
Understanding the heap by
breaking it

A case study of the heap as a persistent data structure
through non-traditional exploitation techniques

Justin N. Ferguson // BH2007

2

The heap, what is it?
Globally scoped data structure
Dynamically allocated memory
‘exists-until-free’ life expectancy
Compliment to the stack segment

3

Glibc implementation

Original implementation was by Doug Lea (dlmalloc)
Current implementation by Wolfram Gloger (ptmalloc2)
ptmalloc2 is a variant of dlmalloc
Ptmalloc2 supports multiple heaps/arenas
Ptmalloc2 supports multi-threaded applications
Talk uses Glibc 2.4
When research on the subject matter started Glibc 2.4
was current
Glibc 2.6 seems to be by and large the same to us

4

Glibc implementation

‘The heap’ is a misnomer – multiple heaps possible
Heap is allocated via either sbrk(2) or mmap(2)
Allocation requests are filled from either the ‘top’ chunk
or free lists
Allocated blocks of memory are navigated by size
Free blocks of memory are navigated via linked list
Adjacent free blocks are potentially coalesced into one
Implies: no two free blocks of memory can border each
other

5

Heap data structures
Each heap has:

heap_info structure
malloc_state structure
any number of malloc_chunk structures

heap_info structure contains/defines:
size of heap
pointer to arena for heap
pointer to previous heap_info structure

malloc_state structure contains/defines:
mutual exclusion variable
flags indicating status/et cetera of the arena
arrays of pointers to malloc_chunks (fastbin & normal)
pointer to next malloc_state structure
other less important (to us) variables

6

Heap data structures
malloc_chunk structure contains:

size of previous adjacent chunk
size of current (this) chunk
if free, pointer to the next malloc_chunk
if free, pointer to the previous malloc_chunk

most commonly known heap data structure
Interpretation of chunk changes varying on state
(important!)
malloc_chunk C structure:

struct malloc_chunk {
INTERNAL_SIZE_T prev_size;
INTERNAL_SIZE_T size;
struct malloc_chunk * fd;
struct malloc_chunk * bk;

}

7

Heap data structures
malloc_chunks have different interpretations dependent
upon chunk state
Despite physical structure not changing
Allocated block of memory is viewed in the following way

8

Heap data structures
Blocks of free memory have the same physical structure
Parts of memory are reused for metadata
Free chunk has the following representation

9

Binning of free blocks
Free chunks are placed in bins
Bin’s are just an array of pointers to linked lists
Bin’s could be called a free list
Two basic different types of bin

fastbins
‘normal’ bins

Fastbins are for frequently used chunks
Not directly consolidated
Not sorted – every bin contains chunks of the same size
Only make use of the forward pointer
Use same physical structure as ‘normal’ bins
‘Normal’ bins split into three categories

1st bin index is the ‘unsorted’ bin
then small ‘normal’ chunk bins
large ‘normal’ chunk bins

Larger requests serviced via mmap(2) and thus not
placed in bins

10

More about fastbins
Blocks are removed from the list in a LIFO manner
Allocations ranging from 0 to 80 fall into the fastbin
range
Default maximum fastbin size is 64 bytes
Chunks binned by size as follows:

11

‘normal’ bins
Same physical structure (array of pointers to
malloc_chunk)
Blocks of memory less than 512 bytes fall into this range
Small ‘normal’ chunks are not sorted
Chunks of the same size stored in the same bin
Fastbin chunk sizes and small ‘normal’ bin chunk sizes
overlap
Fastbin consolidation can create a small ‘normal’ bin
chunk (or any other type of chunk)
Chunks largers than 512 bytes and less than 128KB are
large ‘normal’ chunks
Bins sorted in the smallest descending order
Chunks allocated back out of the bin’s in the least
recently used fashion (FIFO)

12

top and last_remainder
Special chunks
Neither ever exist in any bin
Top chunk borders end of available memory
Top chunk is used for allocation (if possible) when free
lists can’t service request
Chunks bordering the top are folded into the top block
upon free()
Top can grow and shrink
Top always exists
last_remainder can be allocated out and then upon free()
placed in a bin
last_remainder is the result of an allocation request that
causes the chunk to be split

13

heap operations
Heap creation notes

created implicitly
New arena/heap can be created mutexes

Block allocation notes
fastbin allocations cannot cause consolidation
small ‘normal’ block allocation can (sometimes)
large ‘normal’ block allocation always calls malloc_consolidate()

Chunk resize notes
Original chunk can be free()’d

Free()’ing chunk notes
can trigger consolidation
Can cause heap to be resized

14

Double free()’s
Instance of dangling pointers / use-after-free

(nothing new or extra-ordinary and certainly not a new bug class)

Interesting due to insight into heap it provides
Result of a valid instruction being used at invalid times
In below example the free() labeled ‘a’ is valid
However free() labeled ‘b’ is not

void *ptr = malloc(siz);

if (NULL != ptr) {
free(ptr); /* a */
free(ptr); /* b */

}

15

Double free()’s
Surprisingly undocumented
Neither Vudo Malloc Tricks nor Once Upon a Free()
mentions them
Advanced Doug Lea’s malloc exploits mentions them,
kinda sorta not really
The Malloc Maleficarum doesn’t mention them
Shellcoders handbook has a paragraph (!!) in chapter 16
that tells you they’re not really exploitable
Only two decent references found by author thus far
The Art of Software Security Assessment (good book)
A post to a mailing list

The Art of Software Security Assessment says:
“There is also a threat if memory isn't reused between successive

calls to free() because the memory block could be entered into free-
block list twice”

16

Traditional double free()
exploitation

Only in-depth talk publicly about double free()
exploitation from Igor Dobrovitski in 2003
Mailing list post detailing exploit for CVS server
Details included most of this section
Thanks Igor!

(if you’re here find me and I’ll buy you a beer)

Remember that an allocated chunk is represented
differently than a free chunk

17

Traditional double free()
exploitation

Free blocks end up in a bin
Bins are linked lists
After first free list would look something like this:

18

Traditional double free()
exploitation

What happens when you free() the same chunk twice ? ;]

19

Traditional double free()
exploitation

20

Traditional double free()
exploitation

Traditional exploitation depended on the unlink() macro
Thanks Solar Designer!
(If you’re here find me and I’ll buy you a beer)

unlink() macro back then looked like this:

#define unlink(P, BK, FD) { \
BK = P->bk; \
FD = P->fd; \
FD->bk = BK; \
BK->fd = FD; \

}

21

Traditional double free()
exploitation

Steps to traditional exploitation:
1. Get the same block of memory passed to free() twice
2. Get one of the chunks allocated back to you
3. Overwrite the ‘fd’ and ‘bk’ pointers
4. Allocate the second instance of the block on the free-list
5. ??
6. Profit

Reliable, ‘just worked’
Of course, like all good things …

22

Oops! It’s not 1996!

unlink() macro has been hardened .. Most everywhere
Double free() protections have been implemented .. Most
everywhere
New unlink() macro:

#define unlink(P, BK, FD) { \
FD = P->fd; \
BK = P->bk; \
if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \

malloc_printerr (check_action, "corrupted double-linked list", P); \
else { \

FD->bk = BK; \
BK->fd = FD; \

} \
}

Result of hackers abusing the macro
Thanks hackers!

23

The example

Result of multiple error handling checks being
performed on functions that call each other that on error
will cause a multiple free condition
mod_auth_kerb versions 5.3, 5.2, …
Result of using an old asn.1 compiler from Heimdal
New ones don’t have the same problem, but have other
problems

(yes if you’ve used it you should audit your code)

Thanks Heimdal!

24

Vulnerability Zero

25

Vulnerability One

26

Threads & ptmalloc2

Earlier versions of Glibc had no thread safety for its
allocators
Demonstrated publicly by Michal Zalewski in Delivering
Signals for Fun & Profit (underappreciated)
Thread safety is a key difference between dlmalloc and
ptmalloc
Thread safety is provided by two mutual exclusions

list_lock: used during heap/arena creation
Per-arena mutex: locked prior to entry into internal routines

Cannot enter critical sections without a lock
Provides thread safety, mostly

27

Bad logic is bad logic,
mutex or not.

Don’t get me wrong- the mutexes are great
Don’t protect against assumptions in the code base
Some of those assumptions can be found in the double
free() protections
<blink>Glibc developers are not really at fault</blink>

If you allow someone to arbitrarily corrupt metadata the
game is over, they’re just trying to protect you from
yourself

28

Double free() protections
Normal chunks:

if (__builtin_expect (p == av->top, 0)) {
errstr = "double free or corruption (top)";
goto errout;

}

Checks to ensure the arena’s top chunk is not the
pointer being free()’d

Not typically a problem outside of lab conditions

Several other chunks will likely exist and will border top
by the time we multiple free()

29

Double free() protections
if (__builtin_expect (contiguous (av) && (char *) nextchunk >=

((char *) av->top + chunksize(av->top)), 0))
{

errstr = "double free or corruption (out)";
goto errout;

}

Can be bypassed by making the heap non-contiguous
almost always happens when new arena is created

Probably don’t want to create another arena
Takes some work to cause another arena to be created
Second check is to ensure that the next chunk is

outside of the arena
Pretty rare condition for multiple free() bugs
Could happen if the heap shrank
Problem just isn’t common enough

30

Double free() protections
if (__builtin_expect(!prev_inuse(nextchunk), 0)) {

errstr = "double free or corruption (!prev)";
goto errout;

}

Ouch!
Can’t be bypassed through heap layout manipulation
Can be bypassed when using threads
Thanks Pthreads!

31

Double free() protections
Fastbin chunks:

if (__builtin_expect (*fb == p, 0)) {
errstr = "double free or corruption (fasttop)";
goto errout;

}

Checks that the currently being free()’d chunk is not the
last chunk that was free()’d
Only ‘real’ check for fastbin chunks
Provides reliable method for causing a multiple free()
condition
Thanks Wolfram!

32

Using this knowledge in
nefarious ways

‘Normal’ chunks
– Our chunk cannot get coalesced with top
– Our chunk summed with its size cannot be outside of the bounds of

the heap OR the heap needs to be non-contiguous
– In the next chunk the previous in use bit must be set

Fastbin chunks
– Chunk being free()’d cannot be the chunk in the same bin that was

most recently free()’d
– i.e.:

free(a);
free(b);
free(a);

33

Vulnerability control flow

34

Consolidated calamity
Using vulnerability 1
Using fastbins
Cannot exploit this under these circumstances
– Problem is lack of control in the first four bytes
– Techniques still valid
Looking aside from that, a few techniques to own with
Not directly asserting control via linked list operations
Abusing fastbins by causing a consolidation
Following set of events takes place
– Free two different chunks of the same size (fastbin)
– Free two different chunks again
– Allocate first back, write to it
– Allocate block of memory larger than 512 bytes to

cause consolidation

35

Consolidated calamity
size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
nextchunk = chunk_at_offset(p, size);
nextsize = chunksize(nextchunk);

if (!prev_inuse(p)) {
/* backwards consolidate */

}

if (nextchunk != av->top) {
nextinuse = inuse_bit_at_offset(nextchunk, nextsize);

if (!nextinuse) {
/* forward consolidate */

} else
clear_inuse_bit_at_offset(nextchunk, 0);
/* link into unsorted bin */
set_foot(p, size);

}

else {
/* modify size call set_head() */
av->top = p;

}

36

Consolidated calamity
size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
nextchunk = chunk_at_offset(p, size);
nextsize = chunksize(nextchunk);

if (!prev_inuse(p)) {
/* backwards consolidate */

}

if (nextchunk != av->top) {
nextinuse = inuse_bit_at_offset(nextchunk, nextsize);

if (!nextinuse) {
/* forward consolidate */

} else
clear_inuse_bit_at_offset(nextchunk, 0);
/* link into unsorted bin */
set_foot(p, size);

}

else {
/* modify size call set_head() */
av->top = p;

}

37

Consolidated calamity

38

Consolidated calamity

39

Consolidated calamity
Can be used to turn on or off least significant bit at
arbitrary address
Addresses need not be aligned to any boundary
Next chunk is only used in consolidation, not bin-walk
loop
Thus chaining multiple writes together is possible
Somewhat difficult in practice however
First technique is more useful than the second
Second technique requires that size be dual purpose

40

Consolidated calamity

41

Consolidated calamity

42

Multi-threaded calamity
/* der_get_oid() */

0: data->components = malloc((len + 1) *
sizeof(*data>components));

[…]
if (p[-1] & 0x80) {

1: free_oid (data);
return ASN1_OVERRUN;

}

/* decode_MechType() */
fail:

2: free_MechType(data);
return e;

43

Multi-threaded calamity
At point 0 we have a malloc()
At point 1 we have a free()
At point 2 we have another free
Concept is to get one thread somewhere in between
point 1 and 2 before another thread is at point 0
If accomplished
– Possible for the other thread to receive recently free()’d chunk of

memory back
– At point 2, after the chunk has been allocated again then it is

double free()’d
– However all checks are bypassed due to chunk being allocated at

time of second free

44

Multi-threaded calamity
The problem:
– If both threads started at exactly the same time, how do you get

one to lag behind the other

That’s not even considering potential issues server side

Or delay on the network between the two connections

We’re not going to consider that at the moment, the task
is complex enough that we will presume a lab
environment

45

Multi-threaded calamity
First idea:
Get one thread inside first free
Get other to wait on mutex at malloc()
Using the mutex to help us win the race
Not going to work :/
malloc() calls pthread_mutex_trylock()
pthread_mutex_trylock() won’t block
This potentially creates a new arena

46

Multi-threaded calamity
First idea:
Get one thread inside first free
Get other to wait on mutex at malloc()
Using the mutex to help us win the race
Not going to work :/
malloc() calls pthread_mutex_trylock()
pthread_mutex_trylock() won’t block
This potentially creates a new arena

47

OSPF
Do we even really need to worry?
Will use the following function to determine approximate
clock ticks

/* IA-32 single processor/core */
void
get_time(struct timer_t *timer)
{

__asm__ __volatile__(
"rdtsc \n"
"movl %%edx, %0 \n"
"movl %%eax, %1 \n"
: "=m" (timer->high), "=m" (timer->low)
:
: "%edx", "%eax"

);
}

48

OSPF
Tested to see how long it took to get from point 0 to
point 1
Used minimal data
Ran tests 10,001 times
Highest 379363 ticks
Lowest 5668
Average 13245.1429857014
Rounded to 13,200
Need to find a way to save ~13,200 ticks

49

OSPF
In the code path there are multiple loops
– apr_base64_decode_len()
– apr_base64_decode ()
– der_get_oid()
By examining these functions we can find a shorter
code path that yields the same results by slightly
modifying our data

50

OSPF
In the code path there are multiple loops
– apr_base64_decode_len()
– apr_base64_decode ()
– der_get_oid()
By examining these functions we can find a shorter
code path that yields the same results by slightly
modifying our data

51

OSPF
apr_base64_decode_len()
Simple while loop iterating through pointer to user data
while it dereferences to a valid base-64 encoded
character
Ran tests 10,001 times
Low of between 260 and 305 ticks depending on
character used
High was 688558-245953
Average was between 602.832816718328 and
573.697930206979
Fairly stable average of ~600 ticks per byte saved
If we can cut up to eight character, this is approximately
4800 ticks saved

52

OSPF
apr_base64_decode()
Similar to apr_base64_decode_len(), series of simple
loops
After 10,001 tests
High tick count of 4055
Low of 1010
Average per byte count being 1144.69163083692
Rounded up to 1150, multiplied by eight (for each of the
8 bytes we can omit)
Multiplied by 4800 ticks for the ticks saved in
apr_base64_decode_len() yields 14000 ticks
Higher than necessary savings of 13,200 ticks

53

OSPF
der_get_oid()
Too different code paths in the loop depending on if the
byte being processed is greater than 0x80
If byte was less than 0x80
– 10001 tests
– High of 4017 ticks
– Low of 5 ticks
– Average 150.049195080492

If byte was greater than 0x80
– 10001 tests
– High of 1610 ticks
– Low of 132
– Average of 388.5800419958 (round to 390)

54

OSPF
Following averages for results:
apr_base64_decode_len(): 600 ticks
apr_base64_decode(): 1150
der_get_oid(): 150 or 390

Trying to save ~13200 ticks
Can cut 6 characters out of input from first thread
– Alternate between >= 0x80 and < 0x80
– Saves on average 12840 clock ticks

Can cut 7 characters
– All characters below 0x80
– Saves on average 13300 clock ticks

55

How realistic?
How realistic is tick counting?
Decent- nothing entirely accurate and depends a lot on
conditions
Gives a decent idea of how long actual operations take
to perform
Provides decent metric for finding a slightly shorter path
that yields same heap results
Not incredibly reliable, is possible (and has been
recreated in the lab)
Especially useful on SMP/multi-core machines

56

LinuxThreads and caps
LinuxThreads are especially something to look out for
Didn’t properly implement POSIX
Different threads in a given process could have different
user ids
Even while LinuxThreads is rarely in use …
Linux capabilities are more common (anymore)
Capabilities are also per-thread
One thread can invalid the heap reference of another
Can cause privilege escalation even if the code in the
privileged thread is flawless

57

Conclusions
More than one way to accomplish things
At least two more ways to exploit these conditions listed
– Time constraints kept them from being presented

Heap is persistent and is shared, this is something that
can be exploited
Threading provides an interesting method for arranging
code into advantageous sequences
Slides are hard to fit code onto :/

58

Questions?

	Understanding the heap by breaking it
	The heap, what is it?
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58

