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Introduction

Limited to Windows, and aimed at IA32:
• Outline of protected mode and the kernel
• Attack vectors
• Useful tools
• Examples
• Defensive measures
• Future directions



Architecture Overview



A long time ago in a galaxy far, far 
away…

The progression from Intel’s 8088 to 80386, 
via the 80286, added:

• Page and segment level protection
• Call, interrupt and task gates
• Privileged and sensitive instructions
• Four privilege levels underlying the 

protection mechanisms above
• 32bit support



The supervisor

The NT kernel provides:
• Segregation of user mode processes
• Protection of the kernel from user mode
• Provide services to user mode and other 

kernel mode code
• Session management and the Windows 

graphics subsystem



The NT kernel
• System call and DeviceIoControl covered
• Graphics drivers

– Display driver
– Miniport driver

• NDIS and TDI
• Port objects
• Windows Driver Framework
• Kernel mode callbacks
• Hardware interfaces

– Talking to hardware
– Listening to hardware



A plan of attack
• Directly from user mode?

– CPU bugs
– Operating system design

• Public APIs
– StartService, DeviceIoControl, ExtEscape

• Undocumented APIs
– ZwSystemDebugControl, ZwSetSystemInformation

• Architectural flaws
• Bugs in code
• Subverting operating system initialization
• Modifying kernel modules on disk

– Viruses
– DLL (export driver) injection



Tools of the trade



Two different approaches

• Dynamic analysis
– Will not guarantee results
– Fuzzing awkward to automate

• Static analysis
– Can be complicated and time consuming
– Source code very helpful

• Best results achieved by combining both



Static analysis

• Static driver verifier
• PREFast
• Disassembler
• Windows Driver Kit

– Documentation and header files



Dynamic analysis

• WinDbg
• Driver verifier
• Miscellaneous

– WinObj
– NtDispatchPoints
– Rootkit Hook Analyzer



Getting our hands dirty



I have the tools, now what?

• Poor access control
• Trusting user supplied data

– Pointers and lengths
• Typical coding bugs

– Boundary conditions
– Off-by-one errors

• Design flaws
– Expose kernel functionality or data



Reverse engineering

• Knowing the correct entry points means 
code coverage can be guaranteed

• Subtle bugs are easier to find - signedness
• Memory overwrites are very easy to find
• Highlight areas of code more suited to 

fuzzing
• No need to analyze a crash dump
• Lack of symbolic information may prove 

awkward



CDFS DispatchDeviceControl



Source code analysis

• Access to source is not common
• Source code and a suitable IDE will 

greatly improve auditing speed
• Assumptions made by the coder may help 

hide subtle bugs
• Tools are available to help speed up the 

process even further
• grep FIXME –r *.*



CDFS DispatchDeviceControl



Getting a foot in the door
Kernel targets we are interested in:
• Static or object function pointers
• Kernel variables - MmUserProbeAddress
• Descriptor tables
• Return address
• Code from a kernel module
• I/O access map from TSS
• Kernel structures – process token, loaded 

module list, privilege LUIDs



Real world examples



NT kernel compression support

• Kernel runtime library exports functions to 
support compression
– Used by SMB and NTFS

• Support routines take a parameter indicating 
what algorithm to use
– Used as an index into a function table

• The table only has 8 entries, whereas the 
maximum index allowed is 15
– We can treat code or data as a function pointer, 

potentially to a user mode address





Trusting user input

• The following code takes a pointer from a 
buffer supplied by the user and trusts it
– Either a sign-extended kernel stack address 

or an internal handle will be written there
• This can be used to overwrite other code 

or data, allowing arbitrary code execution
• User supplied pointers into:

– user mode should be validated
– kernel mode should be opaque, e.g. a handle 





An architectural flaw

• A function designed to allow the 
modification of arbitrary memory

• Exposed to unprivileged users
• Provided the internal data structure can be 

figured out, it is then easy to exploit
• Either access control to the driver, or a 

different architecture is needed





Defensive measures



Current architecture

• Parameter validation
• Code signing – quality control?
• PatchGuard
• Moving functionality into user mode – 

UMDF, display drivers in Vista
• Restricting access to APIs

– User restrictions
– Privilege restrictions
– Process restrictions



Alternative approaches
• Hypervisor

– Designed to help virtualization
– Provides a layer beneath the supervisor
– It could be used to provide a microkernel architecture

• Microkernel
– Does not require virtualization hardware
– Minimizes the attack surface provided by the kernel
– Increases flexibility with respect to service 

implementation
– Microsoft’s Singularity microkernel is strongly typed 

and uses software based protection



Future work





Fuzzing

• Application fuzzing unlikely to crash the 
OS

• We need to automate crash recovery and 
analysis:
– Run in a VM, but what about real hardware?
– Have bugcheck callbacks
– Modify the kernel itself

• Fuzzing interfaces is greatly aided by 
some form of static analysis



Virtualizing the kernel

• Provide a user mode environment that looks the 
same as the kernel

• Implement user mode compatible APIs where 
necessary

• Provide basic I/O, PnP, Process Support and 
executive functionality

• Trap and handle protected and privileged code 
execution

• Add instrumentation for analysis and logging



Automated binary analysis

• Model basic CPU functionality
– Instead of processing a specific value, instructions 

work on a defined range
– Instructions can modify the range stored in a register

• Allows all code paths to be assessed
– Large state space

• Determine ranges of values that will hit certain 
pieces of code

• Heuristic bug detection



In conclusion …



Summary

• Current NT kernel architecture increases 
the likelihood of security issues

• Debatable how much effort has gone into 
securing kernel code

• Some areas of the kernel have not 
received much attention

• There is plenty of scope for further 
research and tool development



Questions?

Thanks
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