
A dynamic technique for enhancing the security
and privacy of web applications

Ariel Futoransky, Ezequiel Gutesman and Ariel Waissbein
Core Security Technologies

August 2, 2007 - Blackhat Briefings

Outline

Outline

1 Introduction
2 Known Tools
3 Classical Taint Mode
4 Classical Taint mode and Character Granularity Information
5 Introducing CORE GRASP
6 Future Work

Introduction

1 Why worrying about injection attacks?

2 Motivating our work. Objectives, Results.

3 Demo.

4 Describing threats.

5 Known countermeasures.

Why worrying about injection attacks?

• Web application vulnerabilities are discovered every day. Most of the
exploits make use (or abuse) of injection vulnerabilities.

• Exploitation of these vulnerabilities leads to numerous problems:
• Data theft / alteration.
• Impersonation, private data disclosure.
• Remote code execution (in client’s browsers).

• As programming languages evolve and lower the learning curve for
new developers they fail in introducing protection mechanisms to
prevent these attacks.

• Privacy can be compromised. User private data (such as credit card
information) can be stolen. User credential theft can lead to
impersonation.

Motivation

Objectives

Exhibit a technique that can be applied to any web language with the
following properties:

• It protects all webApps, without requiring further changes to its
source code or the network architecture.

• Injection attacks are detected and may be (optionally) blocked.

• It allows a site owner to enforce privacy policies over the data
managed by the WebApp.

• Notice that if injection attacks and privacy violations are blocked the
system should be very accurate!

Results

Results
• We designed a technique that allows us to detect ongoing injection

attacks (and privacy violations). We call this technique GRASP.

• We analyzed the technique in depth and provided an implementation
for PHP which is usable and secure: GRASP for PHP.

Simple SQL Injection Example

Simple SQL Injection Example

Demo

Demo
• We have two copies of the same PHP version. One of these is

GRASPED.

• We will first install the original copy of PHP.

• Test a public exploit against a popular CMS (Bugtraq ID: 18492).
The code of this exploit uses a timing attack to exploit a blind
SQL-injection vulnerability.

• As a result, we will be able to retrieve the md5 hash for the admin
user.

• Next we will install the GRASPED version of PHP. And test the
exploit again. . .

Describing privacy threats

Privacy Threats

• Web applications handle private data supplied by users.

• The lack of policies while disclosing this data (e.g., credit card
numbers, medical history) can lead to privacy violation.

• Injection attacks can also lead to privacy violation through
unauthorized data disclosure.

Describing injection attacks

XSS - Cross site scripting

• They occur whenever an application takes data originated from a
user and sends it to a web browser without validating or encoding it
first.

• They are in fact a subset of HTML injection attacks.

• They allow the attackers to execute script code inside the victim’s
web browser.

Examples

• I subscribe in a discussion forum.

• I say my name is < script > alert(′Hi there!′) < /script >.

• While printing my posts...

• Everyone receives a pop-up with my message (imagine we could
write any javascript program!)

Describing injection attacks

Shell command injection

• They arise when the web application executes shell commands with
user-supplied input (e.g., while working with directories and files).

• User supplied data is passed, not well sanitized, to the shell
interpreter.

Examples

• Let’s say I Upload a file with name ”any .txt ../ | rm − rf ../|cd“

• The script copies any.txt to parent directory, erases the entire parent
directory and enters the (now inexistent) parent directory!

$filename = $_POST["file"];

$result = shell_exec("cp $filename ../uploadedFfiles");

Describing injection attacks

Directory Traversal

• They allow an attacker to browse remote directories which shouldn’t
be allowed to.

• The vulnerability is often due to server misconfiguration (e.g.,
Apache’s permissions on local directories).

• Sometimes the web application itself works with files directly and if
a POST/GET parameter is tampered the attack can be successful.

Examples

• If the web server is not properly configured, simple URL rewriting
can succeed.

http://www.myserver.com/images/thissite/../../../

Describing injection attacks

Command injection: Common principles

• The end user enters input not expected by the programmer.

• This input is not properly handled by the web application for its later
use as part of a command / query / output.

• The attack becomes successful when the web application uses a
second language for execution / output (e.g: SQL query, HTML
output, etcetera.)

• The attacker is able to modify the web application’s behavior
through specially crafted input.

Known Attacks

Known Attacks
• Multiple PHPBB injection vulnerabilities have been found in the

last years.

• Popular CMS also had been compromised.

• Custom corporate applications are compromised every day.

Describing injection attacks

Injection Attack Threats

• As we have seen, without the proper checks every web application
can allow these attacks.

• The described attacks can result in:
• Data loss/alteration/theft (SQL - XSS - Shell injection).
• Content modification (XSS).
• Defacement, e.g., site faking. (XSS)
• Pivoting (to attack other web apps.)
• Private data theft / usage.

• There is no silver bullet to prevent them...

Describing injection attacks

Anatomy of an injection attack

• As described, the user enters specially crafted input through
different attack vectors (e.g., form inputs, URL.)

• Web applications run inside an execution environment (VM /
Interpreter).

• Three layers:

1 Information is provided by the end-user.
2 This information is improperly handled or sanitized inside the web

application without being aware of the malicious data.
3 Later, this information is used to perform operations that implement

pre-designed functionalities, but specially crafted data turns those
operations into attacks.

• Prevention/detection must be made in one (or all) of the former
layers.

Describing injection attacks

Anatomy of an injection attack

• Generally, detection of injection attacks is much more complicated
than simple string search (e.g., checking for SQL keywords, ’1=1’),
for example, while requiring some encoding.

• When tampering URL GET parameters.
• When trying to bypass string escaping (e.g: PHP’s addslashes).
• When exploiting 3rd party APIs which may have binary bugs (e.g.,

extensions in PHP).

• Attack vectors change but the vulnerable targets (usually) remain
the same:

• Database engines (e.g., SQL injection).
• Browser output alteration (e.g., XSS).
• HTTP header injection.
• We cannot elaborate a complete list!

Known countermeasures

Programmers’ workarounds

• Escape, Encode, Filter Harmful characters inside user-controlled
data.

Possible failures
• For example, while using regular expressions:

• Case unsensitive RegEx sometimes can be bypassed using
(upper—lower)case chars

• Sometimes, depending on context, an attacker can inject %0d%0a
(CRLF) followed by malicious data. Non-multiline RegEx only
matches the first line, leaving the ”tail” unchecked.

• Missing knowledge about string handling inside the programming
language

• ASP (3.0) for example, allowed %00 characters inside a string, a
C-coded protection library may return a string is valid, but ASP
continues using the malicious one.

Known Tools

1 Vulnerability detection.

2 Block & detect ongoing exploits.

Known Tools - Vulnerability detection

Automated source code analysis

• White box testing (source code is required).

• Inaccurate. Less than perfect.

• Must be done before release. In development phase.

• False positive and false negative alarms.

Scanners

• Black box testing.

• Analyze a deployed application.

• Probe known vulns or have a fuzzer incorporated.

• High rate of false positives and false negatives.

Known Tools - block & detect ongoing exploits

Firewalls/IDS/IPS

• Work with known signatures or trained with stats, this induces false
positives and negatives.

• Usually don’t detect special crafted attacks (that involve only the
targeted web app).

• They are susceptible to DoS attacks.

Summary

• Some of these tools require an exhaustive review of all the alarms.

• False positives and false negatives must be confirmed manually.

• They don’t give evidence of the existence of a vulnerability.

• Once you run the aforementioned tools, you cannot be certain all
the vulnerabilities have been eradicated.

Classical Taint Mode

Classical taint mode

Description

• It is a technique designed to address the problem of sending
untrusted input to functions / operations that might be dangerous
from the security standpoint.

• It is mostly used in development stages. Programmers can be aware
of the checks they forgot to add, while an alarm raises every time
tainted data reaches sensitive operations (e.g., shell commands,
database queries).

• It can be used in deployment stage, after modifying the application
according to detected alarms.

• According to the previously described anatomy, with taint mode,
attacks are detected in the third layer.

Classical taint mode

Description

• It is bundled in some programming languages (either as extensions or directly
bundled) such as Perl, Ruby.

• Strings are tainted as a unit. Either U: untainted, T: tainted.

• It gives the programmer the opportunity to check if he forgot a check before
executing a sensitive operation (like shell command executions).

• If used for dynamic protection (while a web application is on line), produces a
high rate of false positives while detecting on going attacks.

Examples
my $cgi = CGI->new();

my $user = $cgi->param(’user’);

$user is now tainted

if ($user =~ /^(\w{1,6})$/){

$user = $1;

$user is now untainted

}else

...

Classical Taint Mode

Pros & cons
SELECT * FROM users WHERE username=’Bob’

• If the above query is fully tainted, it would raise an alarm although
it is a valid SQL query.

• This behavior increases the rate of false positives.

• Once the alarm is raised, the developer must change his code
accordingly.

• The string is treated as a whole, since no granular information is
available.

• The system does not check whether a string is being sanitized or not.

• It only helps the developer in finding out where he forgot a
sanitization.

• Useful in development stages. Can alert a developer of unhandled
data.

Classical Taint mode
and

Character Granularity Information

Character Granularity Information

Character Granularity Information

• String instrumentation adds a security mark to each character.

• This allows syntactic analysis over the string, augmenting precision.

• The previous query would be marked as:
SELECT * FROM users WHERE username=’Bob’
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHDDDH

Where D means that character is marked as dangerous and H that it
is harmless.

• The above query would not be considered dangerous.

Comparison: Classical Taint mode vs.
Character granularity information

Classical Granular

• Useful while in development.
• High rate of false positives

while used in production /
run-time.

• Application must be modified
once an alarm has been
detected.

• Already bundled with some
languages.

• Sensitive functions &
operations can be quickly
detected.

• Low run-time / memory
penalty.

• Useful while in development
and while in production.

• Fewer false positives.

• High precision.

• Per-character information.

• Vulnerabilities can be precisely
modeled allowing syntactical
checks.

• Increased run-time / memory
penalty (discussed later)

Introducing CORE GRASP

Preventing injection attacks

• Imagine a person reviewing
each data entering / leaving
the web server to / from
users. Deciding whether it
represents a threat for the
web application or the user,
marking entering data
accordingly.

• This person can review each
data inside / leaving the web
server, sent to back-end APIs
and servers, checking if they
are indeed, a threat for the
intended operation.

Browser

FirewallIDS

Web Server

Databse Server

ApplicationVM

Web Server

HTTP/HTTPS

HTTP/HTTPS

SOAP

SQL SQL

PROTECTION

Application

PROTECTION

VM

Preventing injection attacks

• GRASP replaces the reviewers role
with three layers.

• First layer: between the web server

and the outside world

• Marks all incoming data from
untrusted sources,

• Prevents harmful data from
being output to the outside
world and

• Enforces privacy policies.

• Second layer is inside the execution
environment: it tracks the marked
data inside the web application.

• Third layer is located between the

web server and other servers (such

as database servers):

• Checks outgoing data.
• Checks and blocks incoming

attacks
• Enforces privacy policies.

• Marks incoming data (e.g.,
database) as untrusted.

Browser

FirewallIDS

Web Server

Databse Server

ApplicationVM

Web Server

HTTP/HTTPS

HTTP/HTTPS

SOAP

SQL SQL

PROTECTION

Application

PROTECTION

VM

Design principles

Design principles

• For each language we will modify the way any web application
receives, handles and outputs data in order to prevent injection
attacks.

• Security information is tracked inside the web application’s execution
flow.

• We will classify data operations / functions into three groups:
• Sensitive Sources: Entry points to the execution environment where

incoming data should be considered untrusted.
• Sensitive Sinks: Functions / modules that forward / execute

operations to / in the back end.
• Data manipulation operations: Operations that handle or combine

data.

• Each of these operations must be modified to be security-aware.

Solution Design

Architectural description

• For each programming language its execution environment is
augmented to store additional security information about strings.

• Possible Sensitive Sources are:
• GET, POST variables (e.g., while sending forms).
• Environment variables.
• Stored COOKIES.
• SESSION variables.
• Incoming database data.

• Possible Sensitive Sinks are:
• Queries sent to database servers.
• Data retrieved from a database that results in a later attack

(database-stored XSS).

• All the attack vectors which can be controlled by a potential
attacker are marked as dangerous while entering the execution
environment through Sensitive Sources.

• Marks are propagated across Data manipulation operations.

Solution Design

Protection
• Sensitive Sinks protection is implemented as Finite State Machines.

• Granular information is used to detect and block attacks.

• They allow syntactic check for security.
• There are less precise techniques such as keyword search.

• Well-formation of strings can be modeled deterministically for each
family of vulnerabilities.

• For each API a checker (with different syntactic check) can be
implemented.

• Inside the web server the protection is the same for all the web
applications.

FSM - Example: SQL injection prevention

SELECT * FROM users where name = ’’ and 1=1;--’

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHDDDDDDDDDDDDH

 ATTACK

digit

! digit &&

! digit &&

’\’

mark

!mark

’ && mark

’\’

’ && ! mark

’ && ! mark

" && mark" && ! mark

’\’
" && ! mark

‘ && mark

’\’

‘ && ! mark

! mark

markmark ’−’

! digit && mark

Security features

Security features

Injection attacks are prevented / detected:

• Existent web applications deployed on a server which incorporates
the protection are protected immediately.

• A FSM checks for cross language boundaries threats.

• These FSMs are different for each family of threats (SQL injection,
XSS, Shell cmd injection, Directory traversal, etcetera.)

• All detected attacks are logged.

• Neither source code modification nor ad-hoc checks are needed.

Privacy Features

Privacy Features

• Privacy Policies are statements over the data which describe how a
system should treat that data according to its source and
destination.

• The solution provides the means for a “privacy officer” (PO) to
define privacy policies stored in a configuration file.

• Sensitive Sources tag incoming data according to privacy policies.

• Sensitive Sinks perform privacy checks (which are different from
security ones).

• Data manipulation operations propagate privacy tags.

• Data inside the execution environment is assigned a privacy tag e.g.,
public, store allowed, plain text, owner only, etcetera some of them
can be defined by the PO.

Privacy Features

Examples

• A database stores credit card information from users.

• This information should never be sent to the user’s browser.

• A privacy policy could state: “Data from this column should never
be printed” or “Data from this column can only be printed to its
owner”.

• While a web application sends content to a user’s browser, this
policy is enforced and no private data is sent unless it does not
violate any pre-defined privacy policy.

Prototype

Summary

• The former ideas can be directly implemented for PHP.

• We have developed a prototype that is a modification of the PHP
interpreter.

• We chose PHP because :
• Its source code is publicly available, so we could implemement it

directly inside the execution environment.
• Vulnerabilities in PHP-coded applications are disclosed DAILY.

• It is distributed as a patch to the PHP interpreter.
• Installation has the same requirements as a typical PHP installation.
• No special tunning is required.
• No source code modification of existent web applications is needed.

Prototype: CORE GRASP for PHP

1 Covered functionalities.

2 Implementation details. PHP Internals.

3 Architecture description.

4 Modifications to the PHP interpreter.

Prototype

Covered functionalities
• The prototype’s last implementation was implemented for PHP

5.2.3. But we have been working on this technique since PHP 4.3.

• It implements marking for all Sensitive Sources.

• It only implements one Sensitive Sink protection: protects PHP
applications against SQL injection attacks against MySQL
databases.

• String manipulation operations were modified to propagate marks
adequately (except RegEx propagation).

• Mark optimization was implemented.
• For strings with all characters marked as D or H no character

granularity is stored.

• Downloadable source code is published
http://grasp.coresecurity.com. We expect to build a
collaborative development community around this prototype.

http://grasp.coresecurity.com

Implementation Details - PHP internals

Execution environment modifications
• As mentioned before, a modification to the execution environment

must be made in order to allow security information to be handled.

• The basic data structure where data is stored inside the interpreter
was extended for this purpose.

• These structures are the zvals. They store every value (&
intermediate values) while inside the execution environment.

Implementation Details - PHP internals

zvals
• The main component structure of zvals is the zval struct where

we store our marks:
struct zval struct {

/* Variable information */

zvalue value value;/* value union */

zend uint refcount;
zend uchar type;/* active type */

zend uchar is ref;
char *secmark;

};

Implementation details - PHP internals

zvals
• If the zval is a string we allocate the secmark to store per-character

information:
• (char *)0 if the string has full safe mark.
• (char *)1 if the string has full unsafe mark.
• (char *) pointing to an array of bytes, each one indicating a

character’s mark, while in mixed marks situation (safe and unsafe
strings).

• Optimization: only in mixed mark situation double space is needed
for the full string, otherwise 4 bytes are used.

Architecture description

Sensitive Sources
• We had to identify the Sensitive Sources and enable data marking

while entering the execution environment.

• GET/POST/COOKIES are marked as dangerous while being loaded.

Sensitive Sinks
• Also Sensitive Sinks were identified, only one sink protection was

implemented.

• While executing SQL queries (MySQL module) they are checked for
attacks.

Architecture description

Data Manipulation Operations

• Per-character marks allow precise checking for vulnerabilities.

• Marks are propagated within string operations (concatenation, string
functions.)

• Zvals are initialized with safe mark.

• Propagation allows tracking of user-controlled data.

Architecture description

Modifications
• Modifications to the interpreter were focused in:

• Main data structures (zvals, smart str).
• Basic string operations.
• Built-in string functions (string.c).
• Zval constructor macros.
• Zval initialization.
• (GPC) variable initialization.
• Execution environment files (vm execute, and others)
• MySQL module.

Performance

Testing

• We tested GRASP running popular CMSs, Database management
interfaces and home-built web applications. It showed a ∼20%
penalty in run-time.

• We tried to exploit known vulnerabilities with successful GRASP
protection.

• We tested PHP’s regression tests and added GRASP-specific ones.

• Memory usage is increased by ∼30% due to secmark allocation.

Other Protection Techniques and Improvements

• Other on-the-fly protection mechanisms (such as IDSs) also add
run-time penalties.

• GRASP’s overhead could be lowered.

Prototype specifics

1 Developer interface, added functions.

2 Configuration.

3 Logging capabilities.

4 Attack statistics.

5 Performance.

Prototype specifics

Developer interface

• Although protection is automatic several functions have been added
as built-in to allow mark interaction:

• grasp setmark(): Sets full dangerous mark to the passed string.
• grasp clearmark(): Sets full safe mark to the passed string.
• grasp getmark(): Returns a string representation of passed string’s

mark.

• A developer could make use of these functionalities for example to:
• Assure certain variables are consciously sanitized and should not be

treated as dangerous.
• Allow user-originated SQL commands, for example, while developing

back-end applications.

Prototype specifics

Configuration

• Inside php.ini there are several parameters that can be configured:
• grasp block sql attack: Enables/Disables attack blocking.
• grasp log sql attack: Enables/Disables attack logging.
• grasp log sql query : Enables/Disables query logging.
• grasp log dir : Specifies logging directory.

Logging capabilities

Two log files are available, grasp attack.log and grasp queries.log. For
example, an attack would be logged as:

@Fri Jun 22 15:32:28 2007

192.168.21.12

/home/corelabs/src/testpatch/php-5.2.1-orig/tests/grasp/mysql_query.php:37

SELECT * FROM users WHERE username=’’ OR 1 = 1 OR ’’ = ’’;

....................................’ OR 1 = 1 OR ’’ = ’..

Where dots indicate safe marks and where the character is repeated it means it

is controlled by the user.

Attack statistics

Distribution

• GRASP for PHP is being distributed as Open Source software.

• It is being released under Apache 2.0 license.

• We hope you can join us and collaborate with this project!

Future Work

Future Work

Goals
We envision a lot of work for the future:

• Implementing protection against remaining attack vectors.

• Implementing full privacy protection.

• Polish current GRASP implementation.

• We envision optimizations suitable for high performance.

• Allow GRASP to work as a classic taint-mode to be used in development
phase:

• W. Venema proposed a taint mode to be used in development stage.
• A common framework can be developed to allow both types of

protection (classical and granular).

• Allow per-page protection policies.

• This could allow an administrator to turn off protection depending
on each page/site needs.

Future Work

Ideas (cont.)

• Different levels of mark. For example: safe from XSS, unsafe for
SQL injection, etcetera.

• With 1 byte we could mask 8 different marks (1 bit per mark) even
28.

• Privacy and security marks could be represented in one single byte.

• Implement GRASP for different programming languages (such as
Java, ASP.NET).

• Difficult but we started to think about the possibilities.
• A possible way of doing this is by wrapping native string classes.
• Modifying class loaders.

Further Reading

• A Dynamic Technique for Enhancing the
Security and Privacy of Web Applications.
Included in conference material

• Enforcing Privacy in Web Applications.
Presented at Privacy, Security and Trust 2005.
October 2005, New Brunswick, Canada.

Download available from http://grasp.coresecurity.com

Thanks!

ezequiel.gutesman@coresecurity.com
ariel.waissbein@coresecurity.com
ariel.futoransky@coresecurity.com

http://grasp.coresecurity.com

	Outline
	Introduction
	Known Tools
	Classical Taint Mode
	Classical Taint mode and Character Granularity Information
	Introducing CORE GRASP
	Future Work

