but for setting a value of differing sizes it can be 
provided.  Get memory works as expected given an address it will dereference it and 
return the value.  Note that if you request a string of size >4 the data will automatically be 
returned as a string. 

 
 

5 The Real world 
 
Now that we have a firm grasp on how everything flows and can be used, we should 
investigate some real world examples of using PyEmu.  Various tasks have been chosen 
to demonstrate some obvious uses for a scriptable emulator.  This should also give the 
reader a starting point into how they can apply PyEmu to their particular situation to 
maximize efficiency. 
 
5.1 IDA Pro 
 
We have already discussed using PyEmu in some detail.  The main method currently 
implemented utilizes IDAPython to execute the user’s script.  In our script we first map 
the code section and data section into memory.  After that has completed we can then 
execute the emulator and operate as intended.  The following excerpt will print each 
instruction executing under the emulator. 
 

emu = IDAPyEmu() 
 
# Load .text and .data sections into memory 
<…> 
 
emu.set_register("EIP", ScreenEA()) 
emu.debug(2) 
 
emu.execute(steps=5) 

 
 And when ran 
 



 
 
5.2 Pydbg 
 
Pydbg can also be a vehicle for emulation tasks.  This live analysis option can provide 
powerful flexibility in determining code paths and application behavior.  The addition of 
the emulator should seamless.  In this example, a script will set up the pydbg instance and 
attach to a running process of the users choosing.  Once attached, a break point is set 
indicating the address we want to start emulation. When the address is hit, we start a loop 
using the emulator as a console to inspect register values.  A snippet of the script looks 
like this. 
 

# Our pydbg initial break point handler 
def handler_breakpoint(dbg): 
    # Initial module bp we need to process entries 
    if dbg.first_breakpoint: 
        print "[*] First bp hit setting emu address @ 0%08x" % 
dbg.emuaddress 
        
        # Set up a custom break point handler for the emulator 
        dbg.bp_set(dbg.emuaddress, 
handler=handler_emu_breakpoint, restore=False) 
         
        return DBG_CONTINUE 
     
    print "[!] Unknown bp caught @ 0%08x" % dbg.exception_address 
     
    return DBG_CONTINUE 
 
# Do the emulation once the requested bp has been reached 
def handler_emu_breakpoint(dbg): 
    if dbg.exception_address != dbg.emuaddress: 
        print "[!] Emulator handler caught unknown bp @ 0x%08x" % 
(dbg.exception_address) 
         



        return DBG_CONTINUE 
 
    # Create a new emulator object passing a pydbg instance 
    emu = PyDbgPyEmu(dbg) 
     
    c = None 
    while c != "x": 
        emu.execute() 
        emu.dump_regs() 
         
        c = raw_input("emulator> ") 
         
    return DBG_CONTINUE 
 
procname = sys.argv[1] 
emuaddress = sys.argv[2] 
     
dbg.set_callback(EXCEPTION_BREAKPOINT, handler_breakpoint) 
 
if not attach_target_proc(dbg, procname): 
    print "[!] Couldnt load/attach to %s" % procname 
     
    sys.exit(-1) 
 
dbg.debug_event_loop() 

 
 Once executed, the output can be seen as: 
 

C:\Code\Python\PyEmu\examples>pydbgpyemu.py calc.exe 0x001001AF3 
 
[*] Trying to attach to existing calc.exe 
[*] Attaching to calc.exe (2516) 
[*] First bp hit setting emu address @ 001001af3 
 
[*] Executing [0x1001af3][6a] push byte 0xc 
EAX: 0x0000002e 
ECX: 0x00000000 
EDX: 0x00000005 
EBX: 0x010012a0 
EBP: 0x0007f99c 
ESP: 0x0007f90c 
ESI: 0x00000001 
EDI: 0x0007f95c 
EFLAGS: 0x244 [ ZF PF IF ] 
EIP: 0x01001af5 
emulator> t 
 
[*] Executing [0x1001af5][58] pop eax 
EAX: 0x0000000c 
ECX: 0x00000000 
EDX: 0x00000005 
EBX: 0x010012a0 
EBP: 0x0007f99c 
ESP: 0x0007f910 
ESI: 0x00000001 
EDI: 0x0007f95c 



EFLAGS: 0x244 [ ZF PF IF ] 
EIP: 0x01001af6 
emulator> t 
 
[*] Executing [0x1001af6][33] xor edi,edi 
EAX: 0x0000000c 
ECX: 0x00000000 
EDX: 0x00000005 
EBX: 0x010012a0 
EBP: 0x0007f99c 
ESP: 0x0007f910 
ESI: 0x00000001 
EDI: 0x00000000 
EFLAGS: 0x240 [ ZF IF ] 
EIP: 0x01001af8 
emulator> t 
 
[*] Executing [0x1001af8][57] push edi 
EAX: 0x0000000c 
ECX: 0x00000000 
EDX: 0x00000005 
EBX: 0x010012a0 
EBP: 0x0007f99c 
ESP: 0x0007f90c 
ESI: 0x00000001 
EDI: 0x00000000 
EFLAGS: 0x240 [ ZF IF ] 
EIP: 0x01001af9 
emulator> x 
 
[*]Exiting the emulator. 
 
C:\Code\Python\PyEmu> 

 
 This snippet of code is very simple and straightforward.  With an enhanced 
emulator console, the bridge between live execution and emulated execution could be 
realized. 
 
5.3 PE 
The PE file format contains all the necessary information for running an application.  
This includes the various sections of code, data, and their associated relative addresses 
from the image base.  Since we have access to this information and the pefile python 
library, a quick implementation of a PEPyEmu class is complete.  This class allows you 
to write scripts without the need for IDA’s disassembly.  The script to use this is simple.  
It takes an executable name and address, emulating for 10 steps. 
 

#!/usr/bin/env python 
 
import os, sys, pefile 
 
from PyEmu import PEPyEmu 
 
exename = sys.argv[1] 
address = int(sys.argv[2], 16) 



 
emu = PEPyEmu(exename) 
emu.debug(2) 
 
emu.set_register("EIP", address) 
 
emu.execute(steps=10) 

 
 And the output from the script 
 

C:\Code\Python\PyEmu>pepyemu.py "examples\calc.exe" 0x010022F9 
 
[*] Image Base Addr:  0x01000000 
[*] Code Base Addr:   0x01001000 
[*] Data Base Addr:   0x01014000 
[*] Entry Point Addr: 0x01012475 
 
[*] Loading text section bytes into memory 
[*] Text section loaded into memory 
[*] Loading data section bytes into memory 
[*] Data section loaded into memory 
 
[*] Executing [0x10022f9][55] push ebp 
[*] Executing [0x10022fa][8b] mov ebp,esp 
[*] Executing [0x10022fc][81] sub esp,0x108 
[*] Executing [0x1002302][53] push ebx 
[*] Executing [0x1002303][56] push esi 
[*] Executing [0x1002304][8b] mov esi,[ebp+0xc] 
[*] Executing [0x1002307][8b] mov eax,[esi+0x10] 
[*] Executing [0x100230a][57] push edi 
[*] Executing [0x100230b][33] xor edi,edi 
[*] Executing [0x100230d][89] mov [esi+eax*2+0x14],di 
 
C:\Code\Python\PyEmu> 

 
 This example demonstrates the flexibility of PyEmu.  Since the only requirement 
is raw bytes of instructions, the possibilities for application are numerous.  This can be 
achieved because PyEmu strives to be as autonomous as possible when dealing with 
implemented PyEmu classes.  By doing this, we allow the user to have full control over 
what they are trying to achieve.  It would even be possible to create a NetPyEmu if so 
desired. 
 
5.4 Tracking memory access 
 
Determining when memory is being read and written to is crucial in understanding how 
an application is working.  An often asked question when determining this is “When and 
where is memory being accessed”.  To solve this with PyEmu, we can set up some higher 
level memory access handlers.  These handlers will return control when something 
modifies process memory.  The following example is used in IDA Pro. 
 

from PyEmu import IDAPyEmu 
 
def my_memory_access_handler(emu, address, value, size, type): 



    print "[*] Hit my_memory_access_handler %x: %s (%x, %x, %x, 
%s)" % (emu.get_register("EIP"), emu.get_disasm(), address, 
value, size, type) 
 
    return True 
 
# Our usual IDA setup mapping relevant sections 
<…> 
 
# Start the program counter at the current location in the 
disassembly window 
emu.set_register("EIP", ScreenEA()) 
 
# Set up our memory access handler 
emu.set_memory_access_handler(my_memory_access_handler) 
 
emu.execute(start=0x00427E6B, end=0x00427E8D) 
 
print "[*] Done" 

 
 And the output is below 
 

 
 
 Solving a problem and answering questions like this aid the reverse engineer in 
accelerating up the understanding of a function, or group of functions.  We also see the 
use of executing from start and end method for quickly defining a bounds in the emulator. 
 



5.5 Path enumeration 
 
Previously we demonstrated an extremely complex function.  The function included 
hundreds of code path decisions and appears as a spider web of branches and loops.  To 
alleviate this, one can use PyEmu to track those branches, their conditions and the values 
used in the decision.  In this case, hooking each call to the mnemonic “cmp” provides us 
a simple view of the comparisons happening before each branch is taken.  While this can 
be done in other ways we might also want to provide specific values to change the code 
path.  In IDAPyEmu we would simply set up a mnemonic handler for “cmp” and log its 
values. 
 

from PyEmu import IDAPyEmu 
 
def my_cmp_handler(emu, address, op1, op2, op3): 
    print "[*] Hit my_cmp_handler %x: %s (%x, %x)" % 
(emu.get_register("EIP"), emu.get_disasm(), op1, op2) 
     
    return True 
 
# Start the program counter at the current location in the 
disassembly window 
emu.set_register("EIP", ScreenEA()) 
 
# This demonstrates setting local variables used in our 
comparisons 
emu.set_stack_variable(0x2c, 0x00000000, name="var_2C") 
emu.set_stack_variable(0x1d, 0x00000001, name="var_1D") 
emu.set_stack_variable(0x1e, 0x00000002, name="var_1E") 
 
# Set up our memory access handler 
emu.set_mnemonic_handler("cmp", my_cmp_handler) 
 
emu.execute(start=0x00427E46, end=0x00427E6B) 
 
print "[*] Done" 

 
 This script would result in the following 
 



 
 
5.6 Function return value statistics 
 
Functions are often used for simple purposes.  One might have a function calculating 
values based on input.  This can be easily gathered via emulation.  The concept is to set 
up a list of inputs, and retrieve the return value once sent through a function.  This can be 
done as many times as needed to determine what might be the result of a function. 
 
 The simple example we will write, set up funcition arguments, and hook ret so 
that when the function ends we can log the result and start again. 
 

from PyEmu import IDAPyEmu 
 

def reset_stack(emu, value1, value2, value3): 
    emu.set_stack_argument(0x8, value1, name="arg_0") 
    emu.set_stack_argument(0xc, value2, name="arg_4") 
    emu.set_stack_argument(0x10, value3, name="arg_8") 
 
    return True 

 
 This function will reset our stack variables to their intended values. 
 

def my_ret_handler(emu, address): 
    global count 
     
    value1 = emu.get_stack_argument("arg_0") 
    value2 = emu.get_stack_argument("arg_4") 
    value3 = emu.get_stack_argument("arg_8") 
     
    print "[*] Returning %x: %x, %x, %x = %x" % (address, value1, 
value2, value3, emu.get_register("EAX")) 
 
    reset_stack(emu, value1 + 1, value2 + 2, value3 + 3) 
    emu.set_register("EIP", ScreenEA()) 
     
    count += 1 



         
    return True 

 
 Our “ret” mnemonic handler will be called upon return.  When hit, we will get the 
value of stack arguments and the return value of the function for logging purposes.  After 
we have logged the requested information, we increment the values, reset the program 
counter and do it again. 
 
 # Typical ida loading 
 <…> 
 

# This sets our stack values for the function 
reset_stack(emu, 0x00000000, 0x00000001, 0x00000002) 
 
# Set up our memory access handler 
emu.set_mnemonic_handler("ret", my_ret_handler) 
 
count = 0 
while count <= 10: 
    if not emu.execute(): 
        break 
 
print "[*] Done" 

 
 After 10 iterations of the function have been completed the emulator will exit.  
And here is the output. 
 

 
 



 Like all of our examples, this can prove useful in situations when functions may 
return important values that are unknown.  We are aiming for reduction of time 
investment in each function while reverse engineering. 
 
 We have seen a few real world implementations and uses for PyEmu.  There are 
numerous possibilities when reverse engineering and hopefully this has demonstrated 
some basic ones while working to create more complex solutions for your own specific 
needs. 
 
6 Limitations and future work 
 
Obviously, there are several limitations in the current toolset of reverse engineering and 
PyEmu.  There is still a lot of manual interaction and setup when using PyEmu.  Setting 
memory values, updating stack variables and the basic need to have some understanding 
of the emulated code is a draw back to any modern emulator.  As the tool matures, these 
issues will hopefully be addressed.  Whether this is done through pre-analysis, statistics, 
or artificial intelligence is unknown.  Regardless, in order to reach the goal of reducing 
our time investment in reverse engineering these advancements must be made. 
 
 The lack of peripheral device emulation may also have negative side effects in 
PyEmu.  Often times deep complex code paths may make an attempt to access a 
peripheral.  In this case the emulator will be forced to ignore any access and continue on 
as if nothing happened.  In the future, these cases may be rectified by having more 
intelligent responses to unsupported actions, such as emulating an input device. 
 
 The single biggest drawback to the current PyEmu emulator is the lack of a 
complete set of emulated libraries and system calls.  All programs will import several 
external libraries for use during execution.  For a library call, this may not be a large 
concern.  In future releases, PyEmu will load the requested library into memory and 
provide access to its exports as is normally done when executing.  However, system calls 
are fairly hard to emulate at this level.  Although PyEmu does a decent job of attempting 
to provide a python usable equivalent to a socket, for instance, many other actions will go 
ignored.  Hopefully, a decent solution for this will materialize very soon. 
 
 In the future, PyEmu will be much more automated, or at least have automation 
added to the base for use.  Also, better library and system call support will raise the 
emulator to a new level.  With this in mind, it still functions well and is a valid solution to 
most of today’s reverse engineering tasks. 
 
  
7 Conclusion 
 
Emulation has played a key role in advancing computer science since the mid 1960s.  As 
we move towards advancing reverse engineering, I believe it is beneficial to also allow 
emulators to demonstrate their usefulness in the field.  With increasingly complex 



applications, obfuscation, and never ending time constraints we must work faster and 
more efficiently. 
  

PyEmu was designed with all of this in mind and most importantly to be usable, 
flexible, and easily extended.  PyEmu strives to work fluently and as expected so that it 
may be integrated with the ever growing tool box of reverse engineers.  Hopefully it 
accomplishes all of that and then some. 
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