Stealth Secrets of the Malware
NEE

By Nick Harbour

N

Y ANDIANT

Overview

= |ntro

= Background Info
- Malware
Forensics and Incident Response
-« Anti-Forensics
- Executables

= Stealth Techniques
- Live System Anti-Forensics
= Process Camouflage
= Process Injection
= Executing Code from Memory
- Offline Anti-Forensics
= File Hiding
= Trojanizing
= Anti-Reverse Engineering

There will be something for the “Good Guys” near the end
- A brand new malware scanning tool

EAN DIANT

Introduction

= This presentation will cover a variety of
stealth techniques currently used by
malware In the field.

= Many of the techniques are based on
malware studied during MANDIANT’s
Incident experiences.

EAN DIANT

Introduction

= The purpose of this talk is to discuss
malware stealth technigues other than
Rootkits.

= The majority of the material is designed to
teach the “Bad Guys” some practical real
world techniques to fly beneath the radar.

= For the "Good Guys”, learning these
malicious techniques will help prepare you
to identify and counter malware threats.

l

EAN DIANT

= There’s something for everyone!

= The material we will cover the range from
basic computing concepts to machine
code.

= We will primarily be discussing technigues
for Windows, but Linux will also discussed
at an advanced level.

EAN DIANT

Background Information

Y ANDIANT

Malware

= In Iintrusion incidents, malware Is frequently
found In several inter-related families of tools.

= Often found in redundant layers for failover or
bootstrapping.

Command and Contro

Data Collection = Data Transfer
‘

Cracking/Exploitation

EAN DIANT

Malware

= |[n practice, stealth technigues are most
often employed to protect an intruder’s
command and control mechanism

= These often require persistence which
poses a risk of discovery

= Command and Control is the keys to the
Intruder’s newly acquired kingdom

EAN DIANT

Forensics and Incident Response

= Traditional Computer Forensics involves
examining the contents of computer media
for evidence of a crime.

= A suspect system is powered off, the
storage media is duplicated then analyzed
with in a controlled environment

EAN DIANT

Forensics and Incident Response

= Incident Response Is a specialized
discipline which expands upon the role of
traditional Computer Forensics.

= Critical data Is collected from live systems
and network traffic in addition to storage
media.

= Incident Response technigues are typically
used for Computer Intrusion incidents.

EAN DIANT

= Anti-Forensics Is the practice of avoiding
or thwarting detection through forensics,
Incident response methods or general use.

= Due to Increasing levels of sophistication
and a growing pool of reverse engineering
talent, anti-forensics Is growing Iin
Importance because It prevents malware
from ever being found.

EAN DIANT

Executables

= Microsoft’s PE file format and ELF under
Linux are popular examples.

= Most modern formats are quite similar in
principle.

= Dynamic Libraries such as .DLL files often
use the same file formats as executables.

= |n addition to header data, objects called
sections are the building blocks of
executables

EAN DIANT

Executables

= Sections contain executable code, data,
debugging information, resources and
additional metadata used by the program.

®¥ PE Explorer - C-\notepad.exe

File “iew Toolz Help

-0 W O E(E BNRa

| of Ela Gy ¥ (7]

Virtual Address | Size of Baw Data = Painter ta Baw Data

Mame Wirtual Size Charactenstice . Pointing Directories

& text 000077458H 07007 000k Q0007 E00h Q00004004 BO0000Z0h Impart Table; Debug Data; Load C...
@ data 00001BASKH 071009000 0000300k 0007 Co0k CO000040k
0002400H 40000040k Resource Table

o orsrc 00003958k 0100B000H 00003200h

!

EAN DIANT

Structure of notepad.exe

= Contains the
executable code

= Contains the
Initialized data

= Contains resources
(icons, multi-
language strings,
etc..)

EAN DIANT

Imports and Exports

= |n order to use code In an

. . Imports
external dynamic library, = comdg32dl
. . PageSetupDigW
executables contain a list of ndTotl
. . . Prirt Dilig Exc WY
libraries and associated ChooscFont
. GetFileTileW
symbols it needs. GetOpenFleNanely
. . Feplace Text VW
= Similarly, executables and ComlgEendedEo
dynamic libraries may list o SHELLR2dI
. o . . H- WINSPOOL.DRY
specific functions and variable s COMCTL2d

names in a special Export table = 2wz

+- KERNEL3Z dll

so they may be imported into .
other programs. -

EAN DIANT

Executable Loading

= Each section object in the executable file
will be loaded into memory by the
operating system when the program is run.

= Every Dynamic Library listed in the
program’s import table is then mapped Into
memory.

= Imports required by each Dynamic Library
are also imported, recursively.

EAN DIANT

Loaded Executable Memory Space

B1B8E0EEE | BEEE]BOE| notepad FPE header Imag| R RWE
n BlEE18EE|(BEEESEEE| notepad | . teRT code, import) Imag| R RIE
B1BE9EEE | BEEEZE0E | notepad | .data dat a Imag| R RWE
H1BEBEEN | BAEE9EEE | notepad | .rsrc TESOUrCGES Imag| R RWE
EADYHEAE| BAEE]1 806 | UsTheme PE header Imag| R RWE
EADY18868| AAE3E0EE| UsThemes | .tert code, import] Imag| R RUWE
SADALBEE) BE0018008 UsTherms | .data data Imag| R RWE
SADAZEEE| BAEE48008 | UsThers | .rsrc rESOUrGES Imag| R RWE
SHDASHEE | BEEE2E80E | UsThems | .reloc relocations| Imag| R RWE
ECEYOEEE| BAEE]1BEE| ShimEng FE header Imag| R RWE
ECEY 1880 BAEHEADE | ShimEng | .teut code, import) Imag| R RWE
ECEBYFEEM| BAE148068) ShimEng | .data data Imag| R RWE
ECE93866| BAEE1680E8| ShimEng | .rsrc rESOUrCGES Imag| R RWE
ECE948868| AAEEZ2AEE| ShimEng | .reloc relocat ions| Imag| R RUWE
S2ICHEEE) BE001 8068 LPE FE header Imag| R RWE
S23C 1860 BEENSEA0E | LPE hent code, import| Imag| R RWE
G2 ICEEEE | BEEE]1B0E| LK .data dat a Imag| R RWE
E23CTEEE | BEEE]BEE| LK CETC rESOUTCES Imag| R RWE
52ICEEAE | BAEE]1BEE| LPK sreloz relozations| Imag| R RWE
SF320EEE | BAEH] BEE | AcGental FPE header Imag| R RWE
SFE3E81866) BAE32A0E | AcGenral | . teut code, import) Imag| R RWE
EF8B288E| AEEE9EEE | AcGenral | Ldata data Imag| R RUWE
SF3BECEEN| BE1228008 AcGenral | .rsro rESOUTGES Imag| R RWE
SFA44EEE | BEE0GE0E | AcGental | .reloc relocations| Imag| R RWE
TIEE0EEE | BAEE]1B0E | WIMSPOOL FE header Imag| R RWE
TIEE1EEE) BAEZ2E80E WIMSPOOL | . teut code, import) Imag| R RWE
TIEA21880) BAEE280E WINSPOOL | .data data Imaa| R RWE
TEEZ23EEH | BAEE]AEE | WINSPOOL | . rsrc rESOUrCGES Imag| R RWE
r3a24886) BAEE2A0E | WINSPOOL | . reloc relocations| Imag| R RWE
r4090886 | BAEE]1BEE | USF1a FPE header Imag| R RUWE
40218680 Baa44800 USF1E chEnt code, import| Imag| R RWE
r4005886 | BEE1EE0E | USF18 .data data Imag| R RWE
T40ESHEN | BEO0ZE800E USF18 Shared Imag| R RWE
T40EVEEE| BEE] 2806 USF18 CETC rESOUTCES Imag| R RWE
T40F9E8E | BAEE280E USF18 sreloz relozations| Imag| R RWE
FEIIHEEE | BAEE] BEE | IMM32 FE header Imag| R RWE
r5391866) BAE1EA0E TMM32 teut code, import) Imag| R RWE
TEIAGEAR| BAEE]1AEE | IMM32 .data data Imag| R RUWE
TEIATEEE | BEOOSE0E | [MMI2 SOELC rESOUTGES Imag| R RWE
TEIACHER | BAEE]1 808 TMM32 sreloc relocations| Imag| R RWE
TE3E0EEE | BEEE]BOE | comd Lg32 FPE header Imag| R RWE
TE3E1EEE) BAEIEEEE | comd L9322 | . teut code, import) Imag| R RWE
rE3E188H| BAER480E | comd L9322 | .data data Imag| R RWE
TE3EEHAH| BAEL 180H| comd L9322 | . rerc rESOUrCGES Imag| R RWE
FE3FEEAH| BAEEIA0E | comd 932 | . reloc relocations| Imag| R RWE
TEICHEAE| BAEE]BEE | USEREML FPE header Imag| R RUWE
TEIC18E0) BEEIFE0E USEREMNY | . teut code, import| Imag| R RWE
TEAGHEEE | BEEE2800E | USEREMNY | .data data Imag| R RWE
TEAGZEEE | BEEEAE0E | USEREMNY | . rsrc rESOUTCES Imag| R RWE
TEAECHAR | BAEHFEEE | USERENY | . reloc relozations| Imag| R RWE

EAN DIANT

Programmatics

= Memory regions (sections) may be added,
manipulated or removed after the initial
program load using the Win32 API

- VirtualAllocEx(), VirtualFreeEx(),
MapViewOfFi1le(), WriteProcessMemory()

to name a few.
= Importing functionality from Dynamic
Libraries may also be accomplished easily
through the Win32 API
- LoadLi1brary(), GetProcAddress()

EAN DIANT

Stealth Techniques

Y ANDIANT

Live System Anti-Forensics

= Live System Anti-Forensics is specifically
concerned with concealing the presence of
running malware.

= While Rootkits play decisive role in this
field, they are a field unto themselves and
receive ample treatment elsewhere.

= \We will cover a range of technigues other
than Rootkits.

EAN DIANT

Process Injection

= As the name implies, Injects code Into
another running process.

= Target process obliviously executes your
malicious code.

= Conceals the source of the malicious
behavior.

= Can be used to bypass host-based
firewalls and many other process specific
security mechanisms.

EAN DIANT

Hook Injection

= The easliest method to achieve process
Injection on a windows host Is via the
Windows Hooks mechanism.

= Allows you to add specify a piece of code
to run when a particular message is
received by a Windows application.

EAN DIANT

Hook Injection

= The SetWindowsHookEx() WIin32 API
call causes the target process to load a
DLL of your choosing into its memory
space and select a specified function as a
hook for a particular event.

= \WWhen an appropriate event is received,
your malicious code will be executed by
the target process.

EAN DIANT

Windows Message Hooks

Application
Evil.DLL Application

EAN DIANT

Hook Injection Code

HANDLE hLib, hProc, hHook;
hLib = LoadLibrary("evil.dll");

hProc = GetProcAddress(hLib,

"EvilFunction');

hHook =
SetWindowsHookEx(WH_CALLWNDPROC,

hProc, hLiIb,
0);

EAN DIANT

Library Injection

= The next easiest method of process
Injection involves creating a new thread In
the remote process which loads your
malicious library.

= When the library Is loaded by the new
thread, the DI IMain() function is called,

executing your malicious code In the target
process.

EAN DIANT

Library Injection

= TO create a new thread in a remote

process we use the Win32 API call
CreateRemoteThread().

= Among Its arguments are a Process
Handle, starting function and an optional
argument to that function.

EAN DIANT

Library Injection

= We must set our starting function to
LoadLibrary() and pass our evil library name

to it as the optional argument.

= Since the function call will be performed in the
remote thread, the argument string (our evil
library name) must exist within that process’
memory space.

= To solve that problem we can use
VirtualAllocEx() to create space for the

string in the new process.

= We can then use WriteProcessMemory() to
copy the string to the space in the new process.

Q)
)
l

EAN DIANT

Library Injection Code

char BibPath[] = "evil._.dll";

char *remotelLib;

HMODULE hKern32 = GetModuleHandle('Kernel32');

void *loadLib = GetProcAddress(hKern32, “LoadLibraryA”);

remoteLib = VirtualAllocEx(hProc, NULL,
sizeof (libPath), MEM _COMMIT, PAGE READWRITE);

WriteProcessMemory(hProc, remoteLib, libPath, sizeof
1ibPath, NULL);

CreateRemoteThread(hProc, NULL, O, loadLib,
remoteLib, O, NULL));

EAN DIANT

Direct Injection

= Direct injection involves allocating and
populating the memory space of a remote
process with your malicious code.

- VirtualAllocEx()

- WriteProcessMemory()

= This could be a single function of code or
and entire DLL (much more complicated).

EAN DIANT

Direct Injection

= CreateRemoteThread() is then used to

spawn a new thread in the process with a
starting point of anything you would like.

= The most powerful, flexible technique.
= Also the most difficult.

= For example, It takes more code than one
may fit on a slide.

EAN DIANT

Process Camouflage

= A cleverly named process Is often enough to fly
beneath the radar and avoid immediate
detection.

= Slight variations of legitimate operating system
processes or legitimate names whose binaries
reside in a non-standard location are the staples
of camouflage.

= Take variations on commonly running
processes.

= A reasonably well named service will also
suffice.

EAN DIANT

Example Name Variations

= Svchost.exe and
spoolsv.exe make the
best targets because
there are usually
several copies
running in memory.
One more will often
go unnoticed.

EAN DIANT

svhost.exe

svcshost.exe
spoolsvc.exe
spoolsvr.exe

e scardsv.exe

scardsvc.exe
|sasss.exe

Executing Code from Memory

= The abllity to execute code directly from
memory means that the malicious code
never has to reside on the hard drive

= If It IS never on the hard drive, it will more
than likely be missed during a forensic
acquisition.

EAN DIANT

Executing Code from Memory

= Memory buffer to be executed will most likely
be populated directly by a network transfer.

Malicious
Process
\
"

EAN DIANT

Executing Code from Memory

= The definition of code
here extends beyond
machine instructions

to any program logic
- Interpreted Code

- Bytecode Compiled Code
- Machine Code

« Executables

Malicious
Process

EAN DIANT

Embedded Languages

= The easlest approach Is to accept code In
the form of an interpreted language.

= Interpreted languages are often designed
to be easily embedded.

= A large number of interpreted languages
contain some equivalent of an exec() or

eval () function, which can execute
source code contained In a variable

EAN DIANT

Embedded Languages

= Malware containing an embedded
language forces a potential reverse-
engineer into deciphering the structure of
the embedded language before they can
begin to fully decipher your malicious logic.

= Byte code compiled languages add
another layer of obscurity to the process.

EAN DIANT

Embedded Languages

= A large number of custom languages used
oy malware captured in the field turn out to
0e nothing more than cheap x86
Knockoffs.

= With little extra effort you can add
obscurity
- Reverse the stack
- Extensible instruction set

= Really screw ‘em up, embed Lisp!

EAN DIANT

Malvm

= An example embeddable implementation
of a slightly more sophisticated x86
knockoff.

= Soon to be released*!

= Implements a forward stack and extensible
Instruction set.

= Low level instructions to LoadLibrary()
and GetProcAddress()

*Will be published at http://www.nickharbour.com

EAN DIANT

Executing Code from Memory

= Machine code may also be executed from
a buffer. Both position independent
shellcode as well as executable files.

= The abllity to execute arbitrary executable
files from a memory buffer is extremely
powerful because it allows existing
malware tools to be downloaded and
executed In a pure anti-forensic
environment.

EAN DIANT

Windows Userland Exec

= A technique was introduced by Gary
Nebbett to launch executables from a
memory buffer under Win32 systems.

= Nebbett's technique involved launching a
process in a suspended state then
overwriting its memory space with the new
executable.

= Referred to as Nebbett's Shuttle

EAN DIANT

Nebbett’s Shuttle Abstract Code
-QreateProcess(_.;tmmF,“”,CREATE_SUSPEND,_Q)

= ZwUnmapViewOfSection(...);
= VirtualAllocEx(..., ImageBase,Si1zeOflImage,...)

= WriteProcessMemory(...,headers,...);

= for (1=0; 1 < NumberOfSections; 1++) {
- WriteProcessMemory(...,section,...);
by

= ResumeThread();

EAN DIANT

Nebbett's Shuttle Step-by-Step

= CreateProcess(...,’cmd”, ... ,CREATE_SUSPEND, ...)

- Creates a specified process (“cmd” in this example) in a
way such that it is loaded into memory but it is suspended
at the entry point.

= ZwUnmapViewOfSection(...);

- Releases all the memory currently allocated to the host
process (“cmd”).

= VirtualAllocEx(..., ImageBase,Si1zeOflImage,...)

- Allocate a an area to place the new executable image in
the old process space.

EAN DIANT

Nebbett's Shuttle Step-by-Step

= WriteProcessMemory(...,headers,...);

- Write the PE headers to the beginning of the
newly allocated memory region.

=for (1=0; 1 < NumberOfSections;
1++) {
WriteProcessMemory(...,section,...);

}

- Copy each section in the new executable image to
Its new virtual address.

EAN DIANT

Nebbett's Shuttle Step-by-Step

= ResumeThread(...);

= Once the remote process environment has been
completely restored and the entry point pointed
to by the EIP, execution is resumed on the
Process.

= The process still appears as “cmd” in a task list
but IS now executing our own malicious content.

EAN DIANT

Additional Benefits

= The code we replace “cmd” with iIs still
running as “cmd”.

= This can be used to present a cover story.

= The malicious code inherits any privileges
of the target code, for example exception
from the host-based firewall If that is the
case.

EAN DIANT

Finding a UNIX Equivalent to Nebbett's

Shuttle

= Unfortunately UNIX does not provide a
similar API for remote process similar to
WIin32.

= Direct portabllity is not an option.

= Two existing techniques from the Grugg.
= New technique

EAN DIANT

Userland exec ()

= A technigue was developed by the Grugqg
to function similar to the execve()

system call but operate entirely in user
space.

= The exec () family of functions in UNIX
replaces the current process with a new
process image.

= Ffork() and exec() are the key functions
for UNIX process instantiation.

n
/i

EAN DIANT

Windows vs. UNIX Process Invocation

CreateProcess(“foo’)

EAN DIANT

Userland exec ()

= Unlike Nebbett's Shuttle, which simply
manipulated a suspended processes
memory space, Userland exec() for UNIX
must load a new process into its own
memory space.

EAN DIANT

Userland exec ()

= Uses mmap () to allocate the specific memory
area used by the program.

= Copies each section into the new memory
region.

= Also loads a program interpreter if one is
specified in the ELF header (Can be a Dynamic
Linker).

= Sets up the heap for the new program using
brk().

= Constructs a new stack
= Jumps to the new entry point!

EAN DIANT

Shellcode ELF Loader

= Building upon his earlier Userland exec()
code, the grugq later developed a
technique to load an ELF binary into a
compromised remote process.

= This technique was detailed in Phrack
Magazine Volume 0x0b, Issue 0x3f.

EAN DIANT

Shellcode ELF Loader

= A stub of shellcode Is inserted Iin a
vulnerable process.

= The minimalist shellcode simply
downloads a package called an Ixobject.

- An Ixobject is a self loading executable package.
It contains the ELF executable, stack context and
shellcode to load and execute the program in the
current process.
= The shellcode and jumps to a second
phase of shellcode contained within the

IXobject.

EAN DIANT

Shellcode ELF Loader Process

Evil
Process

¥ Shellcode

EAN DIANT

Fresh Ideas

= The current techniques still don’t quite fill
the boots of Nebbett's Shuttle.

= We are still locked into exploiting a
vulnerable host process or forking from the
process doing the infecting.

= \We can expand our anti-forensic
possibilities If we had the ability to execute

our memory buffer as any other process
we want.

EAN DIANT

UNIX Process Infection

= The only interface on most UNIX systems
which allows modification to another

processes memory or context Is the
debugging interface ptrace().

= By creating a program which acts as a
debugger we can infect other processes
with arbitrary code.

EAN DIANT

#include <sys/ptrace.h>
long ptrace(enum __ ptrace request request,
pid t pid, void *addr, void *data);

= Has the a
debug chi

= Can mani

nility attach to remote processes or
d processes.

oulate arbitrary memory and registers

as well as signal handlers.

'!!/\Pd[)l/\PJT;“

How Most Debuggers Work

= ptrace() and most debuggers operate by
Inserting a breakpoint instruction.

= The breakpoint instruction in x86 is “int 3" In

assembly language which translates to the
machine code values of “CD 03".

= Software interrupts transfer control back to the
debugging process.

= For most software debuggers on any operating
system, the relationship between debugger and
debugee is a relationship maintained by the
kernel.

EAN DIANT

A Simple Debugger

switch (pid = forkQ) {

case -1: /* Error */
exit(-1);
case O: /* child process */

ptrace(PTRACE_TRACEME, 0, 0, 0);
execl (*foo”, “foo”, NULL);
break;

default: /* parent process */
wartt(&wait _val);
while (wait val == W_STOPCODE(SIGTRAP)) {
1T (ptrace(PTRACE_SINGLESTEP, pid, 0, 0) = 0)
perror(‘'ptrace");
wart(&wairt_val);

}

'!r/\r\lE)I/\PQ'FW

UNIX Infection via Debugging

= By using the ptrace() interface we can

Insert machine code to take control over a
process.

= We will use this technique to achieve a
UNIX version of Nebbett's Shuttle, but it
can also be used for other forms of run-
time patching.

EAN DIANT

The Technique

= [nsert a small stub of code which allocates
a larger chunk of memory.

= The last instruction in this stub code is the
software breakpoint instruction to transfer
control back to the debugging process.

= Limitations are that the process you are
iInfecting needs to have enough memory
allocated past where the instruction pointer
IS pointing to support the shellcode.
Approximately 40 bytes.

n

EAN DIANT

The Technique

= The debugging process then inserts code
to clean up the old process memory space
and allocate room for the new image In its
ideal location.

= The code also sets up the heap for the
Nnew Process.

= The last instruction in this code Is a
software breakpoint.

= The debugee Is then resumed so that this
code may execute and allocate memory.

E

EAN DIANT

The Technique

= \WWhen control returns to t
copies the new executab
process memory in the a
manner.

ne debugger, It
e into the

Dpropriate

= The debugger process modifies the stack
and registers for the process as necessary

= Point at the new entry point.

= Detach.

EAN DIANT

The Technigue

Phase 0O Phase 1 Phase 2 Phase 3

Step2 shellcode

Step1 shellcode Malicious

ELF
Binary

EAN DIANT

Offline Anti-Forensics

= Offline Anti-Forensics are measures taken
to eliminate residual disk evidence of an
activity.

= Started when ancient hackers discovered
that they could delete log or alter log files
to cover their tracks.

EAN DIANT

= Altering of file timestamps to mask its
relation to the incident. See Metasploit’s
Timestomper.

= Alternate data streams under NTFS,
though lame, are still being used with
surprising effectiveness.

= \When a need arises to hide a file, such as
a malware binary, there are many places
right on the filesystem which are often
overlooked.

EAN DIANT

= C:\Windows\Downloaded Program Files
- Masks the filenames of all its contents

= System Restore Points

- Contain Backup copies of files and binaries in
certain locations. A good needle in the haystack
location.

= C:\Windows\System32

- The classic haystack for your needle

- Be warned, Your malware might get backed up to
a restore point!

!
O O

EAN DIANT

= To leave your malware on a system
without leaving an executable on the
filesystem it may be a viable option to
simply trojanize an existing executable on
the system.

= This approach will bypass a large number
of computer forensics examiners.

= Persistence may be established by
trojanizing a binary which is loaded on
system boot.

EAN DIANT

The Executable Toolkit

= A toolkit for performing a variety of tasks
against executable files

- Wrapping an executable with a fixed command
line or standard input

- Wrapping an executable with fixed DLLs
- Manipulating sections

- Trojanizing through entry point redirection
- Trojanizing through TLS

- Detours Support

*Available at http://nickharbour.com or SourceForge.

EAN DIANT

Anti-Reverse Engineering
= |If you are unlucky enough to be caught by

a computer forensic examiner who isn’t
afraid to peek inside a binary it will be
Important for you to conceal your true
identity.

= Packers are the primary method used
today.

EAN DIANT

= Most low-level reverse engineers know only how
to use automated tools to unpack.

= A custom packer, even a simplistic one, will likely
defeat the low-level reversers.

= Custom packed binaries are less likely to be
identified at all.

= An example custom packer with source code is
iIncluded with the Executable Toolkit (exetk)
package.

EAN DIANT

Something for the Good Guys

= Packer detection tools today such as PEID
are easily fooled.

= \We have developed something better.

= Mandiant Red Curtain.

- A tool for detecting packed and anomalous
binaries.

- Uses section based entropy, imports and
anomalies to compute a score.

- Avallable at http://www.Mandiant.com

EAN DIANT

Mandiant Red Curtain

[Mandiant Red Curtain v1.0 - [Unsaved]

File Edit Options Help
Score File Entry Poirt Signature Size Entropy Eitdéw é.l;ﬂp:tahr Details -
C:\malware\scarbrauv-restorepoint \ADD25299 exe 25600 [1.0228.. |0 2
C\malwarerestorepoint-malwarefp .exe 25600 10223... |0 2
3825 C\malware"restorepaoint-makware fp-dump hin h7856 08275 |0 4
3.825 C:vmalware ' Malware Collection*fp-dump .bin 57856 0.8275... |0 4
3.706 C:malware“hlp hlp memdump.exe LCC Win32 v1x Thaed 0.9109... |0 2
C\malware\2007_05_18\Malware\A_new_mosaicin .. 7767 (07248 |0 2
Cmaware\Tag4 NDHMCASINFO\etractedwinsys. | |7%67 Jorae 0o |2 |EE
C:\malware\Tag4-NDHMC4SINFO3\extracted-AD047... 7767 |0.7248.. |0 2
C:\malware!\2007_05_18\Mahware\A Ciiicism on FA... 7767 |07248.. |0 2
C:vmalware ' Malware Collection®winsys.exe 7767 0.7243.. |0 2
Cvmalwarerestorepoint-malwarepul exe P¥-Scrambler RC w1 27648 1.1362... |0 1
C\malwars\scarbrauv-restorepoint\ADD35291 exe | UPX-Scrambler RCv1x 27648 11362 |0 1
C:\malware'\Malware Collection\pul.exe UPX-Scrambler RCv1x (27648 |11362.. 0 1
C:\malwarerestorepoint-malware ok wihome exe P¥-Scrambler RC w1 14336 1.0745... |0 1
C:\malware\vestorepoint mahware'wihome-WINRAR_ . |UPX-Scrambler RCv1x | 1433 |10745.. |0 1
e - T LT IR nogen o 1 (oimidn
1 of 161 selected.

M

EAN DIANT

Mandiant Red Curtain

Czvmalwarevntadmd 1.dlL

Sections Imports

= WININET dll
Size = 22528 IntemetCOpenA
Type = Mone IntemetGetConnectedState
Characterstics = Fead, Execute, Code IntemetCpenlddA
Entropy = 0.83260596 IntemetCloseHandle
rdata Intemet ReadFils
data urdrmarn dll
Size = 11264 KERMEL3Z dll
Type = Mone LUSERZZ.dIl
Characterstics = Fead, Wrte W52 32 .dl
Ertropy = 001336131 WS2_ 32410013
+- rerc WW52_32 dil:D003
+- reloc WWs2_32.d1:0010
VWS2_32.dIl:0073
Anomalies Ws2_32d1:0017
W52_32 dil-0004
WWs2_ 32 .di:000
VWS2_32 dil:000S

checksum_is_zero

EAN DIANT

Thank You!

Nick Harbour

MANDIANT

Senior Consultant

675 North Washington St, Suite 210
Alexandria, VA 22314
703-683-3141
NickHarbour@gmail.com

Y ANDIANT

	Stealth Secrets of the Malware Ninjas
	Overview
	Introduction
	Introduction
	Prerequisites
	Background Information
	Malware
	Malware
	Forensics and Incident Response
	Forensics and Incident Response
	Anti-Forensics
	Executables
	Executables
	Structure of notepad.exe
	Imports and Exports
	Executable Loading
	Loaded Executable Memory Space
	Programmatics
	Stealth Techniques
	Live System Anti-Forensics
	Process Injection
	Hook Injection
	Hook Injection
	Windows Message Hooks
	Hook Injection Code
	Library Injection
	Library Injection
	Library Injection
	Library Injection Code
	Direct Injection
	Direct Injection
	Process Camouflage
	Example Name Variations
	Executing Code from Memory
	Executing Code from Memory
	Executing Code from Memory
	Embedded Languages
	Embedded Languages
	Embedded Languages
	Malvm
	Executing Code from Memory
	Windows Userland Exec
	Nebbett’s Shuttle Abstract Code
	Nebbett’s Shuttle Step-by-Step
	Nebbett’s Shuttle Step-by-Step
	Nebbett’s Shuttle Step-by-Step
	Additional Benefits
	Finding a UNIX Equivalent to Nebbett’s Shuttle
	Userland exec()
	Windows vs. UNIX Process Invocation
	Userland exec()
	Userland exec()
	Shellcode ELF Loader
	Shellcode ELF Loader
	Shellcode ELF Loader Process
	Fresh Ideas
	UNIX Process Infection
	ptrace()
	How Most Debuggers Work
	A Simple Debugger
	 UNIX Infection via Debugging
	The Technique
	The Technique
	The Technique
	The Technique
	Offline Anti-Forensics
	File Hiding
	File Hiding
	Trojanizing
	The Executable Toolkit
	Anti-Reverse Engineering
	Packers
	Something for the Good Guys
	Mandiant Red Curtain
	Mandiant Red Curtain
	Thank You!

