

(((uuunnn))) SSSmmmaaassshhhiiinnnggg ttthhheee SSStttaaaccckkk:::
22288 77755 666ee 22299 55533 666dd 66611 7733 66688 66699 66ee 66677 22200 55544 6688 6655 2200 55533 77744 66611 66633 666bb 333aa8 5 e 9 3 d 1 73 8 9 6e 7 0 4 68 65 20 3 4 1 3 b a

fff o ttt
fff 6 65 72 66 c fff 77 3 c 0 3 5 e 4 5 2 d 5 1 3

1 e 4 8 5 0 2 5 1 c 0 7 fff 72 6c 4

OOOvvveeerrr llloowwwsss,,, CCCooouuunnn eeerrrmmmeeeaaasssuuurrreeesss,,,
444 77766 6655 7722 6666 666cc 666 7777 77733 222cc 22200 44433 666fff 77755 666ee 77744 66655 77722 666dd 66655 66611 77733 777555 777222 666555 777333 222ccc

aaannnddd ttthhheee RRReeeaaalll WWWooorrrlllddd
66611 666ee 666444 222000 77744 66688 66655 22200 55522 66655 66611 666cc 22200 55577 666 7722 66cc 66644

Shawn Moyer
Chief Researcher, SpearTip Technologies

http://www.speartip.net

{ b l a c k h a t } [at] { c i p h e r p u n x } [dot] { o r g }

http://www.speartip.net/

0x00: Intro :: Taking the blue pill (at first).

My first exposure to buffer overflows, like much of my introduction to the security field,
was while working for a small ISP and consulting shop in the 90’s. Dave, who was building a
security practice, took me under his wing. I was a budding Linux geek, and I confessed an
affinity for Bash. After a brief lecture about the finer points of tcsh, Dave borrowed my laptop
running Slackware, and showed me the Bash overflow in PS1, found by Razvan Dragomirescu.

This was a useful demonstration in that a simple environment variable would work to overwrite a
pointer, though I immediately asked the importunate question of what good it did anyone to get
a command shell to crash and then, well, run a command, in the context of the same user. I
supposed if I ever encountered a restricted Bash shell somewhere, I was now armed to the
teeth.

Just the same, I wanted to understand: how did those bits of shellcode get where they shouldn’t
be, and get that nasty “/bin/ls” payload to run?

Not too long after Dave’s demonstration, I spent a lot of time puzzling over Aleph One, got my
brain around things relatively well, and then rapidly went orthogonal on a career that rarely, if
ever, touched on the internals of buffer overflows. I was far too busy over the next ten years or
so (like most folks in InfoSec) building defenses and sandbagging against the deluge of remote
exploits hitting my customers and employers. I spent my days and nights scouring BugTraq (later
Vulnwatch and Full-Disclosure), writing internal advisories, firefighting compromises and
outbreaks, and repeating the same mantra to anyone who would listen:

Patch early, and patch often.
Rinse, lather, repeat.

Service packs begat security rollups.
Security rollups begat Patch Tuesday .
Patch Tuesday begat off-cycle emergency updates.

Last week, the network admins rebooted my workstation three times. Seriously.

In the past few years, we seem to have found ourselves, as Schneier often points out, getting
progressively worse and worse at our jobs. While aggressive code auditing of critical pieces of
infastructure like Bind, Apache, Sendmail, and others may have reduced the volume of memory
corruption vulnerabilities found in critical services in recent years, they haven’t reduced the
severity of the exposure when they are.

Of course, the client end is a minefield as well – email-based attacks, phishing, pharming, XSS,
CSRF and the like have all shown that users are unfailingly a weak link, to say nothing of web
application threats and the miles of messy client- and server-side issues with Web 2.0… Just the
same, memory corruption vulnerabilities can lead to exploitation of even the best-educated, best-
hardened, best-audited environments, and render all other protection mechanisms irrelevant.

The most recent proof that comes to mind, likely because I spent a very long week involved in
cleanup for both private sector and some government sites, is Big Yellow. Say it with me: A

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 2 of 13

remote service. Listening on an unfiltered port on thousands of machines. Running with very high
privileges. Vulnerable to a stack-based overflow.

Sound familiar?

In my caffeine-addled fog on an all-night incident response for this latest worm-of-the-moment, I
asked myself: Does this make sense? Should we really be blaming vendors, or disclosure, or
automation, or even the cardinal sin of failing to patch, for what ultimately comes down to a
fundamental problem in error handling and memory allocation, described to me so succinctly by
Dave all those years ago as “ten pounds of crap in a five pound bag”?

Recently, Jon Richard Moser of Ubuntu Hardened did an analysis of the first 60 Ubuntu Security
Notices, and found that of these, around 81% were due to either buffer overflows, integer
overflows, race conditions, malformed data handling, or a combination of all four. Moser believes
that the aggregate of available proactive security measures in compilers, kernel patches, and
address space protections available today could serve to obviate many, if not all of these
vulnerabilities.

After a lot of digging, I think Moser may be right, though the devil, of course, is in the details.

0x01: When Dinosaurs roamed the Earth.

The first widely exploited buffer overflow was also what’s generally credited as the first
self-replicating network worm, the response to which is covered in detail in RFC1135, circa 1988:
“The Helminthiasis of the Internet”. A helminthiasis, for those without time or inclination to crack
open a thesaurus, is a parasitic infestation of a host body, such as that of a tapeworm or
pinworm. The analogy stuck, and all these years later it’s still part of the lingua franca of IT.

The Morris Worm was a 99-line piece of C code designed with the simple payload of replicating
itself, that (intentionally or otherwise) brought large sections of the then-primarily research
network offline for a number of days, by starving systems of resources and saturating network
connections while it searched for other hosts to infect.

What’s relevant today about Morris is one of the vectors it used for replication: a stack-based
overflow in the gets() call in SunOS’s fingerd. In his analysis in 1988, Gene Spafford describes
the vulnerability, though he’s a bit closed-mouthed about the mechanics of how things actually
worked:

The bug exploited to break fingerd involved overrunning the buffer the daemon used for
input. The standard C library has a few routines that read input without checking for
bounds on the buffer involved. In particular, the gets() call takes input to a buffer
without doing any bounds checking; this was the call exploited by the Worm.

The gets() routine is not the only routine with this flaw. The family of routines
scanf/fscanf/sscanf may also overrun buffers when decoding input unless the user
explicitly specifies limits on the number of characters to be converted. Incautious use of
the sprintf routine can overrun buffers. Use of the strcat/strcpy calls instead of the
strncat/strncpy routines may also overflow their buffers.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 3 of 13

What strikes me most about the above is that Spafford is still spot-on, nineteen years later.
Unchecked input for misallocated strings or arrays, and the resulting ability to overwrite pointers
and control execution flow, whether on the stack, the heap or elsewhere, remains a (mostly)
solvable problem, and yet the exposure remains with us today.

After Morris, things were a bit quieter for awhile on the buffer overflow front. Rapid adoption of
PC’s, and the prevalence of nothing even resembling a security model for commodity operating
systems, meant that the primary attack surfaces were boot sectors and executables, and for the
rest of the 1980’s virii were of substantially more scrutiny as an attack vector, for both defenders
and attackers.

This isn’t to say this class of vulnerabilities wasn’t known or understood, or that Morris was the
first to exploit them – in fact Nate Smith, in a paper in 1997, describes “Dangling Pointer Bugs”,
and the resulting “Fandango on Core” as being known of in the ALGOL and FORTRAN
communities since the 1960’s!

As has widely been stated, as soon as alternatives to writing code directly to hardware in
assembler became readily available, the abstraction has created exposure. Of course, I’d be
remiss if I didn’t point out that for nearly as long, a move to type-safe or even interpereted
languages has been suggested as the best solution.

Just the same, let’s accept for now that the massive installed base of critical applications and
operating systems in use today that are developed in C and C++ will make this infeasible for
many, many years to come. Also, as Dominique Brezinski pointed out in a recent BlackHat talk,
even an interpereted language, presumably, needs an interpereter, and overflows in the
interpereter itself can still lead to exploitation of code, safe types, bounds-checking, and
sandboxing notwithstanding.

0x02: Things get interesting.

In February of 1995, Thomas Lopatic posted a bug report and some POC code to the
Bugtraq mailing list.

Hello there,

.

We've installed the NCSA HTTPD 1 3 on our WWW server (HP9000/720, HP-UX 9.01) and
I've found that it can be tricked into executing shell commands. Actually, this bug is
similar to the bug in fingerd exploited by the internet worm. The HTTPD reads a
maximum of 8192 characters when accepting a request from port 80. When parsing the
URL part of the request a buffer with a size of 256 characters is used to prepend the
document root (function strsubfirst(), called from translate_name()). Thus we are able to
overwrite the data after the buffer.

The unchecked buffer in NCSA’s code to parse GET requests could be abused due to the use of
strcpy() rather than strncpy(), just as described by Spafford in his analysis of the Morris worm
seven years earlier. He included some example code that wrote a file named “GOTCHA” in the
server’s /tmp directory, after inserting some assembler into the stack.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 4 of 13

US-CERT recorded a handful of buffer-overflow-based vulnerabilities in the years since Morris,
but what made a finding like Lopatic’s so relevant was the rapid adoption of NCSA’s httpd, and
the growth of the Internet and its commercialization. This really was a whole new (old) ballgame.
The ability to arbitrarily execute code, on any host running a web server, from anywhere on the
Internet, created a new interest in what Morris’ stack scribbling attack a number of years ago had
already proven: memory corruption vulnerabilities were a simple and effective way to execute
arbitrary code remotely, at will, on a vulnerable host.

In the next two years, Mudge released a short paper (which he described as really a note to
himself) on using GCC to build shellcode without knowing assembly, and how to use gdb to step
through the process of inserting code onto the stack.

Shortly after, Aleph One’s seminal work on stack-based overflows expanded on Mudge, and
provided the basis for the body of knowledge still relevant today in exploiting buffer overflows.
It’s hard (if not impossible) to find a book or research paper on overflows that doesn’t reference
“Smashing the Stack for Fun and Profit”, and with good reason.

Aleph One’s paper raised the bar, synthesizing all the information available at the time, and made
stack-based overflow exploit development a refinable and repeatable process. This is not to say
that the paper created the overflow problem, and almost certainly the underground had
information at the time to rival that available to the legitimate security community. While in some
ways kicking off the disclosure debate, what “Smashing the Stack” ultimately provided was a
starting point for clearly understanding the problem.

Overflows began to rule the day, and in the late 90’s a number of vulnerabilities were unearthed
in network services, including Sendmail, mountd, portmap and Bind, and repositories of reusable
exploit code like Rootshell.com and others became a source of working exploits for unpatched
services for any administrator, pen-tester (and yes, attacker) with access to a Linux box and a
compiler.

While other classes of remotely exploitable bugs were of course found during this time and after,
it’s fair to say that Crispin Cowan was accurate in 1998 when he referred to overflows as “the
vulnerability of the decade”. In 2002, Gerhard Eschelbeck of Qualys predicted another ten years
of overflows as the most common attack vector. Can we expect the same forecast in 2012?

0x03: Fear sells.

For the most part, the “decade of buffer overflows” did little to change the reactive
approach to vulnerabilities systemic to our field. With some notable of exceptions, while
exploitation of memory corruption vulnerabilities became incredibly refined (“Point. Click. Own.”),
the burgeoning (now, leviathan) security industry as a whole either missed the point or, if you’re
of a conspiratorial bent, chose to ignore it.

Compromises became selling tools for firewall and IDS vendors, with mountains of security gear
stacked like cordwood in front of organizations’ ballooning server farms, and these, along with
the DMZ and screened subnet approach, allowed the damage from exploitation to be contained,
if not prevented.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 5 of 13

Fortunes were made scanning for patchlevels, and alerting on ex post acto exploitation.
Consultants built careers running vulnerability scanners, reformatting the results with their
letterhead, and delivering the list of exploitable hosts (again, often due to memory corruption
vulnerabilities in network services), along with a hefty invoice, to the CIO or CSO.

f

The mass of the security industry simply adopted the same model it had already refined with
antivirus – signatures for specific attacks, and databases of vulnerable version numbers, for sale
on a subscription basis. None of this addressed the fundamental problem, but it was good
business, and like antivirus, if an organization kept their signatures updated and dedicated an
army of personnel to scan and patch, they could at least promise some semblance of safety.

0x04: Yelling “theater” in a crowded fire.

While the march of accelerated patch cycles and antvirus and IDS signature downloads
prevailed, a small but vocal minority in the security community continued to search for other
solutions to the memory corruption problem.

Ultimately many of these approaches either failed or were proven incomplete, but over time, the
push and pull of new countermeasures and novel ways to defeat them has refined these
defenses enough that they can be considered sound as a stopgap that makes exploitation of
vulnerable code more difficult, though of course not impossible.

The refinement of memory corruption attacks and countermeasures shares a lot with the
development of cryptosystems: an approach is proposed, and proven breakable, or trustworthy,
over time. As we’ll see later, like cryptography, the weaknesses today seem to lie not in the
defenses themselves, but in their implementation. Because so many different approaches have
been tried, we’ll focus on those that are most mature and that ultimately gained some level of
acceptance.

0x05: Data is data, code is code, right?

The concept is beguiling: in order for a stack-based overflow to overwrite a return
pointer, a vulnerable buffer, normally reserved for data, must be stuffed with shellcode, and a
pointer moved to return to the shellcode, which resides in a data segment. Since the code
(sometimes called “text”) segment is where the actual instructions should reside on the stack, a
stack-based overflow is by definition an unexpected behavior.

So, why not just create a mechanism to flag stack memory as nonexecutable (data) or
executable (code), and simply stop classic stack-based overflows entirely? In the POSIX
specification, this means that a given memory page can be flagged as PROT_READ and
PROT_EXEC, but not PROT_WRITE and PROT_EXEC, effectively segmenting data and code.

SPARC and Alpha architectures have had this capability for some time, and Solaris from 2.6 on
has supported globally disabling stack execution in hardware. 64-bit architectures have a
substantially more granular paging implementation, which makes this possible much more
trivially – this is what prompted AMD to resurrect an implementation of this in 2001 with their
“NX” bit, referred to as “XD” (eXecute Disable) by Intel on EM64T.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 6 of 13

Software-based emulation on 32-bit architectures typically requires a “line in the sand” approach,
where some memory range is used for data, and another for code. This is far less optimal, and
may be possible to circumvent under specific conditions. With hardware-based nonexecutable
stack features now widely available, this will become less of an issue over time, but for now,
software emulation is better than no protection at all.

Historically, execution on the stack had been expected in some applications – called trampolining,
the somewhat cringeworthy process of constructing code on the fly on the stack can yield some
performance and memory access benefits for nested functions. In the past, a nonexecutable
stack has broken X11, Lisp, Emacs, and a handful of other applications. With the advent of wider
adoption of NX, and “trampoline emulation” in software, this is no longer as much of an issue,
though it delayed adoption for some time.

Solar Designer built the first software noexec implementation for the Linux kernel, in 1997. When
it was proposed for integration into the kernel mainline, it was refused for a number of reasons.
Trampolines, and the work required to make them possible, was a large factor. In a related
thread on disabling stack execution, Linus Torvalds also gave an example of a return-to-libc
attack, and stated that a nonexecutable stack alone would not ultimately solve the problem.

In short anybody who thinks tha the non-execu able stack gives them any real security
is very very much living in a dream world. It may catch a few attacks for old binaries that
have security problems, but the basic problem is that the binaries allow you to overwrite
their stacks. And if they allow that, then they allow the above exploit.

, t t

It probably takes all of five lines of changes to some existing exploit, and some random
program to find out where in the address space the shared libraries tend to be loaded.

Torvald’s answer was prescient, and in recent years the most common approach to defeating
hardware and software non-executable stack has been return-to-libc. On Windows, Dave Maynor
also found that overwriting an exception handler or targeting the heap was effective, and Krerk
Piromposa and Richard Embody noted that a “Hannibal” attack, or multistage overflow, in which
a pointer is overwritten to point to an arbitrary address, and then shellcode is written to the
arbitrary address in the second stage, could succeed. In all of these cases, data segments on the
stack were not replaced with code, and so the read-exec or read-write integrity remained intact.

Still, Solar’s patch gained adoption among security-centric Linux distributions, and it offered some
level of protection, if only by obscurity – most distributions of Linux had fully executable stacks,
so typical exploits in wider use would fail on system using the patchset.

Over time, the inarguability of a simple protection against an entire class of overflows led to the
nonexecutable stack being ubiquitous. Today, WinXP SP2, 2003, and Vista have software-based
nonexecutable stacks and integrate with hardware protection on 64-bit platforms, as does Linux
(via PaX or RedHat’s ExecShield), OpenBSD with W^X, and even (on Intel) MacOS X.

Outside of the use of other classes of overflows, such as writing to the heap, or ret-to-libc, likely
the key issue with stack protection on any platform is the ability to disable it at will. The
mprotect() function on Linux / Unix and VirtualProtect() in Windows allow applications to ask for
stack execution at runtime, and opt out of the security model. Microsoft’s .NET JIT compiler,
Sun’s JRE, and other applications that compile code at run-time expect to create code on the
stack, so these may become an area of greater scrutiny in the future.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 7 of 13

Certainly nonexecutable stacks are only a small part of the solution, and opt-out with mprotect()
and VirtualProtect() give developers the ability to override them, but they are computationally
inexpensive, and a worthy part of a larger approach.

0x06: The canary in the coalmine.

Crispin Cowan’s StackGuard, released in 1997, was the first foray into canary-based stack
protection as a mechanism to prevent buffer overflows. The approach was simple: place a
“canary” value into the stack for a given return address, via patches to GCC, in
function_prologue. On function_epilogue, if a change to the canary value was detected, the
canary checks called exit() and terminated the process.

Cowan found that StackGuard was effective at defending against typical stack-based overflows in
wide use at the time, either stopping them entirely, or creating a Denial of Service condition by
causing the service to exit.

After StackGuard’s initial release, Tim Newsham and Thomas Ptacek pointed out two issues in the
implementation, less than 24 hours later. The problem was in the canary value’s lack of
randomization. If a guessable or brute-forceable canary was the only protection in place, the
defense was only as good as the canary. So, either guessing the canary, or finding a way to read
the canary value from memory, would render the defense void.

But even with a stronger canary value, the larger weakness of protecting only the return address
remained. While the return address is one of the most effective and common targets in exploiting
an overflow, it’s by no means the only one. Essentially, any other area in memory was
unprotected, so as long as the canary was intact, the injected shellcode still ran.

Originally introduced in Phrack 56 by HERT, an effective approach was demonstrated – writing
“backward” in specific cases via an unbounded strcpy() could bypass the protection. The Phrack
56 article also proved exploitability of the same weaknesses in the canary value Newsham and
Ptacek had already pointed out. This led to the adoption of a more robust approach to the canary
value, and an XOR’d canary of a random value and the return address was eventually adopted in
future versions. Gerardo Richarte of Core Security also demonstrated that writes to the Global
Offset Table, “after” the return address, as well as overwrites of frame pointers and local
variables, would still lead to code execution.

Hiroaki Etoh’s ProPolice built on StackGuard’s canary concept, but matured the approach much
further, and created a full implementation that added canaries (Etoh prefers the term “guard
instruments”) for all registers, including frame pointers and local variables, and also reordered
data, arrays, and pointers on the stack to make overwriting them more difficult: if pointers and
other likely targets are not near data in memory, it becomes much more difficult to overwrite a
given buffer and move the pointer to the supplied shellcode.

In 2004, Pete Silberman and Richard Johnson used John Wilander’s Attack Vector Test Platform
to evaluate ProPolice and a number of other overflow protection methods, and found ProPolice
effective at stopping 14 of the 20 attack vectors tested by AVTP. ProPolice’s primary weaknesses
were in not protecting the heap and bss, and in not protecting smaller arrays or buffers.

ProPolice was accepted for inclusion with GCC 4.1, and was included in OpenBSD and Ubuntu as
a backport to GCC 3.x. With 4.1 integration, it’s now available in every major Linux and most

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 8 of 13

Unix distributions, and each of the BSD’s. Microsoft also integrated a variant of XOR canaries and
a limited level of stack reordering into WinXP SP2 and Windows 2003 and Vista. It’s extremely
important to note that compiler flags for what protections are enabled need to be set to take
advantage of ProPolice on any platform, and are generally not enabled by default. On Linux /
Unix, the “—fstack-protector and –fstack-protector-all” flags must be set, and on Windows,
applications need to be compiled with /GS to gain ProPolice-like functionality.

0x07: /dev/random pitches in to help

In 2001, the PaX team introduced ASLR, or address space layout randomization, as part
of the PaX suite of security patches to the Linux kernel. ASLR in a number of forms was also
introduced into OpenBSD around roughly the same time, and due to some contention in these
two camps over a number of topics, it’s best to say that a bit of credit belongs to both, though
I’m sure they shared a collective sigh when Microsoft introduced it five years later in Vista, to
much fanfare and fawning in the IT press.

In general, ASLR randomizes memory allocation so that a given application, kernel task or library
will not be in the same address with (hopefully) any level of predictability. This aims to make
reusable exploits tougher to develop, as addresses to be targeted for example in a return-to-libc
attack, like the address of the system() call, will not be in the same location on multiple
machines.

Like attacks on TCP sessions with sequential ISN’s, which made IP spoofing relatively trivial, an
exploit usually needs a known, predicatable address to target. By randomizing memory in the
kernel, stack, userspace, or heap, ASLR aims to make exploits less successful.

In practice, like StackGuard’s canary value, if ASLR’s randomization is weak, it becomes trivial to
break. This is especially true for services that fork and respawn, such as Apache, or any service
running inside a wrapper application that restarts it upon failure.

Hovav Schacham of Stanford (now UCSD) and a group of other researchers found that by
enumerating offsets of known libc functions by a series of unsuccessful attempts – their example
used usleep(), but any widely-available function with a known offset would work – they could
effectively brute-force ASLR randomization through a series of failed overflow attempts on a
respawning service, crashing it numerous times but eventually successfully exploiting the service
and returning to libc.

With this method, Shacham was able to compromise a vulnerable ASLR-protected Apache via
brute force in around 200 seconds. Since 32-bit ASLR implementations use far less entropy than
64-bit, it was noted that 64-bit ASLR would be substantially more time-consuming to defeat. Also,
Shacham’s scenario presumes a service that restarts rather than simply crashes, so detecting a
repeated number of failures (which the PaX team also recommends) would render the attack a
denial of service rather than code execution.

Most other methods of defeating ASLR work in a similar way: if an offset of a known-sized
function can be obtained, return-to-libc is possible. In Phrack 59, “Tyler Durden” (a pseudonym
and tip-of-the-hat to the film Fight Club) used format string vulnerabilities as an example to
disclose addresses on a PaX-enabled system. Ben Hawkes of SureSec presented a method he
called “Code Access Brute Forcing” at RuxCon in the past year that used, like Shacham, a series
of unsuccesful reads to map out memory in OpenBSD.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 9 of 13

On the Microsoft front, Ollie Whitehouse of Symantec performed a series of regression tests of
Vista’s ASLR, and found it to be substantially weaker on the heap and process environment
blocks (PEBs) than in other areas, and that heap randomization was actually better using ANSI
C’s malloc() than MS’s recommended HeapAlloc().

Since even in the best cases Vista’s ASLR is weaker than that of most other implementations in
terms of bits of entropy, it seems likely that derandomization attacks like Shacham’s will be
effective to some extent. Additionally, like stack protection, Microsoft allows applications to opt-in
or opt-out, which means for some apps protections may not be consistent.

If sufficiently randomized, and if not readable in some other way such as via format string bugs
or other information leakage, ASLR does still present a substantial barrier to heap overflows and
return-to-libc attacks. This is especially true if all applications are built as PIC or PIE (Position-
Independent Executables|Code), which make it possible for running applications, in addition to
libraries and stack or heap memory, to load at less predictable locations.

0x08: How about just fixing the code?

For some time, extensive code review has been posited as the best route to securing
vulnerable applications. The OpenBSD project in particular has spent a number of years
aggressively working to identify security bugs as part of the development process. After a
number of remote vulnerabilities were still found in released code, Theo DeRaadt, long a
proponent of pure code review and secure-by-default installations as the best approach to
security, famously altered his position and began implementing a number of stack and heap
protection measures as well as ASLR and other mechanisms to make overflow exploitation more
difficult.

Still, fixing vulnerabilities in code before they become exposures is without question the most
effective route, and software developers are far more aware today than in previous years of the
importance of integrating security review into the development lifecycle, using both manual
review and static code analysis.

In GCC, the RedHat-developed FORTIFY_SOURCE extension looks for a number of exploitable
conditions at compile time, and when paired with its glibc counterpart, can identify if a buffer
with a defined length is mishandled and stop execution, by replacing oft-abused functions with
their checking counterparts. FORTIFY_SOURCE will also warn for conditions it deems suspect but
cannot protect. OpenBSD has taken similar steps by replacing commonly exploited functions like
strcat() / strcpy() with fixed-size alternatives.

A number of vendor products also use automated code analysis to identify security holes.
Recently the US Department of Homeland Security invested $1.25 million in a joint project
between Stanford, Coverity, and Symantec to search Open Source projects for security bugs. In
1999, as part of its security push, Microsoft purchased code analysis toolmaker Intrinsa outright,
and made static analysis an integrated part of their QA process.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 10 of 13

0x09: The sum of the whole is partially great.

If security in depth is the sum of a number of imperfect controls, then the controls described
here should all certainly qualify. Each has been proven insufficient in a vaccuum, but the
aggregate of a nonexecutable stack, ASLR, canary-based protection of pointer values, and static
code analysis should still serve to create an environment that is more hostile to overflows than
what has previously been available… The key weaknesses now seem to be in a lack of
consistency of adoption and implementation.

A remotely-exploitable stack-based overflow in ANI cursor handling in Vista, found by Alexander
Sotirov, was due in part to Visual Studio’s /GS checks not protecting buffers that write to
structures rather than arrays. Also, as NX and DEP have become more ubiquitous, heap
exploitation and other alternatives have gained renewed interest as well.

OpenBSD elected to omit kernel stack randomization, though it was adopted by PaX, due to
questions about whether it broke POSIX compliance. In recent months OpenBSD was found
vulnerable to a number of vulnerabilities in the kernel – one such example is being presented this
year at BlackHat. While I’m sure the OpenBSD camp will have an alternative answer, it seems to
me that a randomized kstack might have at least raised the bar a bit.

OS X has benefited from relative obscurity for some time, but with increasing marketshare and
minimal overflow protection beyond an optional integration with NX, it’s likely to become an
attractive target – attacks refined a number of years ago are relatively trivial to implement, when
compared to exploiting the same bugs on other platforms.

In time, as always, new attacks will create new countermeasures, and the security ecosystem will
continue to evolve, in fits and starts, as it always has, from RFC1135, to Aleph One, and on.

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 11 of 13

// Notes and references

Thanks for reading. I hope this paper was helpful to you. It’s the result of my attempt to better
understand what protections were out there for my own systems and those under my care, and
to get all of this information in one spot, which is something I couldn’t find a year ago when I got
interested in this topic.

Here’s a starting point for some of the information referenced in this paper. The BH CD also
contains copies of these and a lot of other supporting material. In addition to these, I’d highly
recommend reading Jon Erickson’s excellent Hacking: The Art of Exploitation, and The
Shellcoder’s Handbook, edited by Jack Koziol.

– shawn

NX Bit, PaX, and SSP on Wikipedia
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/PaX
http://en.wikipedia.org/wiki/Stack-smashing_protection

PaX: The Guaranteed End of Arbitrary Code Execution
Brad Spengler
http://grsecurity.net/PaX-presentation.ppt

PaX documentation repository:
http://pax.grsecurity.net/docs/

Edgy and Proactive Security
John Richard Moser
http://www.nabble.com/Edgy-and-Proactive-Security-t1728145.html

What’s Exploitable?
Dave LeBlanc
http://blogs.msdn.com/david_leblanc/archive/2007/04/04/what-s-exploitable.aspx

On the Effectiveness of Address-Space Layout Randomization
Shacham et al.
http://crypto.stanford.edu/~dabo/abstracts/paxaslr.html

Defeating Buffer-Overflow Protection Prevention Hardware
Piromposa / Enbody
http://www.ece.wisc.edu/~wddd/2006/papers/wddd_07.pdf

ByPassing PaX ASLR
“Tyler Durden”
http://www.phrack.org/archives/59/p59-0x09.txt

Johnson and Silberman BH talk on Overflow Protection Implementations
http://rjohnson.uninformed.org/blackhat/

Exploit mitigation techniques in OBSD
Theo DeRaadt
http://www.openbsd.org/papers/ven05-deraadt/index.html

Ubuntu USN analysis listing type of exploit (45% buffer overflows)
John Richard Moser
https://wiki.ubuntu.com/USNAnalysis

Crispin Cowan’s StackGuard paper,
USENIX Security 1998
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan_html/cowan.html

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 12 of 13

http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/PaX
http://en.wikipedia.org/wiki/Stack-smashing_protection
http://grsecurity.net/PaX-presentation.ppt
http://www.nabble.com/Edgy-and-Proactive-Security-t1728145.html
http://blogs.msdn.com/david_leblanc/archive/2007/04/04/what-s-exploitable.aspx
http://crypto.stanford.edu/~dabo/abstracts/paxaslr.html
http://www.ece.wisc.edu/~wddd/2006/papers/wddd_07.pdf
http://www.phrack.org/archives/59/p59-0x09.txt
http://rjohnson.uninformed.org/blackhat/
http://www.openbsd.org/papers/ven05-deraadt/index.html
https://wiki.ubuntu.com/USNAnalysis
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan_html/cowan.html

Detecting Heap Smashing Attacks through Fault Containment Wrappers:
http://ieeexplore.ieee.org/iel5/7654/20915/00969756.pdf

ContraPolice: a libc Extension for Protecting Apps from Heap-Smashing attacks
http://synflood.at/papers/cp.pdf

Effective protection against heap-based buffer overflows without resorting to magic
Younan, Wouter, Piessens
http://www.fort-knox.be/files/younan_malloc.pdf

l0t3k site with lots of linkage on BoF’s
http://www.l0t3k.org/programming/docs/b0f/

How to write Buffer Overflows
Peter Zaitko / Mudge
http://insecure.org/stf/mudge_buffer_overflow_tutorial.html

Defeating Solar Designer’s NoExec stack patch
http://seclists.org/bugtraq/1998/Feb/0006.html

Solar Designer / Owl Linux kernel patchset
http://openwall.com/linux/

Theo’s hissy fit justifying ProPolice in OBSD to Peter Varga
http://kerneltrap.org/node/516

Stack-Smashing Protection for Debian
http://www.debian-administration.org/articles/408

IBM ProPolice site:
http://www.trl.ibm.com/projects/security/ssp/

Four different tricks to bypass StackGuard and StackShield
http://www.coresecurity.com/index.php5?module=ContentMod&action=item&id=1146

Smashing the Stack for Fun and Profit
Elias Levy / Aleph One
http://www.phrack.org/archives/49/P49-14

Stack Smashing Vulnerabilities in the Unix Operating System
Nathan P. Smith
http://community.corest.com/~juliano/nate-buffer.txt

RFC 1135
http://www.faqs.org/rfcs/rfc1135.html

Gene Spafford’s analysis of the Morris Worm
http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf

Shawn Moyer :: (un)Smashing the Stack :: BlackHat USA 2007 :: Page 13 of 13

http://ieeexplore.ieee.org/iel5/7654/20915/00969756.pdf
http://synflood.at/papers/cp.pdf
http://www.fort-knox.be/files/younan_malloc.pdf
http://www.l0t3k.org/programming/docs/b0f/
http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://seclists.org/bugtraq/1998/Feb/0006.html
http://openwall.com/linux/
http://kerneltrap.org/node/516
http://www.debian-administration.org/articles/408
http://www.trl.ibm.com/projects/security/ssp/
http://www.coresecurity.com/index.php5?module=ContentMod&action=item&id=1146
http://www.phrack.org/archives/49/P49-14
http://community.corest.com/~juliano/nate-buffer.txt
http://www.faqs.org/rfcs/rfc1135.html
http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf

