
Attacking the Windows Kernel 

Below The Root

Jonathan Lindsay, Reverse Engineer in extremis



Introduction

Limited to Windows, and aimed at IA32:
• Outline of protected mode and the kernel
• Attack vectors
• Useful tools
• Examples
• Defensive measures
• Future directions



Architecture Overview



A long time ago in a galaxy far, far 
away…

The progression from Intel’s 8088 to 80386, 
via the 80286, added:

• Page and segment level protection
• Call, interrupt and task gates
• Privileged and sensitive instructions
• Four privilege levels underlying the 

protection mechanisms above
• 32bit support



The supervisor

The NT kernel provides:
• Segregation of user mode processes
• Protection of the kernel from user mode
• Provide services to user mode and other 

kernel mode code
• Session management and the Windows 

graphics subsystem



The NT kernel
• System call and DeviceIoControl covered
• Graphics drivers

– Display driver
– Miniport driver

• NDIS and TDI
• Port objects
• Windows Driver Framework
• Kernel mode callbacks
• Hardware interfaces

– Talking to hardware
– Listening to hardware



A plan of attack
• Directly from user mode?

– CPU bugs
– Operating system design

• Public APIs
– StartService, DeviceIoControl, ExtEscape

• Undocumented APIs
– ZwSystemDebugControl, ZwSetSystemInformation

• Architectural flaws
• Bugs in code
• Subverting operating system initialization
• Modifying kernel modules on disk

– Viruses
– DLL (export driver) injection



Tools of the trade



Two different approaches

• Dynamic analysis
– Will not guarantee results
– Fuzzing awkward to automate

• Static analysis
– Can be complicated and time consuming
– Source code very helpful

• Best results achieved by combining both



Static analysis

• Static driver verifier
• PREFast
• Disassembler
• Windows Driver Kit

– Documentation and header files



Dynamic analysis

• WinDbg
• Driver verifier
• Miscellaneous

– WinObj
– NtDispatchPoints
– Rootkit Hook Analyzer



Getting our hands dirty



I have the tools, now what?

• Poor access control
• Trusting user supplied data

– Pointers and lengths
• Typical coding bugs

– Boundary conditions
– Off-by-one errors

• Design flaws
– Expose kernel functionality or data



Reverse engineering

• Knowing the correct entry points means 
code coverage can be guaranteed

• Subtle bugs are easier to find - signedness
• Memory overwrites are very easy to find
• Highlight areas of code more suited to 

fuzzing
• No need to analyze a crash dump
• Lack of symbolic information may prove 

awkward



CDFS DispatchDeviceControl



Source code analysis

• Access to source is not common
• Source code and a suitable IDE will 

greatly improve auditing speed
• Assumptions made by the coder may help 

hide subtle bugs
• Tools are available to help speed up the 

process even further
• grep FIXME –r *.*



CDFS DispatchDeviceControl



Getting a foot in the door
Kernel targets we are interested in:
• Static or object function pointers
• Kernel variables - MmUserProbeAddress
• Descriptor tables
• Return address
• Code from a kernel module
• I/O access map from TSS
• Kernel structures – process token, loaded 

module list, privilege LUIDs



Real world examples



NT kernel compression support

• Kernel runtime library exports functions to 
support compression
– Used by SMB and NTFS

• Support routines take a parameter indicating 
what algorithm to use
– Used as an index into a function table

• The table only has 8 entries, whereas the 
maximum index allowed is 15
– We can treat code or data as a function pointer, 

potentially to a user mode address





Trusting user input

• The following code takes a pointer from a 
buffer supplied by the user and trusts it
– Either a sign-extended kernel stack address 

or an internal handle will be written there
• This can be used to overwrite other code 

or data, allowing arbitrary code execution
• User supplied pointers into:

– user mode should be validated
– kernel mode should be opaque, e.g. a handle 





An architectural flaw

• A function designed to allow the 
modification of arbitrary memory

• Exposed to unprivileged users
• Provided the internal data structure can be 

figured out, it is then easy to exploit
• Either access control to the driver, or a 

different architecture is needed





Defensive measures



Current architecture

• Parameter validation
• Code signing – quality control?
• PatchGuard
• Moving functionality into user mode – 

UMDF, display drivers in Vista
• Restricting access to APIs

– User restrictions
– Privilege restrictions
– Process restrictions



Alternative approaches
• Hypervisor

– Designed to help virtualization
– Provides a layer beneath the supervisor
– It could be used to provide a microkernel architecture

• Microkernel
– Does not require virtualization hardware
– Minimizes the attack surface provided by the kernel
– Increases flexibility with respect to service 

implementation
– Microsoft’s Singularity microkernel is strongly typed 

and uses software based protection



Future work





Fuzzing

• Application fuzzing unlikely to crash the 
OS

• We need to automate crash recovery and 
analysis:
– Run in a VM, but what about real hardware?
– Have bugcheck callbacks
– Modify the kernel itself

• Fuzzing interfaces is greatly aided by 
some form of static analysis



Virtualizing the kernel

• Provide a user mode environment that looks the 
same as the kernel

• Implement user mode compatible APIs where 
necessary

• Provide basic I/O, PnP, Process Support and 
executive functionality

• Trap and handle protected and privileged code 
execution

• Add instrumentation for analysis and logging



Automated binary analysis

• Model basic CPU functionality
– Instead of processing a specific value, instructions 

work on a defined range
– Instructions can modify the range stored in a register

• Allows all code paths to be assessed
– Large state space

• Determine ranges of values that will hit certain 
pieces of code

• Heuristic bug detection



In conclusion …



Summary

• Current NT kernel architecture increases 
the likelihood of security issues

• Debatable how much effort has gone into 
securing kernel code

• Some areas of the kernel have not 
received much attention

• There is plenty of scope for further 
research and tool development



Questions?

Thanks


	Attacking the Windows Kernel��Below The Root
	Introduction
	Architecture Overview
	A long time ago in a galaxy far, far away…
	The supervisor
	The NT kernel
	A plan of attack
	Tools of the trade
	Two different approaches
	Static analysis
	Dynamic analysis
	Getting our hands dirty
	I have the tools, now what?
	Reverse engineering
	CDFS DispatchDeviceControl
	Source code analysis
	CDFS DispatchDeviceControl
	Getting a foot in the door
	Real world examples
	NT kernel compression support
	Slide Number 21
	Trusting user input
	Slide Number 23
	An architectural flaw
	Slide Number 25
	Defensive measures
	Current architecture
	Alternative approaches
	Future work
	Slide Number 30
	Fuzzing
	Virtualizing the kernel
	Automated binary analysis
	In conclusion …
	Summary
	Questions?

