
Stealth Secrets of the Malware
Ninjas

By Nick Harbour

2

Overview
Intro
Background Info

• Malware
• Forensics and Incident Response
• Anti-Forensics
• Executables

Stealth Techniques
• Live System Anti-Forensics

Process Camouflage
Process Injection
Executing Code from Memory

• Offline Anti-Forensics
File Hiding
Trojanizing
Anti-Reverse Engineering

There will be something for the “Good Guys” near the end
• A brand new malware scanning tool

3

Introduction
This presentation will cover a variety of
stealth techniques currently used by
malware in the field.
Many of the techniques are based on
malware studied during MANDIANT’s
incident experiences.

4

Introduction
The purpose of this talk is to discuss
malware stealth techniques other than
Rootkits.
The majority of the material is designed to
teach the “Bad Guys” some practical real
world techniques to fly beneath the radar.
For the “Good Guys”, learning these
malicious techniques will help prepare you
to identify and counter malware threats.

5

Prerequisites
There’s something for everyone!
The material we will cover the range from
basic computing concepts to machine
code.
We will primarily be discussing techniques
for Windows, but Linux will also discussed
at an advanced level.

Background Information

7

Malware
In intrusion incidents, malware is frequently
found in several inter-related families of tools.
Often found in redundant layers for failover or
bootstrapping.

Command and Control

Cracking/Exploitation

Data TransferData Collection

8

Malware
In practice, stealth techniques are most
often employed to protect an intruder’s
command and control mechanism
These often require persistence which
poses a risk of discovery
Command and Control is the keys to the
intruder’s newly acquired kingdom

9

Forensics and Incident Response
Traditional Computer Forensics involves
examining the contents of computer media
for evidence of a crime.
A suspect system is powered off, the
storage media is duplicated then analyzed
with in a controlled environment

10

Forensics and Incident Response
Incident Response is a specialized
discipline which expands upon the role of
traditional Computer Forensics.
Critical data is collected from live systems
and network traffic in addition to storage
media.
Incident Response techniques are typically
used for Computer Intrusion incidents.

11

Anti-Forensics
Anti-Forensics is the practice of avoiding
or thwarting detection through forensics,
incident response methods or general use.
Due to increasing levels of sophistication
and a growing pool of reverse engineering
talent, anti-forensics is growing in
importance because it prevents malware
from ever being found.

12

Executables
Microsoft’s PE file format and ELF under
Linux are popular examples.
Most modern formats are quite similar in
principle.
Dynamic Libraries such as .DLL files often
use the same file formats as executables.
In addition to header data, objects called
sections are the building blocks of
executables

13

Executables
Sections contain executable code, data,
debugging information, resources and
additional metadata used by the program.

14

Structure of notepad.exe

Contains the
executable code
Contains the
initialized data
Contains resources
(icons, multi-
language strings,
etc..)

Headers

.rsrc

.data

.text

15

Imports and Exports
In order to use code in an
external dynamic library,
executables contain a list of
libraries and associated
symbols it needs.
Similarly, executables and
dynamic libraries may list
specific functions and variable
names in a special Export table
so they may be imported into
other programs.

16

Executable Loading
Each section object in the executable file
will be loaded into memory by the
operating system when the program is run.
Every Dynamic Library listed in the
program’s import table is then mapped into
memory.
Imports required by each Dynamic Library
are also imported, recursively.

17

Loaded Executable Memory Space

comdlg32.dll

notepad.exe

18

Programmatics
Memory regions (sections) may be added,
manipulated or removed after the initial
program load using the Win32 API
• VirtualAllocEx(), VirtualFreeEx(),
MapViewOfFile(), WriteProcessMemory()
to name a few.

Importing functionality from Dynamic
Libraries may also be accomplished easily
through the Win32 API
• LoadLibrary(), GetProcAddress()

Stealth Techniques

20

Live System Anti-Forensics
Live System Anti-Forensics is specifically
concerned with concealing the presence of
running malware.
While Rootkits play decisive role in this
field, they are a field unto themselves and
receive ample treatment elsewhere.
We will cover a range of techniques other
than Rootkits.

21

Process Injection
As the name implies, injects code into
another running process.
Target process obliviously executes your
malicious code.
Conceals the source of the malicious
behavior.
Can be used to bypass host-based
firewalls and many other process specific
security mechanisms.

22

Hook Injection
The easiest method to achieve process
injection on a windows host is via the
Windows Hooks mechanism.
Allows you to add specify a piece of code
to run when a particular message is
received by a Windows application.

23

Hook Injection
The SetWindowsHookEx() Win32 API
call causes the target process to load a
DLL of your choosing into its memory
space and select a specified function as a
hook for a particular event.
When an appropriate event is received,
your malicious code will be executed by
the target process.

24

Windows Message Hooks

OS Application

User Events Messages

OS

User Events Messages

Evil.DLL Application

*Your malicious hook function must call CallNextHookEx() at the end to ensure
that the target application continues to work properly.

25

Hook Injection Code
HANDLE hLib, hProc, hHook;

hLib = LoadLibrary("evil.dll");

hProc = GetProcAddress(hLib,

"EvilFunction");

hHook =
SetWindowsHookEx(WH_CALLWNDPROC,

hProc, hLib,
0);

26

Library Injection
The next easiest method of process
injection involves creating a new thread in
the remote process which loads your
malicious library.
When the library is loaded by the new
thread, the DllMain() function is called,
executing your malicious code in the target
process.

27

Library Injection
To create a new thread in a remote
process we use the Win32 API call
CreateRemoteThread().
Among its arguments are a Process
Handle, starting function and an optional
argument to that function.

28

Library Injection
We must set our starting function to
LoadLibrary() and pass our evil library name
to it as the optional argument.
Since the function call will be performed in the
remote thread, the argument string (our evil
library name) must exist within that process’
memory space.
To solve that problem we can use
VirtualAllocEx() to create space for the
string in the new process.
We can then use WriteProcessMemory() to
copy the string to the space in the new process.

29

Library Injection Code
char libPath[] = "evil.dll";
char *remoteLib;
HMODULE hKern32 = GetModuleHandle("Kernel32");
void *loadLib = GetProcAddress(hKern32, “LoadLibraryA”);

remoteLib = VirtualAllocEx(hProc, NULL,
sizeof (libPath), MEM_COMMIT, PAGE_READWRITE);

WriteProcessMemory(hProc, remoteLib, libPath, sizeof
libPath, NULL);

CreateRemoteThread(hProc, NULL, 0, loadLib,
remoteLib, 0, NULL));

30

Direct Injection
Direct injection involves allocating and
populating the memory space of a remote
process with your malicious code.
• VirtualAllocEx()
• WriteProcessMemory()

This could be a single function of code or
and entire DLL (much more complicated).

31

Direct Injection
CreateRemoteThread() is then used to
spawn a new thread in the process with a
starting point of anything you would like.
The most powerful, flexible technique.
Also the most difficult.
For example, it takes more code than one
may fit on a slide.

32

Process Camouflage
A cleverly named process is often enough to fly
beneath the radar and avoid immediate
detection.
Slight variations of legitimate operating system
processes or legitimate names whose binaries
reside in a non-standard location are the staples
of camouflage.
Take variations on commonly running
processes.
A reasonably well named service will also
suffice.

33

Example Name Variations

• svhost.exe
• svcshost.exe
• spoolsvc.exe
• spoolsvr.exe
• scardsv.exe
• scardsvc.exe
• lsasss.exe

Svchost.exe and
spoolsv.exe make the
best targets because
there are usually
several copies
running in memory.
One more will often
go unnoticed.

34

Executing Code from Memory
The ability to execute code directly from
memory means that the malicious code
never has to reside on the hard drive
If it is never on the hard drive, it will more
than likely be missed during a forensic
acquisition.

35

Executing Code from Memory
Memory buffer to be executed will most likely
be populated directly by a network transfer.

Internet Code Memory Buffer

Malicious
Process

36

Executing Code from Memory
The definition of code
here extends beyond
machine instructions
to any program logic
• Interpreted Code
• Bytecode Compiled Code
• Machine Code
• Executables

Malicious
Process

Code

37

Embedded Languages
The easiest approach is to accept code in
the form of an interpreted language.
Interpreted languages are often designed
to be easily embedded.
A large number of interpreted languages
contain some equivalent of an exec() or
eval() function, which can execute
source code contained in a variable

38

Embedded Languages
Malware containing an embedded
language forces a potential reverse-
engineer into deciphering the structure of
the embedded language before they can
begin to fully decipher your malicious logic.
Byte code compiled languages add
another layer of obscurity to the process.

39

Embedded Languages
A large number of custom languages used
by malware captured in the field turn out to
be nothing more than cheap x86
knockoffs.
With little extra effort you can add
obscurity
• Reverse the stack
• Extensible instruction set

Really screw ‘em up, embed Lisp!

40

Malvm
An example embeddable implementation
of a slightly more sophisticated x86
knockoff.
Soon to be released*!
Implements a forward stack and extensible
instruction set.
Low level instructions to LoadLibrary()
and GetProcAddress()

*Will be published at http://www.nickharbour.com

41

Executing Code from Memory
Machine code may also be executed from
a buffer. Both position independent
shellcode as well as executable files.
The ability to execute arbitrary executable
files from a memory buffer is extremely
powerful because it allows existing
malware tools to be downloaded and
executed in a pure anti-forensic
environment.

42

Windows Userland Exec
A technique was introduced by Gary
Nebbett to launch executables from a
memory buffer under Win32 systems.
Nebbett’s technique involved launching a
process in a suspended state then
overwriting its memory space with the new
executable.
Referred to as Nebbett’s Shuttle

43

Nebbett’s Shuttle Abstract Code
CreateProcess(…,”cmd”,…,CREATE_SUSPEND,…)
;
ZwUnmapViewOfSection(…);
VirtualAllocEx(…,ImageBase,SizeOfImage,…)
;
WriteProcessMemory(…,headers,…);

for (i=0; i < NumberOfSections; i++) {
• WriteProcessMemory(…,section,…);
}

ResumeThread();

44

Nebbett’s Shuttle Step-by-Step
CreateProcess(…,”cmd”,…,CREATE_SUSPEND,…)
;
• Creates a specified process (“cmd” in this example) in a

way such that it is loaded into memory but it is suspended
at the entry point.

ZwUnmapViewOfSection(…);
• Releases all the memory currently allocated to the host

process (“cmd”).
VirtualAllocEx(…,ImageBase,SizeOfImage,…)
;
• Allocate a an area to place the new executable image in

the old process space.

45

Nebbett’s Shuttle Step-by-Step
WriteProcessMemory(…,headers,…);
• Write the PE headers to the beginning of the

newly allocated memory region.
for (i=0; i < NumberOfSections;
i++) {

WriteProcessMemory(…,section,…);

}

• Copy each section in the new executable image to
its new virtual address.

46

Nebbett’s Shuttle Step-by-Step
ResumeThread(…);

Once the remote process environment has been
completely restored and the entry point pointed
to by the EIP, execution is resumed on the
process.
The process still appears as “cmd” in a task list
but is now executing our own malicious content.

47

Additional Benefits
The code we replace “cmd” with is still
running as “cmd”.
This can be used to present a cover story.
The malicious code inherits any privileges
of the target code, for example exception
from the host-based firewall if that is the
case.

48

Finding a UNIX Equivalent to Nebbett’s
Shuttle

Unfortunately UNIX does not provide a
similar API for remote process similar to
Win32.
Direct portability is not an option.

Two existing techniques from the Grugq.
New technique

49

Userland exec()
A technique was developed by the Grugq
to function similar to the execve()
system call but operate entirely in user
space.
The exec() family of functions in UNIX
replaces the current process with a new
process image.
fork() and exec() are the key functions
for UNIX process instantiation.

50

Windows vs. UNIX Process Invocation

Win32 Proc
“cmd” CreateProcess(“foo”)

Win32 Proc
“foo”

Win32 Proc
“cmd”

UNIX Proc
“sh” fork()

UNIX Proc
“foo”

UNIX Proc
“sh”

UNIX Proc
“sh”

exec(“foo”)

51

Userland exec()
Unlike Nebbett’s Shuttle, which simply
manipulated a suspended processes
memory space, Userland exec() for UNIX
must load a new process into its own
memory space.

52

Userland exec()
Uses mmap() to allocate the specific memory
area used by the program.
Copies each section into the new memory
region.
Also loads a program interpreter if one is
specified in the ELF header (Can be a Dynamic
Linker).
Sets up the heap for the new program using
brk().
Constructs a new stack
Jumps to the new entry point!

53

Shellcode ELF Loader
Building upon his earlier Userland exec()
code, the grugq later developed a
technique to load an ELF binary into a
compromised remote process.
This technique was detailed in Phrack
Magazine Volume 0x0b, Issue 0x3f.

54

Shellcode ELF Loader
A stub of shellcode is inserted in a
vulnerable process.
The minimalist shellcode simply
downloads a package called an lxobject.
• An lxobject is a self loading executable package.

It contains the ELF executable, stack context and
shellcode to load and execute the program in the
current process.

The shellcode and jumps to a second
phase of shellcode contained within the
lxobject.

55

Shellcode ELF Loader Process

Vulnerable
Process

Hacked
Process

Hacked
Process

Evil
Process

Shellcode Shellcode

Lxobject

Vulnerable
Process Gets
Hacked!

The Lxobject
takes over
the process

Shellcode
Downloads
the Lxobject

56

Fresh Ideas
The current techniques still don’t quite fill
the boots of Nebbett’s Shuttle.
We are still locked into exploiting a
vulnerable host process or forking from the
process doing the infecting.
We can expand our anti-forensic
possibilities if we had the ability to execute
our memory buffer as any other process
we want.

57

UNIX Process Infection
The only interface on most UNIX systems
which allows modification to another
processes memory or context is the
debugging interface ptrace().
By creating a program which acts as a
debugger we can infect other processes
with arbitrary code.

58

ptrace()
#include <sys/ptrace.h>
long ptrace(enum __ptrace_request request,

pid_t pid, void *addr, void *data);

Has the ability attach to remote processes or
debug child processes.
Can manipulate arbitrary memory and registers
as well as signal handlers.

59

How Most Debuggers Work
ptrace() and most debuggers operate by
inserting a breakpoint instruction.
The breakpoint instruction in x86 is “int 3” in
assembly language which translates to the
machine code values of “CD 03”.
Software interrupts transfer control back to the
debugging process.
For most software debuggers on any operating
system, the relationship between debugger and
debugee is a relationship maintained by the
kernel.

60

A Simple Debugger
switch (pid = fork()) {
case -1: /* Error */

exit(-1);
case 0: /* child process */

ptrace(PTRACE_TRACEME, 0, 0, 0);
execl(“foo”, “foo”, NULL);
break;

default: /* parent process */
wait(&wait_val);
while (wait_val == W_STOPCODE(SIGTRAP)) {

if (ptrace(PTRACE_SINGLESTEP, pid, 0, 0) != 0)
perror("ptrace");

wait(&wait_val);
}

}

61

UNIX Infection via Debugging
By using the ptrace() interface we can
insert machine code to take control over a
process.
We will use this technique to achieve a
UNIX version of Nebbett’s Shuttle, but it
can also be used for other forms of run-
time patching.

62

The Technique
Insert a small stub of code which allocates
a larger chunk of memory.
The last instruction in this stub code is the
software breakpoint instruction to transfer
control back to the debugging process.

Limitations are that the process you are
infecting needs to have enough memory
allocated past where the instruction pointer
is pointing to support the shellcode.
Approximately 40 bytes.

63

The Technique
The debugging process then inserts code
to clean up the old process memory space
and allocate room for the new image in its
ideal location.
The code also sets up the heap for the
new process.
The last instruction in this code is a
software breakpoint.
The debugee is then resumed so that this
code may execute and allocate memory.

64

The Technique
When control returns to the debugger, it
copies the new executable into the
process memory in the appropriate
manner.
The debugger process modifies the stack
and registers for the process as necessary
Point at the new entry point.
Detach.

65

The Technique

Target
Process

Target
Process

Target
Process

Evil
Process

Step1 shellcode Step1 shellcode

Debugger
Populates the
Binary into Memory

Debugger
Inserts Shellcode
Into New Buffer

Step2 shellcode

Target
Process

Step2 shellcode

Malicious
ELF

Binary

Phase 0 Phase 1 Phase 2 Phase 3

66

Offline Anti-Forensics
Offline Anti-Forensics are measures taken
to eliminate residual disk evidence of an
activity.

Started when ancient hackers discovered
that they could delete log or alter log files
to cover their tracks.

67

File Hiding
Altering of file timestamps to mask its
relation to the incident. See Metasploit’s
Timestomper.
Alternate data streams under NTFS,
though lame, are still being used with
surprising effectiveness.
When a need arises to hide a file, such as
a malware binary, there are many places
right on the filesystem which are often
overlooked.

68

File Hiding
C:\Windows\Downloaded Program Files
• Masks the filenames of all its contents

System Restore Points
• Contain Backup copies of files and binaries in

certain locations. A good needle in the haystack
location.

C:\Windows\System32
• The classic haystack for your needle
• Be warned, Your malware might get backed up to

a restore point!

69

Trojanizing
To leave your malware on a system
without leaving an executable on the
filesystem it may be a viable option to
simply trojanize an existing executable on
the system.
This approach will bypass a large number
of computer forensics examiners.
Persistence may be established by
trojanizing a binary which is loaded on
system boot.

70

The Executable Toolkit
A toolkit for performing a variety of tasks
against executable files
• Wrapping an executable with a fixed command

line or standard input
• Wrapping an executable with fixed DLLs
• Manipulating sections
• Trojanizing through entry point redirection
• Trojanizing through TLS
• Detours Support

*Available at http://nickharbour.com or SourceForge.

71

Anti-Reverse Engineering
If you are unlucky enough to be caught by
a computer forensic examiner who isn’t
afraid to peek inside a binary it will be
important for you to conceal your true
identity.
Packers are the primary method used
today.

72

Packers
Most low-level reverse engineers know only how
to use automated tools to unpack.
A custom packer, even a simplistic one, will likely
defeat the low-level reversers.
Custom packed binaries are less likely to be
identified at all.

An example custom packer with source code is
included with the Executable Toolkit (exetk)
package.

73

Something for the Good Guys
Packer detection tools today such as PEiD
are easily fooled.
We have developed something better.
Mandiant Red Curtain.
• A tool for detecting packed and anomalous

binaries.
• Uses section based entropy, imports and

anomalies to compute a score.
• Available at http://www.Mandiant.com

74

Mandiant Red Curtain

75

Mandiant Red Curtain

Thank You!

Nick Harbour
MANDIANT
Senior Consultant
675 North Washington St, Suite 210
Alexandria, VA 22314
703-683-3141
NickHarbour@gmail.com

	Stealth Secrets of the Malware Ninjas
	Overview
	Introduction
	Introduction
	Prerequisites
	Background Information
	Malware
	Malware
	Forensics and Incident Response
	Forensics and Incident Response
	Anti-Forensics
	Executables
	Executables
	Structure of notepad.exe
	Imports and Exports
	Executable Loading
	Loaded Executable Memory Space
	Programmatics
	Stealth Techniques
	Live System Anti-Forensics
	Process Injection
	Hook Injection
	Hook Injection
	Windows Message Hooks
	Hook Injection Code
	Library Injection
	Library Injection
	Library Injection
	Library Injection Code
	Direct Injection
	Direct Injection
	Process Camouflage
	Example Name Variations
	Executing Code from Memory
	Executing Code from Memory
	Executing Code from Memory
	Embedded Languages
	Embedded Languages
	Embedded Languages
	Malvm
	Executing Code from Memory
	Windows Userland Exec
	Nebbett’s Shuttle Abstract Code
	Nebbett’s Shuttle Step-by-Step
	Nebbett’s Shuttle Step-by-Step
	Nebbett’s Shuttle Step-by-Step
	Additional Benefits
	Finding a UNIX Equivalent to Nebbett’s Shuttle
	Userland exec()
	Windows vs. UNIX Process Invocation
	Userland exec()
	Userland exec()
	Shellcode ELF Loader
	Shellcode ELF Loader
	Shellcode ELF Loader Process
	Fresh Ideas
	UNIX Process Infection
	ptrace()
	How Most Debuggers Work
	A Simple Debugger
	 UNIX Infection via Debugging
	The Technique
	The Technique
	The Technique
	The Technique
	Offline Anti-Forensics
	File Hiding
	File Hiding
	Trojanizing
	The Executable Toolkit
	Anti-Reverse Engineering
	Packers
	Something for the Good Guys
	Mandiant Red Curtain
	Mandiant Red Curtain
	Thank You!

