
OpenBSD Remote Exploit

”Only two remote holes in the default install”

Alfredo A. Ortega

June 30, 2007

Mbuf buffer overflow

Buffer overflow
Researching the “OpenBSD 008: RELIABILITY FIX” a new vulnerability was found: The m dup1() function causes
an overflow on the mbuf structure, used by the kernel to store network packets.

mbuf1 mbuf2 mbuf3 mbuf4

End of overflow

Copy direction

Figure: mbuf chain overflow direction

The function m freem() crashed...

Searching for a way to gain code execution

Searching for a way to gain code execution

C code equivalent

/ s y s /mbuf . h

#de f i n e MEXTREMOVE(m) do { \
i f (MCLISREFERENCED(m)) { \

MCLDEREFERENCE(m) ; \
} e l s e i f ((m)−>m f l a g s & M CLUSTER) { \

poo l pu t (&mclpool , (m)−>m ext . e x t b u f) ; \
} e l s e i f ((m)−>m ext . e x t f r e e) { \

(∗ ((m)−>m ext . e x t f r e e)) ((m)−>m ext . e x t bu f , \
(m)−>m ext . e x t s i z e , (m)−>m ext . e x t a r g) ; \

} e l s e { \
f r e e ((m)−>m ext . e x t bu f , (m)−>m ext . e x t t y p e) ; \

} \
(m)−>m f l a g s &= ˜(M CLUSTER|M EXT) ; \
(m)−>m ext . e x t s i z e = 0 ; /∗ why ??? ∗/ \

} wh i l e (/∗ CONSTCOND ∗/ 0)

IcmpV6 packets

Attack vector
We use two IcmpV6 packets as the attack vector

Header

Fragmentation Header

IPv6 Header

Mbuf chain

Fragment 2

Icmpv6

Icmpv6 Header

Trampoline

ShellCode

SyscallHook

Payload

Header

mbuf 2

mbuf 1

Header

mbuf 3

Hop−by−Hop Header

Fragmentation Header

IPv6 Header

Fragment 1

Figure: Detail of IcmpV6 fragments

Where are we?

Code execution
We really don’t know where in kernel-land we are. But ESI is pointing to our code.

User process

Hooked syscall

ShellCode

Kernel

Ring 0

Ring 3

Kernel

Int 0x80

ShellCode

?

?

??

?

?
?

?
?

? ?

Initial situation Final situation

iret

Where we are?

Ring 0

ESI

Figure: Initial and final situations

Now what?

Hook (remember DOS TSRs?)
We hook the system call (Int 0x80)

User process

INT 0x80

Kernel

return

Hook

Hooked syscall

User process

INT 0x80

Kernel

Ring 3

Ring 0

return

Normal syscall

Normal System Call Hooked System Call

Figure: System call hook

Note: If the OS uses SYSENTER for system calls, the operation is slightly different.

New syscall pseudo-code

1. Adjust segment selectors DS and ES (to use movsd
instructions)

2. Get curproc variable (current process)

3. Get user Id (curproc− >userID)

4. If userID == 0 :

4.1 Get LDT position
4.2 Extend DS and CS on the LDT (This disables WˆX!)
4.3 Copy the user-mode code to the the stack of the process
4.4 Modify return address for the syscall to point to our code

5. Restore the original Int 0x80 vector (remove the hook)

6. Continue with the original syscall

New syscall pseudo-code

1. Adjust segment selectors DS and ES (to use movsd
instructions)

2. Get curproc variable (current process)

3. Get user Id (curproc− >userID)

4. If userID == 0 :

4.1 Get LDT position
4.2 Extend DS and CS on the LDT (This disables WˆX!)
4.3 Copy the user-mode code to the the stack of the process
4.4 Modify return address for the syscall to point to our code

5. Restore the original Int 0x80 vector (remove the hook)

6. Continue with the original syscall

New syscall pseudo-code

1. Adjust segment selectors DS and ES (to use movsd
instructions)

2. Get curproc variable (current process)

3. Get user Id (curproc− >userID)

4. If userID == 0 :

4.1 Get LDT position
4.2 Extend DS and CS on the LDT (This disables WˆX!)
4.3 Copy the user-mode code to the the stack of the process
4.4 Modify return address for the syscall to point to our code

5. Restore the original Int 0x80 vector (remove the hook)

6. Continue with the original syscall

New syscall pseudo-code

1. Adjust segment selectors DS and ES (to use movsd
instructions)

2. Get curproc variable (current process)

3. Get user Id (curproc− >userID)

4. If userID == 0 :

4.1 Get LDT position
4.2 Extend DS and CS on the LDT (This disables WˆX!)
4.3 Copy the user-mode code to the the stack of the process
4.4 Modify return address for the syscall to point to our code

5. Restore the original Int 0x80 vector (remove the hook)

6. Continue with the original syscall

New syscall pseudo-code

1. Adjust segment selectors DS and ES (to use movsd
instructions)

2. Get curproc variable (current process)

3. Get user Id (curproc− >userID)

4. If userID == 0 :

4.1 Get LDT position
4.2 Extend DS and CS on the LDT (This disables WˆX!)
4.3 Copy the user-mode code to the the stack of the process
4.4 Modify return address for the syscall to point to our code

5. Restore the original Int 0x80 vector (remove the hook)

6. Continue with the original syscall

New syscall pseudo-code

1. Adjust segment selectors DS and ES (to use movsd
instructions)

2. Get curproc variable (current process)

3. Get user Id (curproc− >userID)

4. If userID == 0 :

4.1 Get LDT position
4.2 Extend DS and CS on the LDT (This disables WˆX!)
4.3 Copy the user-mode code to the the stack of the process
4.4 Modify return address for the syscall to point to our code

5. Restore the original Int 0x80 vector (remove the hook)

6. Continue with the original syscall

OpenBSD WˆX internals

WˆX: Writable memory is never executable
i386: uses CS selector to limit the execution. To disable WˆX, we extend CS from ring0.

Extension

Extension

User Code Segment (CS)

User Data Segment (DS)

0x00000000 0xffffffff
4 GB

512 MB

stack

.so.text stackheap.so

Figure: OpenBSD selector scheme and extension

Defeating WˆX from ring0

Our algorithm, independent of the Kernel:

s l d t ax ; S to r e LDT index on EAX
sub esp , byte 0 x7 f
sgdt [esp+4] ; S to r e g l o b a l d e s c r i p t o r t a b l e
mov ebx , [esp+6]
add esp , byte 0 x7 f
push eax ; Save l o c a l d e s c r i p t o r t a b l e i ndex
mov edx , [ebx+eax]
mov ecx , [ebx+eax+0x4]
sh r edx , 16 ; base low−−>edx
mov eax , ecx
s h l eax , 24 ; b a s e m idd l e −−> edx
sh r eax , 8
or edx , eax
mov eax , ecx ; b a s e h i g h −−> edx
and eax , 0 x f f 000000
or edx , eax
mov ebx , edx ; l d t−−> ebx

; Extend CS s e l e c t o r
or dword [ebx+0x1c] , 0 x000f0000

; Extend DS s e l e c t o r
or dword [ebx+0x24] , 0 x000f0000

Injected code

WˆX will be restored on the next context switch, so we have two
choices to do safe execution from user-mode:

Ring 3

User
Stack

Ring 3

User
Stack

1. fork()

2.mmap()

3.copy

4.jmp to mmaped

mprotect() extends

CS permanently

1. mprotect()

2.fork()

From kernel... From kernel...

Turning off W^X (from usermode) Creating a W+X section

3.Standard

5. Standard
 user−mode code

 user−mode code

Figure: Payload injection options

Questions before going on?

Now we are executing standard user-mode code, and the system
has been compromised.

Proposed protection

Limit the Kernel CS selector
The same strategy than on user-space. Used on PaX (http://pax.grsecurity.net) for Linux.

0x00000000 0xffffffff
4 GB

ke
rn

el

0xD0000000 0xD1000000

Kernel Code Segment (CS)

Kernel Data Segment (DS)

CS shrink

mbuf chains, etc

Figure: OpenBSD Kernel CS selector shrink

A third remote vulnerability?

IPv6 Routing Headers

Uninitialized variable on the processing of IPv6 headers.

1. DoS or Code Execution (depending who you ask!)

2. Present on CVS from January to March of 2007 (very few
systems affected)

Conclusions

In this article we presented:

1. Generic kernel execution code and strategy

2. Possible security improvement of the kernel

3. A third bug - No software is perfect

Conclusions

In this article we presented:

1. Generic kernel execution code and strategy

2. Possible security improvement of the kernel

3. A third bug - No software is perfect

Final Questions?

Thanks to:
Gerardo Richarte: Exploit Architecture
Mario Vilas and Nico Economou: Coding support

	Outline
	Overflow
	Mbuf
	IcmpV6 packets

	Exploit
	Initial situation
	What to do
	System call Hook
	OpenBSD WˆX internals
	Defeating WˆX from ring0
	Injected code

	Proposed protection
	Conclusions
	A third remote vulnerability?
	What we presented
	Questions?

