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Overview

= |ntro

= Background Info
- Malware
Forensics and Incident Response
-« Anti-Forensics
- Executables

= Stealth Techniques
- Live System Anti-Forensics
= Process Camouflage
= Process Injection
= Executing Code from Memory
- Offline Anti-Forensics
= File Hiding
= Trojanizing
= Anti-Reverse Engineering

There will be something for the “Good Guys” near the end
- A brand new malware scanning tool
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Introduction

= This presentation will cover a variety of
stealth techniques currently used by
malware In the field.

= Many of the techniques are based on
malware studied during MANDIANT’s
Incident experiences.
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Introduction

= The purpose of this talk is to discuss
malware stealth technigues other than
Rootkits.

= The majority of the material is designed to
teach the “Bad Guys” some practical real
world techniques to fly beneath the radar.

= For the "Good Guys”, learning these
malicious techniques will help prepare you
to identify and counter malware threats.

l
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= There’s something for everyone!

= The material we will cover the range from
basic computing concepts to machine
code.

= We will primarily be discussing technigues
for Windows, but Linux will also discussed
at an advanced level.
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Background Information
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Malware

= In Iintrusion incidents, malware Is frequently
found In several inter-related families of tools.

= Often found in redundant layers for failover or
bootstrapping.

Command and Contro

Data Collection = Data Transfer
‘

Cracking/Exploitation
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Malware

= |[n practice, stealth technigues are most
often employed to protect an intruder’s
command and control mechanism

= These often require persistence which
poses a risk of discovery

= Command and Control is the keys to the
Intruder’s newly acquired kingdom
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Forensics and Incident Response

= Traditional Computer Forensics involves
examining the contents of computer media
for evidence of a crime.

= A suspect system is powered off, the
storage media is duplicated then analyzed
with in a controlled environment
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Forensics and Incident Response

= Incident Response Is a specialized
discipline which expands upon the role of
traditional Computer Forensics.

= Critical data Is collected from live systems
and network traffic in addition to storage
media.

= Incident Response technigues are typically
used for Computer Intrusion incidents.
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= Anti-Forensics Is the practice of avoiding
or thwarting detection through forensics,
Incident response methods or general use.

= Due to Increasing levels of sophistication
and a growing pool of reverse engineering
talent, anti-forensics Is growing Iin
Importance because It prevents malware
from ever being found.
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Executables

= Microsoft’s PE file format and ELF under
Linux are popular examples.

= Most modern formats are quite similar in
principle.

= Dynamic Libraries such as .DLL files often
use the same file formats as executables.

= |n addition to header data, objects called
sections are the building blocks of
executables
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Executables

= Sections contain executable code, data,
debugging information, resources and
additional metadata used by the program.

®¥ PE Explorer - C-\notepad.exe

File  “iew  Toolz  Help

-0 W O E(E BNRa

| of Ela Gy ¥ (7]

Virtual Address | Size of Baw Data = Painter ta Baw Data

Mame Wirtual Size Charactenstice . Pointing Directories

& text  000077458H 07007 000k Q0007 E00h Q00004004 BO0000Z0h Impart Table; Debug Data; Load C...
@ data 00001BASKH 071009000 0000300k 0007 Co0k CO000040k
0002400H 40000040k Resource Table

o orsrc 00003958k 0100B000H 00003200h

!
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Structure of notepad.exe

= Contains the
executable code

= Contains the
Initialized data

= Contains resources
(icons, multi-
language strings,
etc..)
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Imports and Exports

= |n order to use code In an

. . Imports
external dynamic library, = comdg32dl
. . PageSetupDigW
executables contain a list of ndTotl
. . . Prirt Dilig Exc WY
libraries and associated ChooscFont
. GetFileTileW
symbols it needs. GetOpenFleNanely
. . Feplace Text VW
= Similarly, executables and ComlgEendedEo
dynamic libraries may list o SHELLR2dI
. o . . H- WINSPOOL.DRY
specific functions and variable s COMCTL2d

names in a special Export table = 2wz

+- KERNEL3Z dll

so they may be imported into .
other programs. -
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Executable Loading

= Each section object in the executable file
will be loaded into memory by the
operating system when the program is run.

= Every Dynamic Library listed in the
program’s import table is then mapped Into
memory.

= Imports required by each Dynamic Library
are also imported, recursively.
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Loaded Executable Memory Space

B1B8E0EEE | BEEE]BOE| notepad FPE header Imag| R RWE
n BlEE18EE|( BEEESEEE| notepad | . teRT code, import) Imag| R RIE
B1BE9EEE | BEEEZE0E | notepad | .data dat a Imag| R RWE
H1BEBEEN | BAEE9EEE | notepad | .rsrc TESOUrCGES Imag| R RWE
EADYHEAE| BAEE]1 806 | UsTheme PE header Imag| R RWE
EADY18868| AAE3E0EE| UsThemes | .tert code, import] Imag| R RUWE
SADALBEE) BE0018008 UsTherms | .data data Imag| R RWE
SADAZEEE| BAEE48008 | UsThers | .rsrc rESOUrGES Imag| R RWE
SHDASHEE | BEEE2E80E | UsThems | .reloc relocations| Imag| R RWE
ECEYOEEE| BAEE]1BEE| ShimEng FE header Imag| R RWE
ECEY 1880 BAEHEADE | ShimEng | .teut code, import) Imag| R RWE
ECEBYFEEM| BAE148068) ShimEng | .data data Imag| R RWE
ECE93866| BAEE1680E8| ShimEng | .rsrc rESOUrCGES Imag| R RWE
ECE948868| AAEEZ2AEE| ShimEng | .reloc relocat ions| Imag| R RUWE
S2ICHEEE ) BE001 8068 LPE FE header Imag| R RWE
S23C 1860 BEENSEA0E | LPE hent code, import| Imag| R RWE
G2 ICEEEE | BEEE]1B0E| LK .data dat a Imag| R RWE
E23CTEEE | BEEE]BEE| LK CETC rESOUTCES Imag| R RWE
52ICEEAE | BAEE]1BEE| LPK sreloz relozations| Imag| R RWE
SF320EEE | BAEH] BEE | AcGental FPE header Imag| R RWE
SFE3E81866) BAE32A0E | AcGenral | . teut code, import) Imag| R RWE
EF8B288E| AEEE9EEE | AcGenral | Ldata data Imag| R RUWE
SF3BECEEN| BE1228008 AcGenral | .rsro rESOUTGES Imag| R RWE
SFA44EEE | BEE0GE0E | AcGental | .reloc relocations| Imag| R RWE
TIEE0EEE | BAEE]1B0E | WIMSPOOL FE header Imag| R RWE
TIEE1EEE) BAEZ2E80E WIMSPOOL | . teut code, import) Imag| R RWE
TIEA21880 ) BAEE280E WINSPOOL | .data data Imaa| R RWE
TEEZ23EEH | BAEE]AEE | WINSPOOL | . rsrc rESOUrCGES Imag| R RWE
r3a24886) BAEE2A0E | WINSPOOL | . reloc relocations| Imag| R RWE
r4090886 | BAEE]1BEE | USF1a FPE header Imag| R RUWE
40218680 Baa44800 USF1E chEnt code, import| Imag| R RWE
r4005886 | BEE1EE0E | USF18 .data data Imag| R RWE
T40ESHEN | BEO0ZE800E USF18 Shared Imag| R RWE
T40EVEEE| BEE] 2806 USF18 CETC rESOUTCES Imag| R RWE
T40F9E8E | BAEE280E USF18 sreloz relozations| Imag| R RWE
FEIIHEEE | BAEE] BEE | IMM32 FE header Imag| R RWE
r5391866) BAE1EA0E TMM32 teut code, import) Imag| R RWE
TEIAGEAR| BAEE]1AEE | IMM32 .data data Imag| R RUWE
TEIATEEE | BEOOSE0E | [MMI2 SOELC rESOUTGES Imag| R RWE
TEIACHER | BAEE]1 808 TMM32 sreloc relocations| Imag| R RWE
TE3E0EEE | BEEE]BOE | comd Lg32 FPE header Imag| R RWE
TE3E1EEE) BAEIEEEE | comd L9322 | . teut code, import) Imag| R RWE
rE3E188H| BAER480E | comd L9322 | .data data Imag| R RWE
TE3EEHAH| BAEL 180H| comd L9322 | . rerc rESOUrCGES Imag| R RWE
FE3FEEAH| BAEEIA0E | comd 932 | . reloc relocations| Imag| R RWE
TEICHEAE| BAEE]BEE | USEREML FPE header Imag| R RUWE
TEIC18E0) BEEIFE0E USEREMNY | . teut code, import| Imag| R RWE
TEAGHEEE | BEEE2800E | USEREMNY | .data data Imag| R RWE
TEAGZEEE | BEEEAE0E | USEREMNY | . rsrc rESOUTCES Imag| R RWE
TEAECHAR | BAEHFEEE | USERENY | . reloc relozations| Imag| R RWE
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Programmatics

= Memory regions (sections) may be added,
manipulated or removed after the initial
program load using the Win32 API

- VirtualAllocEx(), VirtualFreeEx(),
MapViewOfFi1le(), WriteProcessMemory()

to name a few.
= Importing functionality from Dynamic
Libraries may also be accomplished easily
through the Win32 API
- LoadLi1brary(), GetProcAddress()
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Stealth Techniques
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Live System Anti-Forensics

= Live System Anti-Forensics is specifically
concerned with concealing the presence of
running malware.

= While Rootkits play decisive role in this
field, they are a field unto themselves and
receive ample treatment elsewhere.

= \We will cover a range of technigues other
than Rootkits.
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Process Injection

= As the name implies, Injects code Into
another running process.

= Target process obliviously executes your
malicious code.

= Conceals the source of the malicious
behavior.

= Can be used to bypass host-based
firewalls and many other process specific
security mechanisms.
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Hook Injection

= The easliest method to achieve process
Injection on a windows host Is via the
Windows Hooks mechanism.

= Allows you to add specify a piece of code
to run when a particular message is
received by a Windows application.
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Hook Injection

= The SetWindowsHookEx() WIin32 API
call causes the target process to load a
DLL of your choosing into its memory
space and select a specified function as a
hook for a particular event.

= \WWhen an appropriate event is received,
your malicious code will be executed by
the target process.
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Windows Message Hooks

Application
Evil.DLL Application
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Hook Injection Code

HANDLE hLib, hProc, hHook;
hLib = LoadLibrary("evil.dll");

hProc = GetProcAddress(hLib,

"EvilFunction');

hHook =
SetWindowsHookEx(WH_CALLWNDPROC,

hProc, hLiIb,
0);
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Library Injection

= The next easiest method of process
Injection involves creating a new thread In
the remote process which loads your
malicious library.

= When the library Is loaded by the new
thread, the DI IMain() function is called,

executing your malicious code In the target
process.
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Library Injection

= TO create a new thread in a remote

process we use the Win32 API call
CreateRemoteThread().

= Among Its arguments are a Process
Handle, starting function and an optional
argument to that function.
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Library Injection

= We must set our starting function to
LoadLibrary() and pass our evil library name

to it as the optional argument.

= Since the function call will be performed in the
remote thread, the argument string (our evil
library name) must exist within that process’
memory space.

= To solve that problem we can use
VirtualAllocEx() to create space for the

string in the new process.

= We can then use WriteProcessMemory() to
copy the string to the space in the new process.

Q)
)
l
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Library Injection Code

char BibPath[] = "evil._.dll";

char *remotelLib;

HMODULE hKern32 = GetModuleHandle('Kernel32');

void *loadLib = GetProcAddress(hKern32, “LoadLibraryA”);

remoteLib = VirtualAllocEx(hProc, NULL,
sizeof (libPath), MEM _COMMIT, PAGE READWRITE);

WriteProcessMemory(hProc, remoteLib, libPath, sizeof
1ibPath, NULL);

CreateRemoteThread(hProc, NULL, O, loadLib,
remoteLib, O, NULL));
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Direct Injection

= Direct injection involves allocating and
populating the memory space of a remote
process with your malicious code.

- VirtualAllocEx()

- WriteProcessMemory()

= This could be a single function of code or
and entire DLL (much more complicated).
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Direct Injection

= CreateRemoteThread() is then used to

spawn a new thread in the process with a
starting point of anything you would like.

= The most powerful, flexible technique.
= Also the most difficult.

= For example, It takes more code than one
may fit on a slide.
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Process Camouflage

= A cleverly named process Is often enough to fly
beneath the radar and avoid immediate
detection.

= Slight variations of legitimate operating system
processes or legitimate names whose binaries
reside in a non-standard location are the staples
of camouflage.

= Take variations on commonly running
processes.

= A reasonably well named service will also
suffice.
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Example Name Variations

= Svchost.exe and
spoolsv.exe make the
best targets because
there are usually
several copies
running in memory.
One more will often
go unnoticed.
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svcshost.exe
spoolsvc.exe
spoolsvr.exe

e scardsv.exe
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Executing Code from Memory

= The abllity to execute code directly from
memory means that the malicious code
never has to reside on the hard drive

= If It IS never on the hard drive, it will more
than likely be missed during a forensic
acquisition.
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Executing Code from Memory

= Memory buffer to be executed will most likely
be populated directly by a network transfer.

Malicious
Process
\
"
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Executing Code from Memory

= The definition of code
here extends beyond
machine instructions

to any program logic
- Interpreted Code

- Bytecode Compiled Code
- Machine Code

« Executables

Malicious
Process
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Embedded Languages

= The easlest approach Is to accept code In
the form of an interpreted language.

= Interpreted languages are often designed
to be easily embedded.

= A large number of interpreted languages
contain some equivalent of an exec() or

eval () function, which can execute
source code contained In a variable
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Embedded Languages

= Malware containing an embedded
language forces a potential reverse-
engineer into deciphering the structure of
the embedded language before they can
begin to fully decipher your malicious logic.

= Byte code compiled languages add
another layer of obscurity to the process.
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Embedded Languages

= A large number of custom languages used
oy malware captured in the field turn out to
0e nothing more than cheap x86
Knockoffs.

= With little extra effort you can add
obscurity
- Reverse the stack
- Extensible instruction set

= Really screw ‘em up, embed Lisp!
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Malvm

= An example embeddable implementation
of a slightly more sophisticated x86
knockoff.

= Soon to be released*!

= Implements a forward stack and extensible
Instruction set.

= Low level instructions to LoadLibrary()
and GetProcAddress()

*Will be published at http://www.nickharbour.com
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Executing Code from Memory

= Machine code may also be executed from
a buffer. Both position independent
shellcode as well as executable files.

= The abllity to execute arbitrary executable
files from a memory buffer is extremely
powerful because it allows existing
malware tools to be downloaded and
executed In a pure anti-forensic
environment.
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Windows Userland Exec

= A technique was introduced by Gary
Nebbett to launch executables from a
memory buffer under Win32 systems.

= Nebbett's technique involved launching a
process in a suspended state then
overwriting its memory space with the new
executable.

= Referred to as Nebbett's Shuttle
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Nebbett’s Shuttle Abstract Code
-QreateProcess(_.;tmmF,“”,CREATE_SUSPEND,_Q)

= ZwUnmapViewOfSection(...);
= VirtualAllocEx(..., ImageBase,Si1zeOflImage,...)

= WriteProcessMemory(...,headers,...);

= for (1=0; 1 < NumberOfSections; 1++) {
- WriteProcessMemory(...,section,...);
by

= ResumeThread();
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Nebbett's Shuttle Step-by-Step

= CreateProcess(...,’cmd”, ... ,CREATE_SUSPEND, ...)

- Creates a specified process (“cmd” in this example) in a
way such that it is loaded into memory but it is suspended
at the entry point.

= ZwUnmapViewOfSection(...);

- Releases all the memory currently allocated to the host
process (“cmd”).

= VirtualAllocEx(..., ImageBase,Si1zeOflImage,...)

- Allocate a an area to place the new executable image in
the old process space.
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Nebbett's Shuttle Step-by-Step

= WriteProcessMemory(...,headers,...);

- Write the PE headers to the beginning of the
newly allocated memory region.

=for (1=0; 1 < NumberOfSections;
1++) {
WriteProcessMemory(...,section,...);

}

- Copy each section in the new executable image to
Its new virtual address.
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Nebbett's Shuttle Step-by-Step

= ResumeThread(...);

= Once the remote process environment has been
completely restored and the entry point pointed
to by the EIP, execution is resumed on the
Process.

= The process still appears as “cmd” in a task list
but IS now executing our own malicious content.
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Additional Benefits

= The code we replace “cmd” with iIs still
running as “cmd”.

= This can be used to present a cover story.

= The malicious code inherits any privileges
of the target code, for example exception
from the host-based firewall If that is the
case.
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Finding a UNIX Equivalent to Nebbett's

Shuttle

= Unfortunately UNIX does not provide a
similar API for remote process similar to
WIin32.

= Direct portabllity is not an option.

= Two existing techniques from the Grugg.
= New technique
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Userland exec ()

= A technigue was developed by the Grugqg
to function similar to the execve()

system call but operate entirely in user
space.

= The exec () family of functions in UNIX
replaces the current process with a new
process image.

= Ffork() and exec() are the key functions
for UNIX process instantiation.

n
/i
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Windows vs. UNIX Process Invocation

CreateProcess(“foo’)
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Userland exec ()

= Unlike Nebbett's Shuttle, which simply
manipulated a suspended processes
memory space, Userland exec() for UNIX
must load a new process into its own
memory space.
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Userland exec ()

= Uses mmap () to allocate the specific memory
area used by the program.

= Copies each section into the new memory
region.

= Also loads a program interpreter if one is
specified in the ELF header (Can be a Dynamic
Linker).

= Sets up the heap for the new program using
brk().

= Constructs a new stack
= Jumps to the new entry point!
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Shellcode ELF Loader

= Building upon his earlier Userland exec()
code, the grugq later developed a
technique to load an ELF binary into a
compromised remote process.

= This technique was detailed in Phrack
Magazine Volume 0x0b, Issue 0x3f.
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Shellcode ELF Loader

= A stub of shellcode Is inserted Iin a
vulnerable process.

= The minimalist shellcode simply
downloads a package called an Ixobject.

- An Ixobject is a self loading executable package.
It contains the ELF executable, stack context and
shellcode to load and execute the program in the
current process.
= The shellcode and jumps to a second
phase of shellcode contained within the

IXobject.
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Shellcode ELF Loader Process

Evil
Process

¥ Shellcode
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Fresh Ideas

= The current techniques still don’t quite fill
the boots of Nebbett's Shuttle.

= We are still locked into exploiting a
vulnerable host process or forking from the
process doing the infecting.

= \We can expand our anti-forensic
possibilities If we had the ability to execute

our memory buffer as any other process
we want.
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UNIX Process Infection

= The only interface on most UNIX systems
which allows modification to another

processes memory or context Is the
debugging interface ptrace().

= By creating a program which acts as a
debugger we can infect other processes
with arbitrary code.

EAN DIANT




#include <sys/ptrace.h>
long ptrace(enum __ ptrace request request,
pid t pid, void *addr, void *data);

= Has the a
debug chi

= Can mani

nility attach to remote processes or
d processes.

oulate arbitrary memory and registers

as well as signal handlers.
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How Most Debuggers Work

= ptrace() and most debuggers operate by
Inserting a breakpoint instruction.

= The breakpoint instruction in x86 is “int 3" In

assembly language which translates to the
machine code values of “CD 03".

= Software interrupts transfer control back to the
debugging process.

= For most software debuggers on any operating
system, the relationship between debugger and
debugee is a relationship maintained by the
kernel.
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A Simple Debugger

switch (pid = forkQ) {

case -1: /* Error */
exit(-1);
case O: /* child process */

ptrace(PTRACE_TRACEME, 0, 0, 0);
execl (*foo”, “foo”, NULL);
break;

default: /* parent process */
wartt(&wait _val);
while (wait val == W_STOPCODE(SIGTRAP)) {
1T (ptrace(PTRACE_SINGLESTEP, pid, 0, 0) = 0)
perror(‘'ptrace");
wart(&wairt_val);

}

'!r/\r\lE)I/\PQ'FW




UNIX Infection via Debugging

= By using the ptrace() interface we can

Insert machine code to take control over a
process.

= We will use this technique to achieve a
UNIX version of Nebbett's Shuttle, but it
can also be used for other forms of run-
time patching.
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The Technique

= [nsert a small stub of code which allocates
a larger chunk of memory.

= The last instruction in this stub code is the
software breakpoint instruction to transfer
control back to the debugging process.

= Limitations are that the process you are
iInfecting needs to have enough memory
allocated past where the instruction pointer
IS pointing to support the shellcode.
Approximately 40 bytes.

n
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The Technique

= The debugging process then inserts code
to clean up the old process memory space
and allocate room for the new image In its
ideal location.

= The code also sets up the heap for the
Nnew Process.

= The last instruction in this code Is a
software breakpoint.

= The debugee Is then resumed so that this
code may execute and allocate memory.

E
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The Technique

= \WWhen control returns to t
copies the new executab
process memory in the a
manner.

ne debugger, It
e into the

Dpropriate

= The debugger process modifies the stack
and registers for the process as necessary

= Point at the new entry point.

= Detach.
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The Technigue

Phase 0O Phase 1 Phase 2 Phase 3

Step2 shellcode

Step1 shellcode Malicious

ELF
Binary
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Offline Anti-Forensics

= Offline Anti-Forensics are measures taken
to eliminate residual disk evidence of an
activity.

= Started when ancient hackers discovered
that they could delete log or alter log files
to cover their tracks.
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= Altering of file timestamps to mask its
relation to the incident. See Metasploit’s
Timestomper.

= Alternate data streams under NTFS,
though lame, are still being used with
surprising effectiveness.

= \When a need arises to hide a file, such as
a malware binary, there are many places
right on the filesystem which are often
overlooked.
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= C:\Windows\Downloaded Program Files
- Masks the filenames of all its contents

= System Restore Points

- Contain Backup copies of files and binaries in
certain locations. A good needle in the haystack
location.

= C:\Windows\System32

- The classic haystack for your needle

- Be warned, Your malware might get backed up to
a restore point!

!
O O
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= To leave your malware on a system
without leaving an executable on the
filesystem it may be a viable option to
simply trojanize an existing executable on
the system.

= This approach will bypass a large number
of computer forensics examiners.

= Persistence may be established by
trojanizing a binary which is loaded on
system boot.
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The Executable Toolkit

= A toolkit for performing a variety of tasks
against executable files

- Wrapping an executable with a fixed command
line or standard input

- Wrapping an executable with fixed DLLs
- Manipulating sections

- Trojanizing through entry point redirection
- Trojanizing through TLS

- Detours Support

*Available at http://nickharbour.com or SourceForge.
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Anti-Reverse Engineering
= |If you are unlucky enough to be caught by

a computer forensic examiner who isn’t
afraid to peek inside a binary it will be
Important for you to conceal your true
identity.

= Packers are the primary method used
today.
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= Most low-level reverse engineers know only how
to use automated tools to unpack.

= A custom packer, even a simplistic one, will likely
defeat the low-level reversers.

= Custom packed binaries are less likely to be
identified at all.

= An example custom packer with source code is
iIncluded with the Executable Toolkit (exetk)
package.
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Something for the Good Guys

= Packer detection tools today such as PEID
are easily fooled.

= \We have developed something better.

= Mandiant Red Curtain.

- A tool for detecting packed and anomalous
binaries.

- Uses section based entropy, imports and
anomalies to compute a score.

- Avallable at http://www.Mandiant.com
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Mandiant Red Curtain

[ Mandiant Red Curtain v1.0 - [Unsaved]

File Edit Options Help
Score File Entry Poirt Signature Size Entropy Eitdéw é.l;ﬂp:tahr Details -
C:\malware\scarbrauv-restorepoint \ADD25299 exe 25600 [1.0228.. |0 2
C\malwarerestorepoint-malwarefp .exe 25600 10223... |0 2
3825 C\malware"restorepaoint-makware fp-dump hin h7856 08275 |0 4
3.825 C:vmalware ' Malware Collection*fp-dump .bin 57856 0.8275... |0 4
3.706 C:malware“hlp hlp memdump.exe LCC Win32 v1x Thaed 0.9109... |0 2
C\malware\2007_05_18\Malware\A_new_mosaicin .. 7767 (07248 |0 2
Cmaware\Tag4 NDHMCASINFO\etractedwinsys. | |7%67  Jorae 0o |2 |EE
C:\malware\Tag4-NDHMC4SINFO3\extracted-AD047... 7767 |0.7248.. |0 2
C:\malware!\2007_05_18\Mahware\A Ciiicism on FA... 7767 |07248.. |0 2
C:vmalware ' Malware Collection®winsys.exe 7767 0.7243.. |0 2
Cvmalwarerestorepoint-malwarepul exe P¥-Scrambler RC w1 27648 1.1362... |0 1
C\malwars\scarbrauv-restorepoint\ADD35291 exe | UPX-Scrambler RCv1x 27648 11362 |0 1
C:\malware'\Malware Collection\pul.exe UPX-Scrambler RCv1x (27648 |11362.. 0 1
C:\malwarerestorepoint-malware ok wihome exe P¥-Scrambler RC w1 14336 1.0745... |0 1
C:\malware\vestorepoint mahware'wihome-WINRAR_ . |UPX-Scrambler RCv1x | 1433 |10745.. |0 1
e - T LT IR nogen o 1 (oimidn
1 of 161 selected.
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Mandiant Red Curtain

Czvmalwarevntadmd 1.dlL

Sections Imports

= WININET dll
Size = 22528 IntemetCOpenA
Type = Mone IntemetGetConnectedState
Characterstics = Fead, Execute, Code IntemetCpenlddA
Entropy = 0.83260596 IntemetCloseHandle
rdata Intemet ReadFils
data urdrmarn dll
Size = 11264 KERMEL3Z dll
Type = Mone LUSERZZ.dIl
Characterstics = Fead, Wrte W52 32 .dl
Ertropy = 001336131 WS2_ 32410013
+- rerc WW52_32 dil:D003
+- reloc WWs2_32.d1:0010
VWS2_32.dIl:0073
Anomalies Ws2_32d1:0017
W52_32 dil-0004
WWs2_ 32 .di:000
VWS2_32 dil:000S

checksum_is_zero

EAN DIANT




Thank You!

Nick Harbour

MANDIANT

Senior Consultant

675 North Washington St, Suite 210
Alexandria, VA 22314
703-683-3141
NickHarbour@gmail.com
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