Vulnerabilities in Dual-mode / Wi-Fi Phones

8/2/07 Sachin Joglekar Vulnerability Research Lead

VIPER LAB

Outline (Total 60-70 min)

- Introduction (7 min)
- Protocol Stack (7 min)
- Current State of Security Features (7 min)
- Demo 1 (10 min)
- Attack Vectors (7 min)
- Vulnerabilities Discovered (15 min)
- Demo 2 (10 min)
- Q&A (5 min)

8/2/07 - sachin joglekar

Part 1

VOIP/VOWLAN

Black Hat Briefings

What is VoIP and VoWLAN?

- VoIP=Voice over Internet Protocol
- For a layman
 - A very attractive and cheap phone service
- For a techie
 - A phone service that transmits your voice over IP network
- For a hacker
 - A very attractive new attack target!!

- VoWLAN = Voice over Wireless LAN
- Mobile phones connect to Wi-Fi to transmit voice over Wi-Fi
- Great indoors where cellular signal is weak
- Such phones can be easily discovered from IP network and...
- … hacked into using traditional techniques

VoIP advantages and challenges

Advantages

- Cost effective
 - No need to pay for each line
- Feature rich
- Fast ROI
- Easy to manage
- Independence from geographic restrictions on phone numbers

- Challenges
 - E911 issues
 - Dependent on availability of power
 - Sometimes QoS
 - Voice traveling through un-trusted IP networks
 - Security

Typical Enterprise VoIP- Value and Risks

Protocols Used for VoIP

Application	Signaling: SIP, SDP, H323, Skinny Media: RTP, RTCP Encrypted Media: SRTP, ERTP, ZRTP Authentication: MD5 Digest, NTLM, Kerberos
Transport	UDP, TCP, TLS TLS Security Server Auth Only Mutual Auth Auth with null encryption Auth with encryption

SIP Protocol Complexity

Too many specifications

- SIP is an ASCII protocol (as opposed to binary protocol like H.323) specified in IETF RFC 3261
- VoIP applications also make use of several other RFCs [http://www.iana.org/assignments/si p-parameters]

- Too flexible specifications
 - Specification leaves lot of room for flexibility in syntax and extensions
- Complex implementations
 - That makes protocol message parser implementations complex
- Vulnerable code
 - And hence more prone to security vulnerabilities

8/2/07 - sachin joglekar

Part 2

Dual-mode / Wi-Fi Phones -Protocol Stack and Attack Vectors

Dual-mode vs. Wi-Fi only phone

- Dual mode = two modes of communication
 - Type 1
 - GSM Cellular Radio + CDMA Cellular Radio
 - Type 2
 - Cellular Radio + Noncellular Radio (IEEE 802.11/Wi-Fi)
 - Туре З
 - VoIP + POTS

- Wi-Fi Only phone
 - No cellular radio
 - Only works with Wi-Fi access point
- Both phones can be used over Wi-Fi connection from
 - Campus
 - Home
 - Hotspot
- We will discuss Type 2 dualmode phone and Wi-Fi only phone

Dual-mode Phone Protocol Stack

Example Implementations

Manufacturer	Wi-Fi / Dual- mode	OS	VoIP Stack
Blackberry 7270	Dual-mode	RIM OS	Native
D-Link DPH-541	Wi-Fi	Linux	Native
Nokia E-61	Dual-mode	Symbian	Native
Samsung SCH-i730	Dual-mode	Windows Mobile	Can be installed (e.g. SJPhone)
Dell Axim	Wi-Fi	Windows Mobile	Can be installed

Typical Phone Connectivity

Attack Vectors

- Recon
 - Phone is visible as an IP address
- Authentication bypass
 - Replay, IP spoofing
- Registration hijack
 - Well-known attack still valid on these phones
- Eavesdropping
 - Wireless access points that are not secured enough may provide a way to listen into conversations- without physical access

- Resource exhaustion
 - These are low power devices, some don't cleanup transaction states, easy to exhaust memory and CPU
- Implementation flaw exploitations
 - Not much thought has gone into making the stacks robust
 - Clients (which are also servers in case of SIP) don't authenticate received requests
- Attack on supporting services
 - Users may have to face DoS

Wi-Fi to Cellular hand-off

- If arbitrary shell code can be executed on the phone using a message sent to it over Wi-Fi, the phone can possibly be made to launch calls over Cellular
- Data theft can occur
- To be explored

Building a VoIP/SIP Attack

Pownlead Tools	SIP Server PBX Media Server WR MGW
VoIP/SIP Sniffing Tools	AuthTool, Cain & Abel, NetDude, Oreka, PSIPDump, SIPomatic, SIPv6 Analyzer, VOIPong, VOMIT, Wireshark
VoIP/SIP Scanning & Enum Tools	enumIAX, iWar, Nessus - SIP-Scan, SIPcrack, SIPSCAN, SiVuS, SMAP, VLANping
VoIP/SIP Packet Creation & Flooding Tools	IAXFlooder, INVITE Flooder, kphone-ddos, RTP Flooder, Scapy, SIPBomber, SIPNess, SIPp, SIPsak
VoIP/SIP Signaling Manipulation tools	BYE Teardown, Phone Rebooter, RedirectionPoison, RegistrationAdder, RegistrationEraser, RegistrationHacker, SIP-Kill, SIP-Proxy-Kill, SIP- RedirectRTP
VoIP Media Manipulation Tools	RTP InsertSound, RTP MixSound, RTP Proxy

8/2/07 - sachin joglekar

Part 3

Current State of Security Features

Survey of Current Security Features

- What are security features implemented by Dual-mode / Wi-Fi phones?
- What are out-of-the-box security settings?

Out-of-the-box Security Settings

- Most common signaling transport – UDP (No signaling encryption)
- Most common media transport – RTP (No media encryption)
- Application-level Authentication
 - Only client is authenticated
 - No server authentication in most cases

Authentication Support

Signaling

- Most of the phones do not authenticate server using *cnonce* during Digest Auth
- TLS Authentication not implemented in several phones
- S/MIME ?
- Media
 - SRTP support very minimal
 - Exposure to rogue packet injection using spoofed IP addresses

C	Digest Authentication withou	Jt
	Sever authentication	
Phon	From: sachin@sipera.com;tag=220587 To: sachin@sipera.com Contact: 192.168.0.34;events="message-summary" Call-ID: E3A0F6BBEE91@192.168.0.34 <u>Max-Forwards: 70</u> CSeq: 3 REGISTER Via: SIP/2.0/UDP 192.168.0.34;rport;branch=z9hG4bK805d2fa50131c9b1	erver →
	SIP/2.0 401 Unauthorized WWW-Authenticate: Digest realm="asterisk", n 	once="4f87b95d"
	REGISTER sip:192.168.0.1:5060 SIP/2.0 Authorization: Digest username="sachin",realm="asterisk",nonce="4f87b95d", uri="sip:192.168.0.1:5060",response="fed6890f44712fbaef17c704e6e30eac" ,cnonce="dbf4afc"	
	200 OK	

Black Hat Briefings

Encryption Support

Signaling

- In the absence of transport security, phones can use S/MIME for providing authentication, and privacy services
- But not many phones support S/MIME exposing them to spoofing and eavesdropping threats
- Media
 - SRTP support very minimal
 - Exposure to eavesdropping (tools like VOMIT)

Transport Security

- UDP is the most common and default used transport for SIP signaling
- Transport layer security (TLS) not enforced
- Even if TLS is used only server authentication is enforced, clients may not get authenticated by server allowing someone to steal identity if no other app-level auth is used

SIP Vulnerabilities [introduction]

Basic Protocol Spec

- If left at its basic implementation SIP enabled devices may be vulnerable to
 - Server spoofing
 - MITM, message tampering
 - Session tear-down by unauthorized party
 - Registration hijack
 - Authentication replay for service theft

- Implementation Flaws
 - Format string vulnerabilities
 - Buffer overflow vulnerabilities
 - Failure to handle malformed delimiter
 - Not authenticating SIP server / proxy
 - Failure to clear calls ASAP
 - Failure to handle malformed SDP header
 - Failure to handle malformed SDP delimiter

8/2/07 - sachin joglekar

Part 4

Attack Vectors

Attack Vectors

- Authentication bypass
 - Replay, IP spoofing
- Registration hijack
 - Well-known attack still valid on these phones
- Eavesdropping
 - Wireless access points that are not secured enough may provide a way to listen into conversations- without physical access
- Resource exhaustion
 - These are low power devices, some don't clean-up transaction states, easy to exhaust memory and CPU
- Implementation flaw exploitations
 - Not much thought has gone into making the stacks robust
 - Clients (which are also servers in case of SIP) don't authenticate received requests
 - Attack on supporting services
 - Users may have to face DoS

Authentication Bypass

Servers

- SIP Servers enforcing Digest Authentication on clients requesting service may be vulnerable to replay attack if signaling is not encrypted
- This allows getting through server and reaching the phones for further exploration

Phones

- Several phones accept SIP messages from random source IP address
- Allows malicious messages to be sent directly to the phone bypassing server security mechanism

Registration Hijack

• A well-known attack

- Servers that are vulnerable to authentication replay attack, can be exploited to hijack or erase registration record of a phone
- Dual-mode / Wi-Fi phones have increased exposure to such an attack
 - Wi-Fi access point may not be sufficiently secured allowing war-dialers to explore phone's registration records and erase or hijack them

Listening to conversation

- Conversations using dual-mode / Wi-Fi phones are transmitted over wireless LAN connection
- If RTP is not encrypted, it is very easy to capture the RTP and reconstruct the audio or video content

Resource Exhaustion

- Dual-mode/ Wi-Fi phones are low power devices and implementations must be careful of cleaning up call states as soon as possible to prevent resource exhaustion attacks
- Unfortunately, some observations indicated that is not the case
- Additionally, phones invest resources in sending RTP packets even before confirming legitimacy of the call

Implementation Flaw Exploitation

- SIP being a very loose specification in terms of message formatting, implementations have hard time making themselves robust against malformed messages
- Experimentation revealed that not enough thought has gone in making these implementations robust
- Combined with the fact that several phones accept messages from random source IP address, it is easy to bypass server security mechanism and exploit these flaws

8/2/07 - sachin joglekar

Part 5

Specific Vulnerabilities Discovered

Vulnerabilities Discovered

- Format string vulnerabilities
- Buffer overflow vulnerabilities
- Failure to handle malformed delimiter
- Failure to handle syntactical error
- Server impersonation
- Failure to clear calls
 - Failure to handle malformed SDP

Format String Vulnerabilities

- Blackberry 7270 can be disabled by sending large format string parameters in SIP message
 - Disables outgoing calls
 - Disables incoming calls
- On the positive side, Blackberry 7270, unlike some of the other phones, accepts messages only from server source IP
- But does not authenticate server allowing IP spoofing
- Default transport selected is UDP

Buffer overflow vulnerabilities

- Several freely available VoIP soft phones can be installed on dual-mode / Wi-Fi phones that may not have native VoIP support
- Vulnerabilities in such applications expose phones to exploits
- Buffer overflow vulnerability in SJPhone installed on Windows Mobile may slow down the OS if exploited

Unhandled malformed delimiters

- Basic header delimiters in SIP messages (\r\n) and field delimiters (colon, semi-colon etc) may not be validated
- Such simple exploits disable some phones
- This is also possible on soft phones installed on the phone

Unhandled syntactical errors

- Users making errors in configuration
 E.g., giving incorrectly formatted URI
- Sometimes a misconfigured device may disable a correctly configured device by sending a syntactically incorrect message

```
INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
Max-Forwards: 70
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice\>
```

Server Impersonation / Spoofing

- SIP is a server-server model (unlike client-server model)
- Phone opens a well-known port for accepting new calls which technically makes it a server
- Several phones accept messages from any random source IP address, not only from the registered SIP server
- Making it simple to send exploit messages directly to the phone

Failure to clear calls

- Similar to classic TCP SYN flood attack, SIP enabled phones are vulnerable to half-open SIP requests
- Some phones were found maintaining a call state for unauthenticated requests from random source
- Makes it easy to exhaust resources on the phone by sending flood of SIP INVITE requests, even at low rate
 - E.g., Blackberry 7270, Dell Axim with soft phone

-JEUK

	SIP INVITE (New call) 200 OK (Call answered) ACK	
	RTP	
	SIP INVITEs (New calls)	
9	RTP without ACK?	
		4

Failure to handle malformed SDP

- SDP (Session Description Protocol) is used to negotiate IP addresses and port numbers where media packets are to be received among other parameters
- Malformed values for SDP headers and SDP delimiters can be used to cause complete denial of service to users
- Phone SIP port may become "ICMP Unreachable", phone display freeze, phone keys freeze

```
INVITE sip:bob@biloxi.com SIP/2.0
... ...
v=0
o=bob 2808844564 2808844564 IN IP4 host.biloxi.example.com
s=
c=IN IP4 host.biloxi.example.com
t=0 0
m=audio 0 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=audio 49170 RTP/AVP 8 97 101
a=rtpmap:8 PCMA/8000\r\r\r\r\r\r\r\r
```

Conclusion

 Remember that with feature richness comes vulnerability exposure

Employ best practices

- Keep security patches up to date
- Enforce strong authentication and encryption wherever possible
- Secure Wi-Fi access points
- Use VLANs to keep voice and data traffic separate and police the bridges between the two VLANs
- Apply VoIP intrusion detection and prevention system

References

- IETF RFC 3261, Session Initiation Protocol
- PROTOS Test-Suite, University of Oulu
 - <u>http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/</u>
- VOMIT- IP Phone Conversation To Wave Converter
 - http://www.securiteam.com/tools/600022K8KU.html
 - Session Initiation Protocol (SIP) Parameters
 - <u>http://www.iana.org/assignments/sip-parameters</u>

About us

- Sipera VIPER Lab
 - Voice over IP Exploit Research
 - http://www.sipera.com/viper
 - Continuously publishing vulnerabilities in VoIP products and services
- My role
 - Vulnerability Research Lead
 - Sipera VIPER Lab

Questions?