Attacking the Windows Kernel

Below The Root

mConsulting

Jonathan Lindsay, Reverse Engineer in extremis

Introduction

Limited to Windows, and aimed at |A32:
Outline of protected mode and the kernel
Attack vectors
Useful tools
Examples
Defensive measures
Future directions

Architecture Overview

A long time ago in a galaxy far, far
away...
The progression from Intel’'s 8088 to 80386,
via the 80286, added:
Page and segment level protection
Call, interrupt and task gates
Privileged and sensitive instructions

Four privilege levels underlying the
protection mechanisms above

32bit support

The supervisor

The NT kernel provides:
e Segregation of user mode processes
* Protection of the kernel from user mode

e Provide services to user mode and other
kernel mode code

e Session management and the Windows
graphics subsystem

The NT kernel

System call and DeviceloControl covered
Graphics drivers

— Display driver

— Miniport driver

NDIS and TDI

Port objects

Windows Driver Framework

Kernel mode callbacks

Hardware interfaces
— Talking to hardware
— Listening to hardware

A plan of attack

Directly from user mode?

— CPU bugs

— Operating system design

Public APIs

— StartService, DeviceloControl, ExtEscape

Undocumented APIs
— ZwSystemDebugControl, ZwSetSysteminformation

Architectural flaws
Bugs in code
Subverting operating system initialization

Modifying kernel modules on disk
— Viruses
— DLL (export driver) injection

Tools of the trade

Two different approaches

 Dynamic analysis
— Will not guarantee results
— Fuzzing awkward to automate

o Static analysis
— Can be complicated and time consuming
— Source code very helpful

e Best results achieved by combining both

Static analysis

Static driver verifier
PREFast
Disassembler

Windows Driver Kit
— Documentation and header files

Dynamic analysis

e WinDbg
e Driver verifier

* Miscellaneous
— WInObj
— NtDispatchPoints
— Rootkit Hook Analyzer

Getting our hands dirty

| have the tools, now what?

Poor access control

Trusting user supplied data
— Pointers and lengths
Typical coding bugs

— Boundary conditions

— Off-by-one errors

Design flaws
— Expose kernel functionality or data

Reverse engineering

Knowing the correct entry points means
code coverage can be guaranteed

Subtle bugs are easier to find - signedness
Memory overwrites are very easy to find

Highlight areas of code more suited to
fuzzing

No need to analyze a crash dump

Lack of symbolic information may prove
awkward

CDFS DispatchDeviceControl

mov
push
mov
push
mov
lea
push
lea
push
push
push
call
cmp
1=
mov

loc 13735%5:

B push
push
push
call
mov

ebx, [ebptIRE]

251

=1, [ebxtE0h]

edl

edi, [ebptContext]
eax, [ebptwvar 4]
2ax

eax, [ebptIRF]

2ax

dword ptr [e=i+l8h]
edi
CdDecodeFiletbject
eax, 2

short loc 15745
esi, 0CO00000Dh

251

ebx

edl
CdCompleteRequest
eax, esl

short loc 15733

Get and decode the FileObject

Check it’s a wvalid request

Complete if inwvalid

loc 153745:

B mowv
cmp
in=
mowv
push
push
call

loc 1573B:

eax, [esi+0Ch]

eax, Z24000h

short loc 15740
eax, [ebptIRE]
dword ptr [eax+40h]
edi

cdVerifyVch

Get the IoControlCode from
IRP.Talil.CurrentStacklocation
and check i1f it 1= 0x24000

Verify the Volume Control
and proceed with the request

Source code analysis

Access to source Is not common

Source code and a suitable IDE will
greatly improve auditing speed
Assumptions made by the coder may help
hide subtle bugs

Tools are available to help speed up the
process even further

grep FIXME —r *.*

CDFS DispatchDeviceControl

1f [(TwpeDfOpen |= UserVolumeOpen) {

CdCompleteRequest | IrpContext, Irp, STATUS_INVALID PARAMETER) :
return STATUS_INVALID FPARAMETER:

¥

1f [(IrpSp-:Parameters.leviceloControl . JoControlCode == IOCTL_CDROM _READ_TOC) |
o
A Werifv the Veb in this case to detect if the volume has changed.
&~

CdVerifvvoh(IrpContext, Foh->Veh 1

e
<+ Handle the case of the disk type ourselves.
e

} else 1f [IrpSp-:Parameters.leviceloControl .. loControlCode == IOCTL_CDROM DISE_TYPE) |
e

A Werifv the Veb in this case to detect if the volume has changed.
o

CdVerifvyVeh(IrpContexzt, Foh->Veh J:

o
Check the size of the output huffer.
o

if [(Irplp-rParameters.lDeviceloContral .OutputBufferlength < sizeof | CDROM DISE DATE 1)

CdCompleteRequest [IrpContext, Irp. STATUS_BUFFER_TOO_SMALL):
return STATUS_BUFFER_TOO_SMALL

i

Getting a foot In the door

Kernel targets we are interested In:

e Static or object function pointers

o Kernel variables - MmUserProbeAddress
o Descriptor tables

 Return address

e Code from a kernel module

e |/O access map from TSS

o Kernel structures — process token, loaded
module list, privilege LUIDs

Real world examples

NT kernel compression support

o Kernel runtime library exports functions to
support compression
— Used by SMB and NTFS

e Support routines take a parameter indicating
what algorithm to use
— Used as an index into a function table

 The table only has 8 entries, whereas the
maximum index allowed is 15

— We can treat code or data as a function pointer,
potentially to a user mode address

RtlGetCompressionWorkSpacesSize proc near

sub rsp, Z28h

test cl, cl

movzx raod, cl

jz short loc 140200E7& ;7 Check the index is not zero

cmp r9w, 1

jz short loc_140200E76& ; Check the index is not ones

test r9b, 0FOh

jz short loc 140200E60 ; Check the index i1s less than 0x10
mov eax, (0CO000Z5Fh

Jmp short loc 140200E7TB

loc 140200
mowv
lea
and
cal

60 :

Z¥ eax, r9w

r9, RtlWorkSpaceProcs

cx, OFFO00Oh ; Mask off the format, and leave only the compression level
1 gword ptr [r9+rax*8] ; Call the relevant function from the table

short loc_140200E7B

mov
loc_140Z200E
add
ret

eax, 0C000000Dh

TB:

rsp, Z8h

n

RtlGetCompressionWorkSpaceSize endp

RtlWorkSpac
dg
dg
dg
dg
dg
dq
dg

eProcs
0

offset
offset
offset
offset
offset
offset

dg 0

RtlCompressWorkSpaceSizeLZNTL
RtlReservaeChunkNs
RtlReservaeChunkNs
RtlReserveChunkNs
REtlReserveChunkNs
RtlReserveChunkNs

LZNTl1Formats dg OFO00Q0FFFh ; With the above code, all the following quadwords
10000010020 ; can be treated as function pointers

TFF0000000Ch

8020000001Fh

OBOOOOO0Z20N

3F000003FFh

4000000402h

1FF0O000000AR

dg
dg
dgq
dg
dg
dg
dg

Trusting user input

 The following code takes a pointer from a
buffer supplied by the user and trusts it

— Elther a sign-extended kernel stack address
or an internal handle will be written there

e This can be used to overwrite other code
or data, allowing arbitrary code execution
e User supplied pointers into:
— user mode should be validated
— kernel mode should be opaque, e.g. a handle

SubFunction:

test
jz
test
jz
mowv
test
jz
cmp
jnz
cmp
jnz
mov
test
jz
cmp
jbe
cmp
ja
mov
lea
cdg
mov
mowv
mov

esi, esi
InvalidParameter
ebp, ebp

InvalidParameter

edi, [esp+9ch+OoutBuffer]

edi, edi
InvalidParameter
edx, 20h
InvalidParameter
edx, ecx
InvalidParameter
eax, [ebp+0Ch]
eax, eax

Shdrt DefaultoOp
eax, TFh

short Validop
eax, 87h

short Validop
ecx, [ebp+l0h]

eax, [esp+9€h+var_80]

dword ptr [ebp+0Ch],

[ecx], eax
[ecx+4], edx
short Validop

Check it is a wvalid handle

Check we have a non-NULL input buffer pointer

Check we have a non-NULL output buffer pointer
Check the size of the input buffer is 0x20

Check the output buffer is the same size

Verify the user controlled function index

Get a user controlled pointer from the input buffer
Address part of the thread’s kernel mode stack
This will set edx to Oxffffffff

Write the sign-extended stack address to the user
specified buffer

DefaultOp:
mow

Validop:
mov
mow

dword ptr [ebp+0Ch],

edx, [ebp+l0h]
eax, [ebp+0Ch]

An architectural flaw

A function designed to allow the
modification of arbitrary memory

Exposed to unprivileged users

Provided the internal data structure can be
figured out, it Is then easy to exploit

Either access control to the driver, or a
different architecture I1s needed

push ebx
mov ebx, [esp+Function]
Ccmp ebx, MEMORY OPERATION
push ebp
mov ebp, [espt+4+SourceDescriptor]
jnz short NoAddress
mov ebx, [ebp+4]
NoAddress:
mov eax, [ebpt+8]
mov edx, [eax]
test edx, edx
jz sholrt InvalidParameter
test ebx, ebx
jl short InvalidParameter
mov eax, [eaxtd]
cmp eax, ebx
jb short InvalidParameter
mov ecx, [espt4tDestinationSize]
sub eax, ebx
cmp eax, ecx
jb short SizeOk
mowv eax, ecx
SizeOk:
test eax, eax
jz short RequestProcessed
push esi
push edi
mov edi, [espt0Ch+Destination]
mowv ecx, eax
lea esi, [edxtebx]
shr ecx, 2
rep movsd
mov ecx, eax
and ecx, 3
rep movsb
pop edi
pop es3i

Jjmp

short RequestProcessed

- wa wa

Check if it is a memory operation
Get a pointer to the source buffer descriptor

Get the source start address

Check that the buffer offset is non-zero
Check the source buffer is a user mode address
Get the source end address

Check the end is after the start

Make sure that the copy will not overflow the buffer

Set the copy size to the size of the destination

Make sure we are copying some bytes

Destination address is an arbitrary address passed in
from the user supplisd buffer
Address the relevant part of the target buffer

DWORD aligned copy

Copy the remaining bytes

And we' re done

Defensive measures

Current architecture

Parameter validation
Code signing — quality control?
PatchGuard

Moving functionality into user mode —
UMDF, display drivers in Vista

Restricting access to APIs
— User restrictions

— Privilege restrictions
— Process restrictions

Alternative approaches

e Hypervisor
— Designed to help virtualization
— Provides a layer beneath the supervisor
— It could be used to provide a microkernel architecture

« Microkernel
— Does not require virtualization hardware
— Minimizes the attack surface provided by the kernel

— Increases flexibility with respect to service
Implementation

— Microsoft’s Singularity microkernel is strongly typed
and uses software based protection

Future work

problem has heen detected and windows has heen shut down to prevent damage
0 wWour cComputer.

he end-user manually generated the crashdump.
If this is the first time you've seen this Stop error screen,

restart your caomputer. If this screen appears again, follow
heze steps:

heck to make sure any new hardware aor software is properly installed.
If this is a new installation, ask wour hardware ar software manufacturer
or any windows updates wou might need.

If problems continue, disable or remove any newly installed hardware
or software. Dizable BIOS memory options such as caching or shadowing.
If wou need to use safte Mode to remove or dizable components, restart
WOUr Ccomputer, press F8 To select Advanced sStartup options, and then
zalect safe mMode.

echnical information:

wHE O SToP: OxQO00000EZ2 (Ox00000000, 0x00000000, OxQ0000000, 0x000000007)

Fuzzing

e Application fuzzing unlikely to crash the
OS

* \We need to automate crash recovery and
analysis:
— Run in a VM, but what about real hardware?

— Have bugcheck callbacks
— Modify the kernel itself

 Fuzzing interfaces Is greatly aided by
some form of static analysis

Virtualizing the kernel

Provide a user mode environment that looks the
same as the kernel

Implement user mode compatible APIs where
necessary

Provide basic I/O, PnP, Process Support and
executive functionality

Trap and handle protected and privileged code
execution

Add instrumentation for analysis and logging

Automated binary analysis

Model basic CPU functionality

— Instead of processing a specific value, instructions
work on a defined range

— Instructions can modify the range stored in a register

Allows all code paths to be assessed
— Large state space

Determine ranges of values that will hit certain
pieces of code

Heuristic bug detection

In conclusion ...

Summary

Current NT kernel architecture increases
the likelihood of security issues

Debatable how much effort has gone into
securing kernel code

Some areas of the kernel have not
received much attention

There Is plenty of scope for further
research and tool development

Questions?

Thanks

	Attacking the Windows Kernel��Below The Root
	Introduction
	Architecture Overview
	A long time ago in a galaxy far, far away…
	The supervisor
	The NT kernel
	A plan of attack
	Tools of the trade
	Two different approaches
	Static analysis
	Dynamic analysis
	Getting our hands dirty
	I have the tools, now what?
	Reverse engineering
	CDFS DispatchDeviceControl
	Source code analysis
	CDFS DispatchDeviceControl
	Getting a foot in the door
	Real world examples
	NT kernel compression support
	Slide Number 21
	Trusting user input
	Slide Number 23
	An architectural flaw
	Slide Number 25
	Defensive measures
	Current architecture
	Alternative approaches
	Future work
	Slide Number 30
	Fuzzing
	Virtualizing the kernel
	Automated binary analysis
	In conclusion …
	Summary
	Questions?

