

A Real World Scenario of a

SQL Server 2005 Database Forensics Investigation

Black Hat USA 2007

Author: Kevvie Fowler, GCFA Gold, CISSP, MCTS, MCSD, MCDBA, MCSE

kevvie.fowler@emergis.com
©2007 Emergis Inc.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 2

Outline

Investigation Introduction...3

Step 1: Verification ..3

Step 2: System Description..9

Step 3: Evidence Collection...11

Step 4: Timeline Creation ...15

Step 5: Media Analysis ..18

Step 6: Data Recovery ...36

Step 7: String Search ...41

Investigation Summary ...42

Appendix A ...43

Appendix B ...44

References ...46

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 3

Investigation Introduction

On March 1st, 2007, I received a call from a client who stated that they may have been a

victim of a security incident sometime over the past 24 hours. They believed unauthorized

modifications were made to their production database server which had resulted in erroneous

product shipments and financial loss to the company. Due to the mission critical nature of the

system, it could not be taken off-line unless significant evidence of system misuse could be

identified.

Step 1: Verification
 4E46

Upon arriving on scene, I was briefed on the situation and learned that the SQL Server

2005 database server contained a single user database which was the foundation of an online-

sales application. The client also informed me that they had received a call from a credit card

company regarding a suspicious transaction that was charged to a client card by their company.

Because the server could not be taken off-line, a live analysis was performed. During a

live analysis volatile and non volatile data is viewed and acquired with the assistance of the live

target operating system1. During a forensic investigation you should utilize binaries on the target

system as little as possible as they may be corrupt or tampered with thus skewing their output.

The incident response CD-Rom used in this investigation contains traditional incident

response tools in addition to SQL utilities and libraries which allow ad-hoc query submission to

SQL Servers using minimal assistance from the un-trusted host.

To begin the incident verification, Windows Forensic Tool v1.0.03 will be used with a

customized configuration file. This configuration file will execute Distributed Management

Views (DMV), Database Consistency Checker (DBCC) commands and other vendor issued

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 4

procedures to gather data which can be used to prove or disprove the occurrence of an intrusion.

For more information on the customized Windows Forensic Tool Chest configuration file, refer

to Appendix A of this document.

At precisely 10:02 AM, server time, the client’s system logged into the PRODSQL05

SQL Server interactively under the user context Administrator. Upon logging into the system, it

was observed that the system tray contained no third party application icons and the operating

system appeared to be Windows 2003 Standard Edition. At 10:03 AM, server time, I assumed

command of the console to begin the investigation. My Forensic Response CD was inserted

into the computer and a trusted command shell was launched by issuing the

“D:\FResponse\cmd.exe” command. Using the full file path in addition to the binary name

ensures that the binary is loaded from the trusted CD. The un-trusted host may contain binaries

with matching names to the binaries contained on my response CD. If these binaries are present

within a directory referenced in the path variable of the target host, the un-trusted binaries can be

loaded in error. To eliminate the possibility of this occurring, the full file location in addition to

the binary name will be used during this investigation.

The outputs from the tools run during this investigation, will be saved on the trusted

forensic workstation as opposed to the un-trusted target host. From the command shell, the

“D:\FResponse\net use * \\192.168.1.174\$Acquisition” command was issued to map a drive

from the target host to sterile storage media located on my forensic laptop which was connected

to the network under IP Address 192.168.1.174.

The “$Acquisition” share is hidden and password protected to help ensure the integrity of

the data within. It was noted that the drive letter associated with the net use command was

connected as “E:\” on the target host. The “D:\FResponse\wft.exe –dst E:\” command was

issued to launch the customized Windows Forensic Toolchest v1.0.03 instance which gathered

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 5

volatile database and operating system data from the target system and securely stored it on the

forensic workstation.

Once Windows Forensic Toolchest was finished executing, the results were analyzed and

the following notable events were identified.

SQL Server reserves Sessions #50 and lower for internal SQL Server processes, discounting

these, it was identified that two sessions were currently active on the SQL Server. The first

Session ID # 52 which belonged to the instance of WFT executing under the local Administrator

context and the second was Session #51 belonging to an unknown user operating under the login

EASYACCESS. This session had been established at 7:58 AM that morning. Because the login

name was unconventional, it was flagged for client verification.

SQL Server 2005 maintains a record of the last SQL statement executed by a given

session. Viewing this history for the connected users led to the identification of a suspicious

transaction.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 6

The audit policy active on the target system was configured to log successful logins only,

and not login failures. However, SQL Server maintains its own log that records database related

service errors in addition to authentication data. The error log was stored within the “c:\Program

Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG” directory of the target system. Review of

the error log identified several hundred failed login attempts in succession against the sa account,

followed by its successful login. This activity is normally attributed to evidence of a successful

brute force attack against the database server.

To further investigate the above findings, the configuration of the SQL Server needed to

be obtained. SQLCMD, a Microsoft issued utility which allows the submission of ad-hoc SQL

statements and scripts to a MS SQL Server will be used from the trusted incident response CD.

The ad-hoc query capabilities of this tool will be used during the remainder of this investigation.

The “D:\FResponse\Sqlcmd –S PRODSQL05 –e –s”,”” command was executed from the

trusted command prompt which opened a connection to the SQL Server using the interactive user

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 7

context. The “-e” switch forces SQLCMD to echo our input statements into the SQL result files

and the “-s”,”” switch ensures the outputs are comma delimited which will allow the results to be

imported into another application for deeper analysis.

After logging in, an output file was established to log the SQL statements and their

associated results securely to my forensics workstation.

:out e:\initialconnection.txt

A MD5 hash will be created on each output file to ensure data integrity. When a connection is

made to SQL Server the default database context configured under the user Login Properties will

be used. To ensure the database context was indeed set for the OnlineSales database the

following command was issued:

use OnlineSales
go

Results: initialconnection.txt

SQL Server 2005 can be configured to use either Windows Authentication, which allows

the host operating system to authenticate users, or Mixed Mode authentication, which allows

authentication to occur at either the Operating System or independently within SQL Server4.

There are also various logging options within SQL Server to log successful and/or failed login

attempts. To verify the active configuration settings of the subject server the following

command was run:

xp_loginconfig
Results: xp_loginconfig--onlinesales.txt

The following results were produced and show that the server is set for Mixed Mode

authentication and is configured to log both successful and failed login attempts.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 8

Authorization within SQL Server 2005 is controlled by two gates. The first gate ensures

that users are authenticated at the database instance and the second ensures that users have the

appropriate permissions to access the various databases and database objects. During the

verification step of this investigation we identified that the SQL server login EASYACCESS was

logged into the server. However because the investigation is on the OnlineSales database the

database permissions will need to be checked to ensure that the EASYACCESS account has

access to this specific database. The following query was run to gather a list of all database users

within the OnlineSales database:

Select * from sys.database_principals where type = 'S' or type = 'U' order by create_date,
modify_date

Results: db_principals-onlinesales.txt

This query produced the following results which show that the EASYACCESS user

account does have access to the OnlineSales database:

The Microsoft extended procedure “xp_cmdshell” allows users to execute dos commands

within the underlying host operating system using their SQL client. This can allow an attacker

who compromises the SQL Server to then launch attacks against the underlying host operating

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 9

system. However, this procedure is disabled by default in SQL Server 2005. To verify its

current state, the following command was executed:

Select * from sys.configurations
Results: sys.configurations.txt

The results showed that this procedure was disabled therefore the assumption is made that

database users are unable to execute operating system level commands on the host.

At approximately 10:45 AM, the initial findings were presented to the client who verified

that the EASYACCESS account was an anomaly and not created for any legitimate business

purpose. It was also disclosed that the Online Sales application was down for maintenance

therefore no one should have been logged on to the OnlineSalesdatabase or have executed the

identified delete statement.

At 11:01 AM the client authorized a full forensic investigation to be performed on the

server to determine the scope and impact of the intrusion. At 11:05 AM The SQL Server was

disconnected from the production network and plugged into a 4 port DLINK hub to isolate the

server and prevent further modification by the unknown user.

Step 2: System Description

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 10

As previously stated in the verification section of this document, upon login to the target

server the default Microsoft background was visible on the server console and there were no

third party applications visible within the system tray. The following system profile was

gathered from information provided by the client as well as investigator findings gathered during

the verification step:

System Name PRODSQL05

Serial Number US822301223

System Operating System Microsoft Windows Server 2003 Service Pack 1

Database Version 9.00.1399.06

System Function Function as a backend database to an online order processing system

Physical Description The system contained 3 peripheral network cards, one appeared to be a

video card, and the remaining two appeared to be network cards,

however, only a single network card was actually connected to the

network.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 11

Asset Photographs:

Step 3: Evidence Collection

As time elapses after a security incident, evidence can be overwritten by legitimate and/or

malicious system activity. Databases can contain large data stores which result in a high data

acquisition cost. To help ensure priority is given to the data sources most likely to contain

relevant data to support the investigation, it’s my expert opinion that relevant data sources be

assigned a significance and also a volatility value between 1 -5 with, 5 being of higher

significance and/or volatility. The following values should be used in the following formula to

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 12

determine priority [10 - (significance rating) + (volatility rating) = priority]. Using the above

formula, the data stores relevant in this investigation were prioritized as follows:

Item Importance Volatility Priority

SQL Server Connections & Sessions 5 5 0

Transaction Log(s) 5 4 1

SQL Server Logs 4 3 3

SQL Server Database Files 3 2 5

System Event Logs 2 2 6

 Now that data stores have been identified and prioritized, the actual data acquisition can

take place.

SQL Server connection & session data

Related information was successfully captured via the customized Windows Forensic

Tool chest tool executed during the verification stage of this investigation.

Transaction Logs

The SQL Server transaction log contains a record of all insert, update and delete

statements made within the database. For performance reasons SQL Server does not

immediately write these events to the physical data files. Instead changes are written to the log

file to buffer and later written to the data files.

A single SQL Server database can utilize multiple database files and multiple transaction

logs. The number of files and locations will need to be identified for the OnlineSales database.

Using the trusted SQLCMD session, the following SQL query is executed to gather the database

file information:

sp_helpdb OnlineSales
Results: sp_helpdb-onlinesales.txt

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 13

The below results were returned from the above SQL query and show that the

OnlineSales database is currently using one physical data file ending with the “.mdf” extension

and two transaction log files ending with the “.ldf” extension. These files are contained within

separate Windows file locations.

name fileid filename …
--------------------------------- -- ---------------
OnlineSales 1 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\OnlineSales.mdf …
OnlineSales_log 2 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\OnlineSales_log.ldf …
OnlineSales_log2 3 C:\OtherLogs\OnlineSales_log2.ldf …

The following SQL query was then executed to dump the contents of the OnlineSales log

file to the trusted forensic workstation:

dbcc log(OnlineSales)
Results: dbcclog-onlinesales.txt

Although a SQL Server database can use multiple physical transaction logs internally,

SQL Server splits each physical log file into 4-16 Virtual Log Files (VLFs)5. Selected VLFs are

marked active at any given time and used to record transactions. SQL Server periodically

completes a checkpoint process which flushes changes recorded in the log file to the physical

disk file. Once this is complete, SQL Server marks the VLFs containing the fully committed

transactions reusable and will overwrite them as required with new log records.

The following SQL Server command was run from within the OnlineSales context to

view the logical allocation status of the physical transaction log:

dbcc loginfo
Results: dbccloginfo-onlinesales.txt

The results of this command may be helpful later in the investigation when it will be

determined if the physical transaction log file will be split into virtual log files to separate the

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 14

active VLFs from the reusable VLFs which may contain historical data relevant in this

investigation. In order to obtain a true bit-to-bit copy of the transaction log, the SQL Server

service will need to be shutdown in order to release the locks held on the target files. At SQL

Server shutdown and startup the database checkpoint process is automatically triggered5 which,

as previously stated before will flush the non committed changes to disk and mark the records as

reusable. The following command was executed to force the shutdown of SQL Server.

Shutdown
Results: shutdown.txt

After the SQL SERVER processes were shutdown, the physical log files were acquired

using the dcfldd disk imaging tool which also generated MD5 hashes for the acquired data.

These hashes were compared to the hashes of the on disk files to ensure the data was not altered

during duplication.

Database files

Using the database file locations retrieved from the results of the “sp_helpdb

OnlineSales” command executed earlier in the investigation, the OnlineSales database file was

also acquired using the dcfldd tool.

Default SQL Server Trace File

The default configuration of SQL server runs a trace which captures limited activity

within the database. This configuration is enabled by default, but can be disabled by a user with

sufficient privileges. Using the SQL Server configuration gathered earlier in this investigation,

the default trace was confirmed to be enabled.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 15

During review of the SQL Server installation directory several trace files using the

default Microsoft trace naming convention “log_##” were identified. These log files were

acquired using the dcfldd tool as they may contain information relevant in this investigation.

SQL Server Error Logs

In addition to the current error log used by SQL Server, historical log data is also

maintained. Each time the SQL Server service is restarted, a new error log is created and the

existing log is backed up. SQL Server maintains the current error log in addition to 6 log

backups. All 7 error logs were acquired using the dcfldd tool. Once all data had been acquired

the SQL Server services were restarted.

Step 4: Timeline Creation

Constructing an initial timeline will map out the notable digital events which have been

identified thus far and establish an investigation scope which will be used during the Media

Analysis phase. Review of the SQL Server error logs obtained during the Evidence Collection

step show that the SQL Server instance was restarted on March 01, 2007.

This will be the first entry in the timeline. As discovered during the verification step of

this investigation on March 2nd, 2007 several hundred failed SQL Server login attempts were

recorded within the error log between 7:01 AM to 7:39 AM from IP address 192.168.1.20.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 16

Following these failed login attempts were successful logins by the SA account at 7:54 AM and

the EASYACCESS account at 8:09 AM from the same IP address.

These events will be added to the timeline in addition to the associated Server Process Identifier

(SPID). A SPID is a unique number used by SQL Server to track a given session within the

database server2. The trace files obtained during the evidence collection phase of this

investigation were imported into MS SQL Profiler on my forensic workstation for analysis.

During review, the following notable events were identified:

(1) Creation of EASYACCESS account

(2) EASYACCESS account is granted access to OnlineSales database

(3) EASYACCESS account is added to ONLINESALES db_owner role

(4-6) Unknown transactions are executed by EASYACCESS account which required

tempdb usage. Often DML operations require tempdb usage2 therefore it is likely

that SPID 51 issued DML operations which required object or interim result

storage.

1

3

2

5

6

4

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 17

Based on the events identified thus far in the investigation, the following timeline was

constructed:

Time User SPID Action

March 1, 2007

7:26 AM UNKNOWN N/A SQL Server instance is restarted

March 2, 2007

7:01 AM –
7:39 AM

UNKNOWN 51 SQL Server Brute Force attack launched against
PRODSQL05 server

7:54 AM SA 51 SA SQL Server user account logs into PRODSQL05
server

7:54 AM SA 51 EASYACCESS account created
7:55 AM SA 51 EASYACCESS account granted access to OnlineSales

database
7:56 AM SA 51 EASYACCESS account added to OnlineSales

db_owner role
8:09 AM EASYACCESS 51 EASYACCESS SQL Server account logs into

PRODSQL05 server
8:09 AM EASYACCESS 51 EASYACCESS account executes unknown transaction

within ONLINESALES db
8:13 AM EASYACCESS 51 EASYACCESS account executes unknown transaction

within OnlineSales database
8:13 AM EASYACCESS 51 EASYACCESS account executes unknown transaction

within OnlineSales database
10:17 AM Administrator 52 Start of Forensic Investigation of database server
11:05 AM Administrator N/A PRODSQL05 server removed from network
11:16 AM Administrator 52 SQL Server instance shutdown

The application connected to SPID 51 was recorded by SQL Server as “OSQL-32”.

Performing a Google™ search on this name identified the application as a legacy Microsoft

command line query tool called OSQL. This will be noted as it may be relevant in the future if

an investigation is performed on the unauthorized user’s computer.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 18

Step 5: Media Analysis

The timeline established in the previous step will now be used to set boundaries on the

scope of media analysis. Using the timeline, the focus of the investigation will be on activities

executed by SPID 51 between 7:54 AM March 1st, 2007 when the unauthorized access was

gained to SQL Server and later in the day at 11:05 AM when the system was isolated from the

production network.

Before looking at any of the raw SQL Data files, the data types in use within the

OnlineSalesdatabase will need to be identified. Unicode is a standard method of mapping SQL

Server byte representations (code points) to ASCII characters. The Unicode standard is inclusive

of characters which map to all languages throughout the world. SQL Server uses various data

types which store Unicode data, however there are some data types used by SQL Server (char(n),

varchar(n) & text) which store non-Unicode values3. When non-Unicode values are stored

within SQL Server, they are converted to a supported data type using the collation setting of the

respective table column3. If this data is viewed by a computer using a code page which does not

cover the range of characters used within the collation setting of the database, data loss can occur

which can skew the results3. To determine if non-Unicode data was being used by the Order

table and the collation setting in place, the following procedure was run:

sp_tablecollations 'order'

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 19

Results: sp_tablecollations-onlinesales.txt

 The results below show that both Unicode and non-Unicode data is stored within the Order

table. The columns storing non-Unicode data are using the SQL_Latin1_General_CP1_CI_AS

collation setting.

This collation setting was researched on SQL Server 2005 Books Online which showed

that this collation maps to code page 12524. To verify the code page in use on my forensic

workstation, the regional and language options application within control panel on my forensic

workstation was viewed. This identified that the forensic workstation was using a compliant

code page in order to correctly translate the code points used by SQL Server.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 20

The transaction log acquired during the evidence collection phase was imported into

Microsoft Excel using code page 1252. A SQL Server 2005 transaction log contains over 100

columns however only a few columns will contain relevant data based on the scope of this

investigation. The following table outlines target columns and their function within this

investigation.

Column Description
Operation The type of operation which was performed
PageID The data page affected by the transaction
SlotID The row within the data page affected by the transaction
Offset in Row The first position within the data row affected by the transaction
SPID The Server Process Identifier
Begin Time Indicates the transaction start time (server time)
Transaction Name Classification of the active transaction
End Time Indicates the transaction end time (server time)
RowLogContents0 The value which was updated by the transaction (Insert, Update statements)
RowLogContents1 The value which was written to disk (Insert, Update statements)

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 21

For a listing of all columns within the transaction log, please see Appendix B of this document.

The imported data set was filtered to display only records which were executed by SPID 51 and

between the date/time ranges captured in the timeline. The first two transactions identified, were

associated with the creation and permission augmentation of the EASYACCESS account which

was identified during the trace file review.

The third transaction executed by SPID 51 was an update statement. The transaction log details

show that a database transaction ID 0000:0000032e which was an update statement affecting 3

records within 3 separate data pages within the database.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 22

A SQL Server data page is an 8192 byte structure which stores database data5. A data page can

contain multiple rows and each database contains multiple data pages. Data pages are organized

into logical groups of 8 called extents6. Using the transaction log dump, the first update

statement was analyzed, identifying a record on row 20 of Data Page 0001:000000d3. Both the

Page ID and Transaction ID values are stored in hex and when converted to decimal produce the

following values:

Identifier Hex Decimal
Transaction ID 0000:0000032e 0:814
Data Page 0001:000000d3 1:211

In order to view the raw data pages, the OnlineSales database was attached within SQL

Server Management Studio (SSMS) version 9.00.1399.00 on my forensic workstation. Within

the newly added OnlineSales database, Microsoft-issued commands and procedures will be used

to examine the raw data pages which have been modified.

The following command was issued from within the OnlineSales database context

dbcc page (OnlineSales, 1, 211, 1)

Marks the beginning
of a transaction

Marks the end of a
transaction

Type of transaction
performed

Unique transaction
identifier

Data Page identifier
for row containing the
updated record

On data page row
location of record

In row data offset
of modification

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 23

The above command dumped data page 211 which contained the row which had been modified.

The header of the table was examined to identify the base table to which the data page belonged.

Objectid 629577281 was used as an argument in the following query which was run to resolve

the name of the object.

Select * from sysobjects where id = 629577281

This produced the following output which confirmed that the data page belonged to the Order

table.

The method used by SQL Server to store data depends on the data types in use, the size of each

column and the order in which the columns were specified when the table was created. Before

the raw data pages were examined, the table schema was first gathered by executing the

following command:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 24

SELECT sc.colorder, sc.name, st.name as 'datatype', sc.length FROM syscolumns sc,
systypes st
WHERE sc.xusertype = st.xusertype and sc.id = 629577281
ORDER BY colorder

The following output was produced which illustrates the schema of the Order table:

Using slotID: 20 and rowoffset 80 which were obtained previously from the transaction log, the

specific point within the data row was identified in which the transaction began.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 25

Using the table schema obtained earlier, the data type within this row offset is the Price column

which contains a 30-byte nchar data type. From the transaction log, the hexadecimal value from

the Rowlog0 and Rowlog1 columns were extracted and converted to decimal representation.

RowLog0

Hex 35 00 30 00 30 00 2E 00 30 00 30
ASCII 5 0 0 . 0 0

RowLog1

Hex 2E 00 35 00 30 00 20 00 20 00 20
ASCII . 5 0 SP SP SP

Mapping the data page determined that the offset for the price column is 0x4f (79), as identified,

the update statement began at offset 80. This was done so SQL Server did not have to overwrite

a value in which it would need to rewrite as part of the transaction. Therefore the offset was

augmented by SQL Server from 79 to 80 to compensate. Taking this into consideration, the

statement executed under transaction 0000:0000032e (0:814) was to update the price column

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 26

from “3500.00” to “3.50”:

Using the same steps outlined above, the remaining 2 records updated during this transaction

were identified.

Start of col.

Start of trn.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 27

RowLog0

Hex 35 00 30 00 30 00 2E 00 30 00 30
ASCII 5 0 0 . 0 0

RowLog1

Hex 2E 00 35 00 30 00 20 00 20 00 20
ASCII . 5 0 SP SP SP

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 28

RowLog0

Hex 35 00 30 00 30 00 2E 00 30 00 30
ASCII 5 0 0 . 0 0

RowLog1

Hex 2E 00 35 00 30 00 20 00 20 00 20
ASCII . 5 0 SP SP SP

It is noted that all 3 records updated during this transaction were associated with the “Volcano 62

inch Plasma TV VC2332” product.

The fourth transaction executed by SPID 51 was another update statement. The

transaction log details show that transaction ID: 0000:0000032f was an update statement

affecting 2 records located on 2 separate data pages.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 29

The same process used previously was followed to identify the affected records. The row offset

and page ID values obtained from the transaction log were used to identify the specific value

updated within the following records:

The data type within this offset of the row is the ShipStatusID which is a 4-byte integer value.

RowLog0

Hex 00 01 00 00
ASCII 00 01 00 00

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 30

RowLog1

Hex 00 02 00 00
ASCII 00 02 00 00

RowLog0

Hex 00 01 00 00
ASCII 00 01 00 00

RowLog1

Hex 00 02 00 00
ASCII 00 02 00 00

It is noted that after querying the ShipStatus table the ShipStatusID value of 1 indicates that an

order has been shipped and a value of 2 indicates that the order has yet to be shipped. It is the

investigator’s belief that the value was updated from 2 to 1 in an attempt to have the customer

repeat shipment of the referenced product to the designated address.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 31

The fifth transaction executed by SPID 51 was an insert statement. The transaction log

details show that a database transaction 0000:00000330 affected a single row.

The same procedure used to map the previous update statements to a data pages was followed to

identify the inserted record:

Querying the remainder of the transactions showed that no future modifications were made to

this slot within the data page 0000:00000330 therefore the data currently residing on the data

page remains unchanged from its state as inserted during this transaction. The values contained

within this record are as follows:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 32

OrderID = 417

FirstName = Nino

LastName = Black

Address = 72 Starfell Drive

City = SpringLake

State = AZ

ZIP = 14410

CCType = Visa

CCNumber = 5518530000000000

ShipStatusID = 2

OrderDate = March 1, 2007 12:00AM

Product = XBOX 360

Price = 4.00

The price associated with this item seems inaccurate, and will be flagged for review by the client.

It was also noted that the credit card number used in this insert statement was also associated

with one of the records updated during transaction 815.

 The sixth transaction executed by SPID 51was transaction 0000:00000331 an update

statement affecting 3 records.

The same procedure used earlier to map the previous update statements to a data pages was

followed here and resolved to the Order table. Using the table schema obtained earlier, the data

type within this row offset is the OrderDate column which contains an 8-byte datetime data type.

The first record updated during this transaction was located on data page 211, slot 20 and the

updated column began at offset 74.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 33

The method in which computers store multiple-byte values vary, some use little-endian ordering

(LEO) and others use big-endian ordering (BEO)7. With little-endian ordering, the most

significant byte of the number is placed in the first storage byte; big-endian does the reverse and

stores the least significant byte in the first storage byte. Microsoft operating systems use little-

endian ordering7, which is also true in the way SQL Server stores numeric values.

From the transaction log the hexadecimal values from the Rowlog0 and Rowlog1 columns were

extracted, switched into LEO and converted to decimal representation.

RowLog0

Hex (BEO) 0x0000000000BD9800
Hex (LEO) 0x000000000098BD00
Decimal 39101

OrderDate Column

Updated Value

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 34

RowLog1

Hex (BEO) 0x0000000000E49800
Hex (LEO) 0x000000000098E400
Decimal 39140

The datetime data type within SQL Server breaks an 8-byte date value into 2 fragments, the first

being the number of days before or after January 1st, 1900 and the second being the number of

clock computer ticks after midnight with a tick occurring every 3.33 milliseconds5. Applications

using the datetime data type to store date values only, will have a default time value of

00:00:00:000 which represents midnight5. The decimal representation of the RowLog1 column

is 39140 which when added in days to January 1st, 1900 gives us the date of March 01, 2007. The

order date of this record was updated from January 21, 2007 to March 01, 2007.

This procedure was used to identify the remaining two values which were updated within

transaction 0000:00000331.

OrderDate Column

Updated Value

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 35

RowLog0 (on disk value prior to transaction)

Hex (BEO) 0x0000000000BD9800
Hex (LEO) 0x000000000098BD00
Decimal 39101

RowLog1 (committed transaction value)

Hex (BEO) 0x0000000000E49800
Hex (LEO) 0x000000000098E400
Decimal 39140

OrderDate Column

Updated Value

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 36

RowLog0 (on disk value prior to transaction)

Hex (BEO) 0x0000000000CE9800
Hex (LEO) 0x000000000098CE00
Decimal 39118

RowLog1 (committed transaction value)

Hex (BEO) 0x0000000000E49800
Hex (LEO) 0x000000000098E400
Decimal 39140

The seventh transaction executed by SPID 51 was transaction 0000:00000332, a delete statement

affecting a single record.

This record will be further examined during the data recovery stage of this investigation.

Step 6: Data Recovery

The seventh transaction executed by SPID 51was transaction 0000:00000332, a delete

statement affecting a single record. When a record is deleted within SQL Server, it is marked as

a ghost5, which tells the database engine to hide it from future query results even though the

underlying data still resides within the data page. A garbage clean-up process runs periodically

within SQL Server to physically remove the ghost records within the data pages so the space can

be reused. Ghost records contained within a data page are flagged within the page header.

Examining the header of the page 0001:0000000158 (1:344) containing the deleted row showed

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 37

that the m_ghostRecCnt value was set at 0 indicating that the ghost records had already been

physically removed from the data page.

Using the same procedure used earlier in this document to map a data page to the owning

table identified that the data page associated in this transaction mapped to the OrderHistory table.

This table had an identical schema to that of the Order table. Within the transaction log, the

following value was obtained from the RowLog0 column of the delete statement:

“0x30006C009F0000005000610079006500740074006500200020002000200020002000

200020002000200020002000200046004C003100360036003000320001000000000000003A980

00033003500300030002E0030003000200020002000200020002000200020000E0000C0060082

00860098009C00AD00CD004275727443617665323237205374617267656C6C2044726976655

66973613635393033343030333433323233323030566F6C63616E6F20363220696E636820506

C61736D6120545620564332333332”

The data above is the actual data row deleted from the data page during the transaction.

To determine exactly what customer data had been deleted, it was necessary to reconstruct the

data row. SQL Server uses two different data row structures, one for rows which contain fixed

length columns only, and another for rows containing variable length columns and/or fixed

length columns. Based on the schema obtained earlier in this investigation we know that the

Order table contains both fixed and variable length data types. The data row structure for a

variable length row is as follows:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 38

1 2 3 Fixed length columns 4 5 6 7 Variable length columns

Source: Inside SQL Server 2005 The Storage Engine5

Legend
Item Storage Allocation Description
1 1 byte StatusBits A contains data row properties5
2 1 byte Unused in SQL Server 20055
3 2 bytes Row offset to in row location containing the

number of columns in the data row5
Fixed length
columns

Fixed column length for
all fixed columns

Location of in row fixed length data columns5

4 2 bytes Total number of columns in data row5
5 1 bit for each row column Null Bitmap5
6 2 bytes Number of variable length columns within

data row5
7 2 bytes for each variable

length column
Row offset marking the end of each variable
length column5

Variable length
columns

Used length of all
variable length columns

Location of in row variable length data
columns5

Using the above row structure, and the data obtained from the RowLog0 column of the

transaction log, the data row was reconstructed.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 39

0x30006C009F0000005000610079006500740074006500200020002000200

020002000200020002000200020002000200046004C0031003600360030003200

01000000000000003A98000033003500300030002E003000300020002000200020

0020002000200020000E0000C006008200860098009C00AD00CD

004275727443617665323237205374617267656C6C20447269766556697361

3635393033343030333433323233323030566F6C63616E6F20363220696E63682

0506C61736D6120545620564332333332

Switching the appropriate hex values into LEO, and converting the values to decimal/ASCII

representation produced the following.

OrderID: 159

FirstName: Burt

StatusBits A

Unused

Pos. to
find #
of cols.

OrderID col. City col.

City col. contd. State col. ZIP col.

ShipStatusID
col. OrderDate col. Price col.

Price col. contd. # of cols.

Null bitmap

of
variable
cols.

Positions where var cols. 1-6 end

FirstName
col.

LastName
col. Address col. CCType col.

Product col.

CCNumber col.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 40

LastName: Cave

Address: 227 Stargell Drive

City: Payette

State: FL

ZIP: 16602

CCType: Visa

CCNumber: 65903400343223200

ShipStatusID: 1

OrderDate: September 11th, 2006

Product: Volcano 62 inch Plasma TV VC2332

Price: 3500.00

Now that all of the executed transactions have been identified, the timeline was updated to reflect

the notable discoveries.

Time User SPID Action

March 1, 2007

7:26 AM UNKNOWN N/A SQL Server instance is restarted

March 2, 2007

7:01 AM –
7:39 AM

UNKNOWN 51 SQL Server Brute Force attack launched against
PRODSQL05 server from IP 192.168.1.20

7:54 AM SA 51 SA SQL Server user account logs into PRODSQL05
server from IP address 192.168.1.20 using
OSQL.exe

7:54 AM SA 51 EASYACCESS account is created
7:55 AM SA 51 EASYACCESS account is granted access to

OnlineSales database
7:56 AM SA 51 EASYACCESS account added to OnlineSales

db_owner role
8:09 AM EASYACCESS 51 SQL Server account logs into PRODSQL05 server

from IP address 192.168.1.20
8:17 AM EASYACCESS 51 Transaction 814 is executed which updates the price

of 3 Volcano Plasma TV orders from $3500.00 to
$3.50

8:20 AM EASYACCESS 51 Transaction 815 is executed which updates the
shippingstatusID column on Volcano Plasma TV

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 41

orders from 1 (product shipped) to 2 (product not
shipped)

8:31 AM EASYACCESS 51 Transaction 816 is executed which inserts an order
for an XBOX 360 billed to the credit card of another
database customer.

8:37 AM EASYACCESS 51 Transaction 817 is executed which sets the
orderdate on Plasma TV orders to February 28, 2007

8:38 AM EASYACCESS 51 Transaction 818 is executed which deletes a previous
order from the OrderHistory table for a Volcano
Plasma TV at a price of $3500.00

10:17 AM Administrator 52 Start of Forensic Investigation of database server
11:05 AM Administrator N/A PRODSQL05 server removed from network
11:16 AM Administrator 52 SQL Server instance shutdown

Step 7: String Search

As stated previously in this report, a single physical transaction log file is logically partitioned

and split into 4-16 Virtual Log Files (VLFs) by SQL Server. Only a subset of these VLFs will be

active at any one point. It is possible that the inactive VLFs at one point in time were active and

may contain past transaction data which is relevant within this investigation. Review of the

active transaction log file used throughout this investigation identified that the earliest log entry

was 7:26 AM March 1st, 2007 and the latest was 11:16 AM March 2nd, 2007. This date range is

inclusive of the scope of the investigation therefore further review of VLFs is not required.

The published Microsoft tools which interpret transaction logs support only active VLFs.

Further investigation into transactions which occurred outside of the scope of this investigation

will require sting searches to be performed on the inactive areas of the transaction log to identify

rows for reconstruction.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 42

Investigation Summary

In conclusion, after gathering and analyzing all evidence, it is in the investigator’s expert

opinion that on the Morning of March 1st, 2007, an unauthorized user connecting from IP

192.168.1.20 executed a successful brute force attack against the PRODSQL05 server. Once

access was gained to the database, a connection was made using the Microsoft OSQL client to

create a backdoor account named EASYACCESS. This account was used by the user to

fraudulently insert an erroneous product order for an XBOX 360 with the incorrect price of

$4.00. This order was billed to Visa card number 5518530000000000 which belongs to another

customer within the database. It is noted that the mailing addresses used within the fraudulent

order differs from the address of the compromised user and may belong to the unauthorized user.

In addition to inserting a fraudulent order, the unauthorized user performed the following

updates to existing Volcano 62 inch Plasma TV VC2332 orders within the Order table.

 Order dates were set to February 28th, 2007

 Prices were updated from $3500.00 to $3.50

 The shippingstatusID column was updated from 2 to 1

A single record was also deleted from the Order table for a past Volcano 62 inch Plasma TV

VC2332 by the user.

The unauthorized user is believed to have had a general understanding of Transact-SQL

(TSQL) syntax in order to have been capable of executing the database transactions via the

OSQL command line interface and moderate knowledge of the OnlineSales database schema.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 43

Appendix A
The following was text was added to WFT configuration file

################

SQL SERVER #

################

M NA NA NA NA SQL SERVER NA

V SQLCMD.RLL 341369b133a26556d963427384ca89ba NA NA NA

 Required by sqlcmd.exe

EVH SQLCMD.exe 28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "sp_helpdb" >

%s%s%s sp_helpdb DB LISTING SP_HELPDB SQL SERVER

EH SQLCMD.exe 28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select c.session_id,

c.connect_time, c.net_transport, c.last_read, c.last_write, c.client_net_address, c.local_tcp_port,

s.text from sys.dm_exec_connections c cross apply sys.dm_exec_sql_text

(c.most_recent_sql_handle) s" > %s%s%s dm_exec_connections

 DM_EXEC_CONNECTIONS DM_EXEC_CONNECTIONS SQL SERVER

EH SQLCMD.exe 28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select * from

sys.dm_exec_sessions" > %s%s%s dm_exec_sessions DM_EXEC_SESSIONS

 DM_EXEC_SESSIONS SQL SERVER

EH SQLCMD.exe 28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select name,

type_desc, create_date, modify_date from sys.sql_logins order by create_date, modify_date" >

%s%s%s sql_logins SQL_LOGINS SQL_LOGINS

 SQL SERVER

EH SQLCMD.exe 28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select * from

sys.dm_exec_requests " > %s%s%s dm_exec_requests DM_EXEC_REQUESTS

 DM_EXEC_REQUESTS SQL SERVER

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 44

Appendix B

Transaction Log Column listing:

1 CurrentLSN

2 Operation

3 Context

4 Transaction ID

5 Tag Bits

6 Log Record Fixed Length

7 Log Record Length

8 PreviousLSN

9 Flag Bits

 AllocUnitID

11 AllocUnitName

12 Page ID

13 Slot ID

14 Previous Page LSN

15 PartionID

16 RowFlags

17 Num Elements

18 Offset in Row

19 Checkpoint Begin

20 CHKPT Begin DB Version

21 MaxXDESID

22 Num Transactions

23 Checkpoint End

24 CHKPT End DB Version

25 Minimum LSN

26 Dirty Pages

27

Oldest Replicated Begin

LSN

28 Next Replicated End LSN

29 Last Distributed End LSN

30 Server UID

31 UID

32 SPID

33 BeginLogStatus

34 Begin Time

35 Transaction Name

36 Transaction SID

37 End Time

38 Transaction Begin

39 Replicated Records

40 Oldest Active LSN

41 Server Name

42 Database Name

43 Mark Name

44 Master XDESID

45 Master DBID

46 PrepLogBegin LSN

47 PrepareTime

48 Virtual Clock

49 Previous Savepoint

50 Savepoint Name

51 Rowbits First Bit

52 Rowbits Bit Count

53 Rowbits Bit Value

54 Number of Locks

55 Lock Information

56 LSN Before Writes

57 Pages Written

58 Data Pages Delta

59 Reserved Pages Delta

60 Used Pages Delta

61 Data Rows Delta

62 Command Type

63 Publication ID

64 Article ID

65 Partial Status

66 Command

67 Byte Offset

68 New Value

69 Old Value

70 New Split Page

71 Rows Deleted

72 Bytes Freed

73 CI Table ID

74 CI Index ID

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 45

75 NewAllocationUnitID

76 FIlegroupID

77 Meta Status

78 File Status

79 File ID

80 Physical Name

81 Logical Name

82 Format LSN

83 RowsetID

84 TextPtr

85 Column Offset

86 Flags

87 Text Size

88 Offset

89 Old Size

90 New Size

91 Description

92 Bulk allocated extent count

93 Bulk rowinsertID

94 Bulk allocationunitID

95

Bulk allocation first IAM

Page ID

96 Bulk allocated extent ids

97 RowLog Contents 0

98 RowLog Contents 1

99 RowLog Contents 2

100 RowLog Contents 3

101 RowLog Contents 4

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 46

References

1 Keith J. Jones, Richard Bejtlich, Curtis W. Rose. Real Digital Forensics, Addison-

Wesley, 2006

2 “MSDN Blog Pages” http://blogs.msdn.com/sqlserverstorageengine/default.aspx

3 Microsoft Developer Network “MSDN” http://msdn2.microsoft.com/en-us/default.aspx

4 SQL Server 2005 Books Online, http://msdn2.microsoft.com/en-

us/library/ms130214.aspx

5 Kalen Delaney. Inside SQL Server 2005 The Storage Engine, Microsoft Press, 2007

6 Kalen Delaney and Jim Gray. Inside SQL Server 2000. Microsoft Press, 2001

7 Brian Carrier. File System Forensic Analysis. Addison-Wesley, 2005

