
IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

Breaking C++ Applications
BlackHat Briefings 2007

Mark Dowd, Neel Mehta,
John McDonald
IBM ISS X-Force R&D

July 2007

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Introduction

The vast majority of today’s commercial applications are developed in
C/C++, or have some C/C++ components

– Firewalls
– Application Client/Servers (eg. Web Browsers/servers)
– Kernels / Kernel Drivers

Analyzing such programs for vulnerabilities is a topic that is talked
about often within the security and developer communities

– Speeches
– Books
– Commercial and University courses/certifications

Despite this widespread focus, nearly all of the discussion on
application vulnerabilities discusses C-centric issues

– Unsafe String functions
– Pointer Arithmetic and other memory management issues
– Integer problems

While this is relevant for C++ applications, there is very little material
that deals potential problems for C++ specific problems!

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

What We Will Cover….

Choosing Your Compiler
– The compiler you use to create a binary makes a pretty big difference to how secure your

application will be when dealing with certain exceptional circumstances

Class Behavior
– Classes that don’t behave as expected due to awkward design can lead to problems
– Constructor implementation
– Operator overloading
– State inconsistencies

Variable Length Arrays
– Delete vs delete [] and their implications

Exception Handling
– Exception Filtering carelessness
– Exception handling as an exploitation facilitator
– Special case: Stack exceptions
– Automation and auditing aids for exception handling

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Choosing your compiler

Compilers are generally not considered to have security
implications

– Same code compiled in different build environments should theoretically act and
behave roughly the same

– In reality this is far from the truth
– This includes not just how the code is compiled but the standard libraries available for

different compilers
Visual Studio contains additional security features

– Stack cookies placed in functions with stack buffers are used to prevent exploitation
of buffer overflows (introduced in Visual Studio 2002)

– Exception handler records also have undergone several iterations of validation
routines

– Fixes for several language-level problems – primarily potential integer overflows when
allocating arrays of objects with the new [] operator (fixed in Visual Studio 2005)

– Changed the way exception handling works in Visual Studio 2005 (more on that
later…)

Choice of compiler will vastly affect how exploitable vulnerabilities
are

– Visual Studio 2005 provides the most pro-actively secure builds
– Many commercial companies lag behind in most current compiler

environments

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Choosing your compiler

The standard libraries you use are also important
– Variations in APIs is a topic touched on from time to time for C APIs (snprintf on UNIX

vs _snprintf on Windows, etc)
– Usually only one version of each library for each system component
– Will change with increased use of “side-by-side” assemblies and “Isolated

applications”
– STL in C++ however is static
– Whichever STL implementation you used at build time will dictate which version the

application uses
– Compiles code into the target executable
– STL implementations vary a lot in code quality and robustness

STL Implementation fixes/changes
– Likewise, STL has fixes performed on it periodically
– Many different STL implementations are available, usually tied to a compiler
– Microsoft has the default compiler-available STL’s, as well as separately

downloadable “Platform SDK” packages, and more recently “Windows SDK”
packages

– They have fixed a lot of things pretty quietly ;)
– Latest one (Windows SDK v6) is tough (jerks)
– Many commercial applications are compiled with old and buggy STL

implementations!

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 1 – Platform SDK 2003 R2 (vector class)

void insert(iterator _P, size_type _M, const _Ty& _X)
{

if (_End - _Last < _M)
{

size_type _N = size() + (_M < size() ? size() : _M);
iterator _S = allocator.allocate(_N, (void *)0);
iterator _Q = _Ucopy(_First, _P, _S);
_Ufill(_Q, _M, _X);
_Ucopy(_P, _Last, _Q + _M);

… more code ...

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 1 – Platform SDK 2003 R2 (vector class)

void insert(iterator _P, size_type _M, const _Ty& _X)
{

if (_End - _Last < _M)
{

size_type _N = size() + (_M < size() ? size() : _M);
iterator _S = allocator.allocate(_N, (void *)0);
iterator _Q = _Ucopy(_First, _P, _S);
_Ufill(_Q, _M, _X);
_Ucopy(_P, _Last, _Q + _M);

… more code ...

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 1 – Windows SDK Version (vector class)
void insert(iterator _Where, size_type _Count, const _Ty& _Val)
{// insert _Count * _Val at _Where

Insert_n(_Where, _Count, _Val);
}

void _Insert_n(iterator _Where,
size_type _Count, const _Ty& _Val)

{ // insert _Count * _Val at _Where

_Ty _Tmp = _Val; // in case _Val is in sequence
size_type _Capacity = capacity();

if (_Count == 0)
;

else if (max_size() - size() < _Count)
Xlen();// result too long

… more code ...

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 1 – Windows SDK Version (vector class)
void insert(iterator _Where, size_type _Count, const _Ty& _Val)
{// insert _Count * _Val at _Where

Insert_n(_Where, _Count, _Val);
}

void _Insert_n(iterator _Where,
size_type _Count, const _Ty& _Val)

{ // insert _Count * _Val at _Where

_Ty _Tmp = _Val; // in case _Val is in sequence
size_type _Capacity = capacity();

if (_Count == 0)
;

else if (max_size() - size() < _Count)
Xlen();// result too long

… more code ...

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 2 – Platform SDK 2003 R2 (allocator routines)

// TEMPLATE FUNCTION _Allocate
template<class _Ty> inline

_Ty _FARQ *_Allocate(_PDFT _N, _Ty _FARQ *)
{

if (_N < 0)
_N = 0;

return ((_Ty _FARQ *)operator new((_SIZT)_N * sizeof (_Ty)));
}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 2 – Platform SDK 2003 R2 (allocator routines)

// TEMPLATE FUNCTION _Allocate
template<class _Ty> inline

_Ty _FARQ *_Allocate(_PDFT _N, _Ty _FARQ *)
{

if (_N < 0)
_N = 0;

return ((_Ty _FARQ *)operator new((_SIZT)_N * sizeof (_Ty)));
}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 2 – Windows SDK Version (allocator routines)

// TEMPLATE FUNCTION _Allocate
template<class _Ty> inline

_Ty _FARQ *_Allocate(_SIZT _Count, _Ty _FARQ *)
{ // check for integer overflow

if (_Count <= 0)
_Count = 0;

else if (((_SIZT)(-1) / _Count) < sizeof (_Ty))
_THROW_NCEE(std::bad_alloc, NULL);

// allocate storage for _Count elements of type _Ty
return ((_Ty _FARQ *)::operator new(_Count * sizeof (_Ty)));

}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 2 – Windows SDK Version (allocator routines)

// TEMPLATE FUNCTION _Allocate
template<class _Ty> inline

_Ty _FARQ *_Allocate(_SIZT _Count, _Ty _FARQ *)
{ // check for integer overflow

if (_Count <= 0)
_Count = 0;

else if (((_SIZT)(-1) / _Count) < sizeof (_Ty))
_THROW_NCEE(std::bad_alloc, NULL);

// allocate storage for _Count elements of type _Ty
return ((_Ty _FARQ *)::operator new(_Count * sizeof (_Ty)));

}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Which STL / Compiler was this binary built with?

Knowing compiler version is important, so that protection
mechanisms could be identified

– Presence of stack cookies (> VS6)
– __CxxFrameHandler() compiler signature (we will look at this later – but can

distinguish compilers VS6 / 2002-3 / 2005)
– Runtime library usage

MSVCR80.DLL - VS2005
MSVCR71.DLL – VS2003 SP1
MSVCR70.DLL – VS2003 SP0
MSVCRT.DLL – VS6

– Note that MSVCRT.DLL is the system CRT, and every compiler can link against it
instead of their versioned CRT (with the exception of VS2005, according to MS docs)

– Windows binaries often use the MSVCRT.DLL
– Analyzing compiled code itself would give away large clues too, but it’s beyond the

scope of this talk

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Which STL / Compiler was this binary built with?

STL version is also critical, due to aforementioned bugs
– Again, versions somewhat given away by runtime libraries

(MSVCP*.DLL/MSVCR*.DLL)
– Code for many of the classes is compiled into the binary directly (example: vectors)

using the source from the Platform/Windows SDK source code
– Need to analyze the compiled code
– Look at some of the example bugs we presented, or implementation changes where a

small block of code has been replaced by a function call
– One big giveaway: use of overflow checking preceding calls to new (using the ‘seto’

instruction)
– Alternatively: Bindiff against your own compiled version of a function! (Thanks,

Halvar)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior

C++ classes are composed of attributes and methods
– Generally, good programming practice guides recommend hiding of

attributes, and exposing range of functionality via methods
– Allows for implementation changes within the class itself to be easy to do

without modifying an external interface

Methods must maintain the consistency of the
instantiated object at all times

– Modifying method attributes needs to be done such that the object is left in a
usable state

– If an error occurs in a member function, how is it signaled?
– Are members left unchanged that need to be changed? Are members

changed that need to be reverted in the case of an error?
– What are the implications of further method invocations on that object after

an error has occurred? Especially if it has not been handled properly?

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior - Constructors

Constructors are required to initialize an
object into a consistent and usable state

– Constructors intended to initialize the object
– Do they forget to initialize anything?
– They can fail like anything else, the most likely case being due to a memory

allocation error

Constructors usually don’t return a value
– If an initialization function fails, there is no error code it can return
– They can throw an exception, but often developers neglect to do this
– Constructor inconsistencies can lead to accessing an object that hasn’t

been correctly setup
– Most likely outcomes: Uninitialized variable usage, or (less interestingly)

NULL-dereferences

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior
Board::Board(unsigned int x_dim, unsigned int y_dim) {

int len = x_dim * y_dim;
m_x = 0;
m_y = 0;
m_squares = NULL;

if (x_dim > 0 && (x_dim <= (unsigned int)-1/y_dim)
&& len <= (size_t)-1/sizeof(m_squares[0])) {
m_x = x_dim;
m_y = y_dim;
m_squares = (int*)calloc(len, sizeof(m_squares[0]));

}
}

// returns square at a given coordinate
int Board::getSquare(unsigned int x, unsigned int y) {

if (x >= m_x || y >= m_y) return Board::ERROR_SQUARE;
return m_squares[y * m_x + x];

}

// sets square at a given x-ycoordinate
bool Board::setSquare(unsigned int x, unsigned int y, int square) {

if (x >= m_x || y >= m_y) return false;
m_squares[y * m_x + x] = square;
return true;

}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior
Board::Board(unsigned int x_dim, unsigned int y_dim) {

int len = x_dim * y_dim;
m_x = 0;
m_y = 0;
m_squares = NULL;

if (x_dim > 0 && (x_dim <= (unsigned int)-1/y_dim)
&& len <= (size_t)-1/sizeof(m_squares[0])) {
m_x = x_dim;
m_y = y_dim;
m_squares = (int*)calloc(len, sizeof(m_squares[0]));

}
}

// returns square at a given coordinate
int Board::getSquare(unsigned int x, unsigned int y) {

if (x >= m_x || y >= m_y) return Board::ERROR_SQUARE;
return m_squares[y * m_x + x];

}

// sets square at a given x-ycoordinate
bool Board::setSquare(unsigned int x, unsigned int y, int square) {

if (x >= m_x || y >= m_y) return false;
m_squares[y * m_x + x] = square;
return true;

}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior - Destructors

Destructor methods need to also be examined carefully
– Destructors usually make the assumption that the object is in some sort of consistent state
– Sometimes if member functions fail partway through, this is not the case
– Leads to double free’s, memsetting out of bounds, etc

For stack objects, destructors are called implicitly on
function exit

– Any time an object has been created on the stack and a function later returns, the destructor is
called implicitly

– In VS, this is typically done by the __CxxFrameHandler function, which uses a lookup table of
sorts to see what objects it needs to destruct

– In g++, this is done by a small section of code compiled into the function right before the function
epilogue. For exception handling, there is usually an additional block of code adjacent to the
function that is used by the unwinding code. This block of code will end with a call to
_Unwind_Resume()

– Objects are also auto-destructed when an exception occurs
– Similarly, global objects are destructed implicitly when a program exit occurs
– We will look at EH later on..

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior – Overloading Operators

Operator overloading in C++ can also have
consequences

– Operators are expected to have specific semantics, but overloading
operators can change this expected behavior

new Operator overloading
– Prime example of semantic changing that can lead to unintuitive behavior
– Returning NULL instead of throwing an exception can easily lead to NULL

dereferences or worse
– Note that implementations of “new” vary – some throw an exception, some

return NULL, so expected / portable behavior is difficult anyway
– Overloading new[] is similarly afflicted
– Overloading new[] will not disable the integer overflow check in VS2005,

however custom allocation routines (especially involving adding a
header/rounding up) are very often the cause integer overflows

– Developers should be aware that in the case of integer overflow, the size
parameter passed to new[] will be 0xFFFFFFFF

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior – Auditing Classes

Three step process
–Enumerate internal state

Make note of each piece of internal state
• member variables and member objects

References to external variables and functions
Inherited state from parent classes

–Determine responsibility
For members that have associated memory
Who is responsible for allocation of the memory
Who is responsible for deallocation
Where does this happen

–Determine invariants
Relationships between member variables
Relationships that should hold true throughout lifetime of class

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior – Auditing Classes

Example Class Audit Log
class buffer
{

void *memory_ptr;
size_t buffer_size;
size_t write_ptr;
...

Name Type Responsibilities Invariants
memory_ptr void * Initialized in constructor

Free in destructor
Reallocated in resize()

Must point to valid
memory
Must not be NULL

buffer_size size_t Set in constructor
Modified in resize()

Must track length of
memory at
memory_ptr

write_ptr size_t Set in constructor
Modified in write()
Modified in resize()

Must be between 0
and buffer_size-1

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior – Auditing Construction/Destruction

Auditing constructors
– Match initialization of variables with destruction of variables from destructors
– Check for memory allocations or access to system resources (such as files etc). Can

they fail?
– What happens in the case of an error? Be on the lookout for “nothing”
– Not necessarily a bug, you need to see how subsequent function calls will handle it
– If they access member functions under the assumption they’re correctly initialized,

then you have a problem

Auditing destructors
– Make a note of any resources they free up
– Memory accesses particularly interesting
– In particularly look for destruction of member variables that are destroyed elsewhere

in an objects lifetime – if the other place can possibly generate an exception or error,
can de-allocation happen twice?

– Remember: Exceptions can happen anywhere, and for stack-based objects this
means automatic destruction

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Class Behavior – Auditing Class Behavior

Auditing operators
– Note any operator overloads where behavior deviates from standard operator

behavior
– Eg, new returning NULL, operator+ or operator+= not throwing an exception
– Think about possible corner cases – what happens if operator= is used to assign an

object to itself?
– These add up to vulnerabilities if objects use operators incorrectly or errors go

unnoticed

Auditing member functions
– When auditing a member function, leaving object inconsistent is a primary issue
– Check whether objects might be left in a potentially dangerous state
– Achieved by marking all the points where the function exits, and what the object state

can be at those points
– Remember: this includes exceptions being thrown!
– Exceptions from sub-functions are more likely to cause problems that ones thrown

from the member function itself
– Allocation-based exceptions can probably be induced in many cases and barely no-

one handles it
– Triggering a stack unwind at an unlikely juncture for a memory allocation could be

interesting

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Variable Length Arrays

C++ allows for variable length
array allocations using the
new [] operator

– VLAs are an alternative to container classes (vectors, etc)
– Look and feel of C arrays (subscripting etc)
– Unlike container classes, no access protection is guaranteed
– Dynamic memory is managed using new [] / delete [] as opposed to new

and delete functions reserved for scalar constructions / destructions
– New and new [] function differently, as do delete and delete []
– Mixing the vector / scalar new and delete operators produce “undefined”

results

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Variable Length Arrays
bool bob(char *string)
{

MyClass *ba = new MyClass[10];
bool rc;

rc = act_on_objects(ba);

if(rc == false)
{

delete ba;
return false;

}

... more code ...
}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Variable Length Arrays
bool bob(char *string)
{

MyClass *ba = new MyClass[10];
bool rc;

rc = act_on_objects(ba);

if(rc == false)
{

delete ba;
return false;

}

... more code ...
}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Variable Length Arrays – Mixing

Vectors vs Scalars
– Scalars are singular dynamically allocated objects
– The new operator simply allocates an appropriately sized block, and calls the

constructor for the relevant object type
– Arrays are allocated as a contiguous block of memory – objects are aligned one after

the other in sequence with a DWORD preceding the objects that indicate how many
members there are

– This is required so when delete [] is called, it knows how many objects to destruct
– Pointer returned by new [] is a pointer to the first object in the array – the DWORD

count preceding the objects is “invisible” to the caller
– Not the case for primitive types

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Array Allocation in C++

Pointer returned by new[]

...
MyClass *ba = new MyClass[10];
...

Program Code

C++ default runtime
operator new[]
function (if not
overridden)

Heap Allocated Memory Block

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Variable Length Arrays – Mixing
Using delete on an array

– Only the first object will be deleted, resulting in memory leaks
– More subtle problem: a pointer will be passed to free() that was never returned by

malloc(), since the pointer returned by new [] is (allocated_array + sizeof(DWORD))
– Cases where RtlFreeHeap() is called are not interesting, because the pointer won’t be

8-byte aligned, which causes RtlFreeHeap() to do nothing
– In Windows, it depends on which CRT library is in use –generally, MSVCRT

vulnerable, MSVCR*.DLL not vulnerable in most installs
– Due to the use of the __sbh_alloc() allocation function in MSVCRT (pre-Vista)
– Depends on __active_heap parameter, which defaults to __SYSTEM_HEAP for XP

(you want __V5_HEAP or __V6_HEAP)

Using delete [] on a scalar object
– Much less likely
– Consequences would be immediately noticeable in most cases, unless the code path

was very rare
– More dangerous – 4 bytes preceding allocated memory chunk (ie. Part of the chunk

header) is treated as an element count DWORD
– Destructors called on memory locations past the end of the allocated object
– G++: If vtables are used in destruction, arbitrary memory locations called
– Not the case for MS binaries – they only use the vtable from the 0-offset element
– Both of these issues dealt with in-depth in a blog article we posted in January

(http://taossa.com/index.php/2007/01/03/attacking-delete-and-delete-in-c/#more-52)

http://taossa.com/index.php/2007/01/03/attacking-delete-and-delete-in-c/#more-52

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Variable Length Arrays - Auditing

Auditing for improper delete
– Make a note of all variables that are allocated

using the new [] operator
– Trace use of the variable until deallocation
– Make sure delete [] is used in all control flow

paths
– Any use of delete is suspect
– This lends itself towards simple automated

analysis using regular expressions

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exception Handling

Exception Handling is one of the major features of C++
(and indeed most OO-languages)

– Used by standard libraries to indicate system errors
– Custom exceptions thrown by many applications

Generally EH is considered to be a device that improves
robustness (and therefore security) by providing
developers the ability to signal error conditions “out-of-
band”

– Allows for extended information about error conditions to be encapsulated
– Usually forces a programmer to handle a particular type of error

Exploration of exception handling and its implications
on security requires us to be familiar with how
exception handling is implemented at the
compiler/system level

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Windows Exception Handling

Windows uses its native Structured Exception Handling
(SEH) functionality to implement C++ EH

– Native Exception handling functionality provides a basic framework for
exceptions to be caught, examined and handled on a per-thread basis

– Used to implement the __try { } / __except { } / __finally { } keywords
– Excellent resources for the internals of SEH are Matt Pietrek’s paper “A

Crash Course on the Depths of Win32 Structured Exception Handling”
(http://www.microsoft.com/msj/0197/exception/exception.aspx) and Igorsk’s
article “Reversing Microsoft Visual C++ Part I: Exception Handling”
(http://www.openrce.org/articles/full_view/21).

SEH records are a simple 2 member structure
– Previous handler pointer – points to the previous exception record, or

0xFFFFFFFF if there is no previous record
– Pointer to dispatch routine which returns ExceptionContinueExecution (0) or

ExceptionContinueSearch (1). (Can also return ExceptionNestedException
or ExceptionCollidedUnwind.)

http://www.microsoft.com/msj/0197/exception/exception.aspx
http://www.openrce.org/articles/full_view/21

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Windows Exception Handling (A little background…)

Implementation of __try { } / __except { } / __finally { } adds an
additional layer of complexity

– A single SEH record is placed in the relevant functions stack frame
– It calls a standardized function which determines whether the exception should be

caught and execution should restart at the faulting address or be transferred to a
handler

– These functions have gone through several revisions over the years, but they
essentially achieve the same goal: deciding whether the exception should be handled,
and if so, where control should be transferred to

– Standardized function depends on compiler – often you will see _except_handler3, or
_except_handler4 if compiled with Visual Studion 2005 or above

– Both achieve the same thing, although _except_handler4 has additional security
features

– MS Compiler intrinsically adds this exception management code in

Scope Tables
– Both SEH3 and SEH4 functions take a pointer to a structure as an argument, which

contains a scope table
– Scope table records consist of a filter function pointer, a handler function pointer, and

an enclosing try level
– Scope table search starts at an index given by the try level variable in the functions

stack frame

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Windows Exception Handling (A little background…)

Handler and Filter Functions
– Filter function pointer may be NULL
– If present, it is executed. Return value > 0 means handle the exception

(execute corresponding handler), 0 means don’t handle the exception
(continue search), and < 0 means restart execution at faulting instruction

– If filter function isn’t present, the handler function will be executed
unconditionally when this exception frame is unwound

– If filter function returns 0, the enclosing try level is used as the next index in
the scope table to check. A value of -1 (or -2 for SEH4) means the search is
over and nothing was found

Exception Handling is a 2-pass process
– First phase iterates through exception handler records trying to find one that

will handle the exception
– Second phase is the “unwinding” phase, where exception records that

declined to handle the exception have the opportunity to perform any
cleanup that they need to do

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Handling an Exception – The Scope Table

ENCLOSING LEVEL (0xFFFFFFFE)
FILTER (0x401088)

HANDLER (0x401300)

ENCLOSING LEVEL (0x00000000)
FILTER (0x00000000)
HANDLER (0x401700)

Scope Table

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Handling an Exception – Pass 1

ENCLOSING LEVEL (0xFFFFFFFE)
FILTER (0x401088)

HANDLER (0x401300)

ENCLOSING LEVEL (0x00000000)
FILTER (0x00000000)

HANDLER (0x401700)

Scope Table

No Filter Function (ie. It’s a
_finally {} block)

Keep Looking!

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Handling an Exception – Pass 1

ENCLOSING LEVEL (0xFFFFFFFE)
FILTER (0x401088)

HANDLER (0x401300)

ENCLOSING LEVEL (0x00000000)
FILTER (0x00000000)
HANDLER (0x401700)

Scope Table

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Handling an Exception – Pass 1

ENCLOSING LEVEL (0x00000000)
FILTER (0x00000000)
HANDLER (0x401700)

Scope Table
ENCLOSING LEVEL (0xFFFFFFFE)

FILTER (0x401088)
HANDLER (0x401300)

 filter_code:
 XOR EAX, EAX
 INC EAX
 RETN

Returning 1 unconditionally –
this filter catches every

exception

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Handling an Exception – Pass 2

ENCLOSING LEVEL (0xFFFFFFFE)
FILTER (0x401088)

HANDLER (0x401300)

ENCLOSING LEVEL (0x00000000)
FILTER (0x00000000)

HANDLER (0x401700)

Scope Table

 handler_code:
 .. HANDLE EXCEPTION ..

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Handling an Exception – Pass 2

ENCLOSING LEVEL (0x00000000)
FILTER (0x00000000)
HANDLER (0x401700)

Scope Table
ENCLOSING LEVEL (0xFFFFFFFE)

FILTER (0x401088)
HANDLER (0x401300) handler_code:

 .. HANDLE EXCEPTION ..

Exception is finally handled

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Windows Exception Handling

When an exception of any kind is generated, quite a lot
of code is potentially executed

– An exception on Windows isn’t necessarily fatal, and even if it is, a lot of things
potentially happen before the program dies

– Since abrupt termination isn’t immediate, we need to pay careful attention to what
actually does happen

– Caught Exceptions are also interesting – what are the implications of a usually fatal
exception being caught?

– Exception blocks often go largely ignored in code audits, and are often missed during
QA

– When auditing binaries, usually this is because the code paths are not immediately
obvious

Exceptions that aren’t handled correctly are also
potentially problematic

– Locks often need to be released
– Memory might need to be released
– Global variables might need to be corrected

Ability for attackers to generate exceptions is usually
somewhat limited

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Windows System Exceptions (from WinBase.h)
#define WAIT_IO_COMPLETION STATUS_USER_APC
#define STILL_ACTIVE STATUS_PENDING
#define EXCEPTION_ACCESS_VIOLATION STATUS_ACCESS_VIOLATION
#define EXCEPTION_DATATYPE_MISALIGNMENT STATUS_DATATYPE_MISALIGNMENT
#define EXCEPTION_BREAKPOINT STATUS_BREAKPOINT
#define EXCEPTION_SINGLE_STEP STATUS_SINGLE_STEP
#define EXCEPTION_ARRAY_BOUNDS_EXCEEDED STATUS_ARRAY_BOUNDS_EXCEEDED
#define EXCEPTION_FLT_DENORMAL_OPERAND STATUS_FLOAT_DENORMAL_OPERAND
#define EXCEPTION_FLT_DIVIDE_BY_ZERO STATUS_FLOAT_DIVIDE_BY_ZERO
#define EXCEPTION_FLT_INEXACT_RESULT STATUS_FLOAT_INEXACT_RESULT
#define EXCEPTION_FLT_INVALID_OPERATION STATUS_FLOAT_INVALID_OPERATION
#define EXCEPTION_FLT_OVERFLOW STATUS_FLOAT_OVERFLOW
#define EXCEPTION_FLT_STACK_CHECK STATUS_FLOAT_STACK_CHECK
#define EXCEPTION_FLT_UNDERFLOW STATUS_FLOAT_UNDERFLOW
#define EXCEPTION_INT_DIVIDE_BY_ZERO STATUS_INTEGER_DIVIDE_BY_ZERO
#define EXCEPTION_INT_OVERFLOW STATUS_INTEGER_OVERFLOW
#define EXCEPTION_PRIV_INSTRUCTION STATUS_PRIVILEGED_INSTRUCTION
#define EXCEPTION_IN_PAGE_ERROR STATUS_IN_PAGE_ERROR
#define EXCEPTION_ILLEGAL_INSTRUCTION STATUS_ILLEGAL_INSTRUCTION
#define EXCEPTION_NONCONTINUABLE_EXCEPTION STATUS_NONCONTINUABLE_EXCEPTION
#define EXCEPTION_STACK_OVERFLOW STATUS_STACK_OVERFLOW
#define EXCEPTION_INVALID_DISPOSITION STATUS_INVALID_DISPOSITION
#define EXCEPTION_GUARD_PAGE STATUS_GUARD_PAGE_VIOLATION
#define EXCEPTION_INVALID_HANDLE STATUS_INVALID_HANDLE
#define EXCEPTION_POSSIBLE_DEADLOCK STATUS_POSSIBLE_DEADLOCK
#define CONTROL_C_EXIT STATUS_CONTROL_C_EXIT

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Windows System Exceptions (from WinBase.h)
#define WAIT_IO_COMPLETION STATUS_USER_APC
#define STILL_ACTIVE STATUS_PENDING
#define EXCEPTION_ACCESS_VIOLATION STATUS_ACCESS_VIOLATION
#define EXCEPTION_DATATYPE_MISALIGNMENT STATUS_DATATYPE_MISALIGNMENT
#define EXCEPTION_BREAKPOINT STATUS_BREAKPOINT
#define EXCEPTION_SINGLE_STEP STATUS_SINGLE_STEP
#define EXCEPTION_ARRAY_BOUNDS_EXCEEDED STATUS_ARRAY_BOUNDS_EXCEEDED
#define EXCEPTION_FLT_DENORMAL_OPERAND STATUS_FLOAT_DENORMAL_OPERAND
#define EXCEPTION_FLT_DIVIDE_BY_ZERO STATUS_FLOAT_DIVIDE_BY_ZERO
#define EXCEPTION_FLT_INEXACT_RESULT STATUS_FLOAT_INEXACT_RESULT
#define EXCEPTION_FLT_INVALID_OPERATION STATUS_FLOAT_INVALID_OPERATION
#define EXCEPTION_FLT_OVERFLOW STATUS_FLOAT_OVERFLOW
#define EXCEPTION_FLT_STACK_CHECK STATUS_FLOAT_STACK_CHECK
#define EXCEPTION_FLT_UNDERFLOW STATUS_FLOAT_UNDERFLOW
#define EXCEPTION_INT_DIVIDE_BY_ZERO STATUS_INTEGER_DIVIDE_BY_ZERO
#define EXCEPTION_INT_OVERFLOW STATUS_INTEGER_OVERFLOW
#define EXCEPTION_PRIV_INSTRUCTION STATUS_PRIVILEGED_INSTRUCTION
#define EXCEPTION_IN_PAGE_ERROR STATUS_IN_PAGE_ERROR
#define EXCEPTION_ILLEGAL_INSTRUCTION STATUS_ILLEGAL_INSTRUCTION
#define EXCEPTION_NONCONTINUABLE_EXCEPTION STATUS_NONCONTINUABLE_EXCEPTION
#define EXCEPTION_STACK_OVERFLOW STATUS_STACK_OVERFLOW
#define EXCEPTION_INVALID_DISPOSITION STATUS_INVALID_DISPOSITION
#define EXCEPTION_GUARD_PAGE STATUS_GUARD_PAGE_VIOLATION
#define EXCEPTION_INVALID_HANDLE STATUS_INVALID_HANDLE
#define EXCEPTION_POSSIBLE_DEADLOCK STATUS_POSSIBLE_DEADLOCK
#define CONTROL_C_EXIT STATUS_CONTROL_C_EXIT

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Stack Layout

When a thread starts, a chunk of memory is reserved
out of the process address space, and a small amount
of that memory (typically 1 page) is committed

– Stack is allocated during thread initialization
– Standard thread stacks are divided into 3 sections – the “committed” part of the stack

(actively in use memory that is backed by memory pages or swap), a guard page at
the end of the committed section (the “soft” guard page), and the reserved (but
uncommitted) remainder of the stack

– Sizes of reserve/commits are found in the executables PE header, but these can be
overridden to specify different values in calls to CreateThread().

– The values for Stack reserve/commit in the PE header of a DLL are ignored in
preference for those in the base executable

Thread stack will never exceed the reserve size
specified

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Guard Pages

Guard Pages are protected using _ZwProtectVirtualMemory with
flProtect parameters PAGE_READWRITE | PAGE_GUARD

– When the committed region of the stack is allocated, it is also protected with the
PAGE_GUARD protection property

– When the first page is touched, the PAGE_GUARD property is REMOVED from the
page and STATUS_GUARD_PAGE_VIOLATION exception is thrown (0x80000001)

– Usually the kernel will automatically handle this by committing more stack memory
and setting up a new guard page higher in memory

– If the stack cannot grow any further, a STATUS_STACK_OVERFLOW exception is
thrown (0xC00000FD)

“Hard” Guard Pages vs “Soft” Guard Pages
– In addition to the guard page (sometimes known as the “soft” guard page), there is an

additional page after the soft guard page known as the “hard” guard page
– The “hard” guard page will be a page that is reserved but never committed
– It has permissions PAGE_NOACCESS as well
– Prevents exception handlers (and possibly other code in misbehaving threads) from

eating up stack space and running into adjacent allocated memory regions
– Hard guard page is not present in cases where stack commit size == stack reserve

size (unlikely, but possible)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Stack Dynamic Resizing

Initial Stack Layout – Committed
memory is usually only one page

Committed memory is guarded
using ZwProtectVirtualMemory()

Reserve memory is uncommitted

Work is performed by
RtlpCreateStack() from ntdll.dll or
BaseCreateStack() from
kernel32.dll, depending on the
circumstances

Stack is ready for use

Guard
Page(s)

Reserve
Stack

Memory

Committed
Stack

Memory

Stack Grows
Up

Lower Memory
Address (Example:

0x12340000)

Higher Memory
Address (Example:

0x12360000)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Stack Dynamic Resizing

Guard page is touched,
STATUS_GUARD_PAGE_VIOLATI
ON exception thrownReserve

Stack
Memory

Committed
Stack

Memory

Stack Grows
Up

Lower Memory
Address (Example:

0x12340000)

Higher Memory
Address (Example:

0x12360000)

PAGE_GUARD property
removed, Guard Page(s) now
used as regular stack memory

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Stack Dynamic Resizing

MMAccessFault() in ntoskrnl.exe
receives page fault

MiAccessCheck() determines that a
guard page was hit

Stack overflow is checked for and
handled by calling
MiCheckForUserStackOverflow()

If there is more than 1 page left in the
stack reserve, it will allocated one new
page and make it a guard page

Otherwise, it will return
STATUS_STACK_OVERFLOW

Last page remains untouched (“hard”
guard page)

Guard
Page(s)

Reserve
Stack

Memory

Committed
Stack

Memory

Stack Grows
Up

Lower Memory
Address (Example:

0x12340000)

Higher Memory
Address (Example:

0x12360000)

New Guard Page
Inserted

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions

Stack overflow exceptions can happen at any time
– Conceptually, a stack overflow exception could be generated for any push instruction,

call instruction, or mov instruction (if moving a value into a local variable)
– Due to how SEH_prolog() works, local variables in a function with EH installed cannot

generate an overflow exception on access, however called functions can
– In reality, they don’t often happen because the default reserve size for a stack is ~ 1

MB
– In the case where a variable length alloca() is done or recursion is performed

however, a stack exception might be coerced
– Usually in this case, the faulting thread will just terminate

Catch-all Exception handlers to the rescue!
– If exception handling is in place, there is quite a bit of work to be done before a thread

is terminated (as we have seen)
– In particularly, poorly protected code that does catch-all exception handling will

continue execution
– The ability to trigger an unexpected exception might have bought us something
– After the exception is triggered, our stack space is limited but it’s not particularly

restrictive – we have what was previously the soft guard page to use freely now (so
we have 4k)

– Plenty for execution to continue in many cases

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – API Examples

The lstrlen() function installs a catch-all exception
handler

– The lstrlenA() and lstrlenW() functions are intended to take a string and return a
length, but also fail quietly without crashing when NULL/invalid pointers are received

– They achieve this by installing catch-all SEH record and then trying a regular strlen
– lstrlenA() doesn’t use any stack space after installing a SEH record but lstrlenW()

does
– If a stack overflow occurs when calling wcslen(), lstrlenW() will catch it with a catch-all

exception handler
– Default disposition is to return 0
– Note that this is no longer the case in Vista, which will explicitly check for stack

overflows

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

The lstrlenW() SEH _except_handler3() structure

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

The lstrlenW() Filter Function – catch everything

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

The lstrlenW() Handler Function – return 0

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – lstrlenW()

Setup _except_filter3
structure

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – lstrlenW()

Possible Stack
Exception

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – lstrlenW()

Possible Stack
Exception

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – API Examples

Generating a convenient exception
here can lead to problems

– Returning 0 for a valid string can help to evade maximum length checks
– Similarly, if the result is used in an allocation calculation, it can allocate too few bytes,

most likely resulting in a buffer overflow
– Also might lead to incorrectly passed size parameters to functions such as

MultiByteToWideChar()
– This is often the case, since older ATL implementations have W2A() and A2W()

macros to convert between CHAR and WCHAR by allocating a buffer on the stack

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – API Examples
DWORD VulnerableFunction1(WCHAR *lpszSource)
{

WCHAR lpszDestination[MAX_PATH];

if(lstrlen(lpszSource) >= MAX_PATH)
return 0;

lstrcpy(lpszDestination, lpszSource);

... more code ...
}

DWORD VulnerableFunction2(WCHAR *lpszSource)
{

WCHAR *lpszDestination;
DWORD dwLength;

dwLength = lstrlen(lpszSource) + 1;

lpszDestination = (WCHAR *)LocalAlloc(LPTR, dwLength * sizeof(WCHAR));

if(lpszDestination == NULL)
return 0;

lstrcpy(lpszDestination, lpszSource);

... more code …
}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – API Examples
DWORD VulnerableFunction1(WCHAR *lpszSource)
{

WCHAR lpszDestination[MAX_PATH];

if(lstrlen(lpszSource) >= MAX_PATH)
return 0;

lstrcpy(lpszDestination, lpszSource);

... more code ...
}

DWORD VulnerableFunction2(WCHAR *lpszSource)
{

WCHAR *lpszDestination;
DWORD dwLength;

dwLength = lstrlen(lpszSource) + 1;

lpszDestination = (WCHAR *)LocalAlloc(LPTR, dwLength * sizeof(WCHAR));

if(lpszDestination == NULL)
return 0;

lstrcpy(lpszDestination, lpszSource);

... more code …
}

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exploiting Stack Overflow Exceptions – Other API Calls

Other Standard API functions can be similarly afflicted
– lstrcpyW() / lstrcatW() use stack space, can result in not doing anything to

destination buffers, resulting in uninitialized variable usage
– In some case, the RtlAllocateHeap() and RtlReallocateHeap() functions can

catch exceptions, allowing for arbitrarily small allocations to fail
– I/O Routines like ReadFile() can be made to fail at an arbitrary point in some

cases
– In some cases, CreateFile() can fail (as well as other functions that use

RtlDosPathNameToNtPathName_Ustr(), such as FindFirstFileExW(),
CreatePipeName(), etc)

Other exceptions may also possibly be generated
– Only really likely when there’s a bug in the program (divide by zero error,

memory corruption, NULL-pointer dereference)
– Usually, these don’t buy you as much, since they can’t occur as randomly as

stack exhaustion
– Still, maybe exploitable instances exist (NULL pointer dereferences in

particularly)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling

C++ EH is built on top of SEH
– C++ Exceptions have a special exception code reserved (0x0E6D7363) which is used

whenever any sort of C++ exception is thrown
– try { } / catch { } / finally { } are implemented using raw SEH with some specialized

functions for figuring out what needs to be done when an exception is thrown
– _CxxThrowException() is used to generate a C++ exception. It builds a parameter list

and uses the underlying RaiseException() function to utilize the SEH exception raising
mechanism

– _CxxFrameHandler() is generally used for auto-destruction of stack objects and
deciding if any code blocks handle the thrown exception.

– It utilizes a scope table of sorts to map exceptions to code blocks and so forth

Since SEH is used to implement C++ EH, there is some
overlap between how EH and SEH behave

– C++ exceptions can be caught by native SEH handling / filtering routines, and vice
versa

– This is basically designed not to happen, but the 2 different types of exceptions can
have side effects on each other

– Auto-destruction of stack objects due to system exceptions for example
– Highly dependant on compiler

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 1 – Windows SDK basic_string Deallocator
void __CLR_OR_THIS_CALL _Tidy(bool _Built = false, size_type _Newsize = 0)
{ // initialize buffer, deallocating any storage

if (!_Built)
;

else if (_BUF_SIZE <= _Myres)
{ // copy any leftovers to small buffer and deallocate

_Elem *_Ptr = _Bx._Ptr;
if (0 < _Newsize)

_Traits_helper::copy_s<_Traits>(_Bx._Buf, _BUF_SIZE, _Ptr, _Newsize);
_Mybase::_Alval.deallocate(_Ptr, _Myres + 1);

}

_Myres = _BUF_SIZE - 1;
_Eos(_Newsize);

}

union _Bxty
{ // storage for small buffer or pointer to larger one

_Elem _Buf[_BUF_SIZE];
_Elem *_Ptr;

} _Bx;

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Example 1 – Windows SDK basic_string Deallocator
void __CLR_OR_THIS_CALL _Tidy(bool _Built = false, size_type _Newsize = 0)
{ // initialize buffer, deallocating any storage

if (!_Built)
;

else if (_BUF_SIZE <= _Myres)
{ // copy any leftovers to small buffer and deallocate

_Elem *_Ptr = _Bx._Ptr;
if (0 < _Newsize)

_Traits_helper::copy_s<_Traits>(_Bx._Buf, _BUF_SIZE, _Ptr, _Newsize);
_Mybase::_Alval.deallocate(_Ptr, _Myres + 1);

}

_Myres = _BUF_SIZE - 1;
_Eos(_Newsize);

}

union _Bxty
{ // storage for small buffer or pointer to larger one

_Elem _Buf[_BUF_SIZE];
_Elem *_Ptr;

} _Bx;

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling

C++ Exceptions and System exceptions
– Triggered system exceptions can have extra implications in C++-based code
– Remember that for stack objects, exceptions result in auto-destruction during stack

unwinding
– What if a system exception is generated during the course of a member function?
– Even if the member function guarantees keeping the object consistent when expected

errors occur, unexpected exceptions can result in the object becoming inconsistent
– Consider the stack exceptions we looked at earlier – they can happen at any point in

time pretty much
Compiler dictates interaction between system and C++ exceptions

– Microsoft Compilers before VS2005 will cause the C++ catch () handler to catch
system exceptions as well

– Also system exceptions will result in stack objects being auto-destructed if the
exception isn’t caught

– This is due to how __CxxFrameHandler() packaged with MSVCR80.DLL works (ditto
for MSVCRT.DLL on Vista)

– If the compiler EH Function Info signature is VS2005 (0x19930522) and the low bit of
the flags is set (offset 0x20), then it does nothing

– So, if the compiler is VS2005, system exceptions are ignored by C++ catch() blocks
unless that flags field is set – ie. program is compiled with /EHa (‘a’ stands for
‘asynchronous exceptions, as opposed to /EHs for synchronous exception handling)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling

Which Compiler/flags were used for a
given program?

EH Function Info
Structure

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling

Compiler Signature is at the top of
the EH Function Info Structure

C om piler S ignature
(VS 2005)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling

Flag at offset 0x20 indicates if
Synchronous EH is enabled

/EHs (Synchronous
Exceptions)

enabled

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling

VS Runtime Library _CxxFrameHandler()
implementations and MSVCRT.DLL

– All compilers except VS2005 can generate binaries optionally that link to
MVVCRT.DLL instead of the appropriate runtime library (example: MSVCR70.DLL)

– MSVCRT.DLL has a _CxxFrameHandler() implementation that specifically checks for
VS6 compiler signature

– Compilers have to fake it
– Functionality for _CxxFrameHandler() for each runtime except VS2005 is the same,

so it’s ok to use this alternate runtime
– Usually only system binaries use MSVCRT, and they use it almost exclusively

Interesting Case: WMP 11 on XP SP2
– WMP appears to be compiled with VS2005 with synchronous EH enabled, but is

linked against MSVCRT.DLL
– How does this work?
– WMP implements a wrapper to _CxxFrameHandler() which copies the EH Function

information structure to the stack and switches the compiler signature to VS6’s
– Implications? Using the old MSVCRT _CxxFrameHandler() function means that the

synchronous EH functionality is ignored, so this will do asynchronous EH!

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

WMP Exception Handler

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling

C++ Exceptions are generally easier to
generate

– Exceptions used instead of error return codes
– Erroneous input, memory allocation failures, etc
– They are expected to happen from time to time and are generally handled better,

although not always
– The most interesting are probably memory allocation errors, since memory allocations

happen so frequently, and it’s easy to forget about

Throwing exceptions != returning an error
– Generally, exceptions are just out of band error codes
– They are harder to ignore, developers need to specifically decide to handle

it and ignore it
– Not handling it generally results in program (controlled) crash
– Not always harmless – global and stack based objects will be destructed

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling
class Module
{
private:

Credentials *m_credentials;

public:
Module()

:m_credentials(NULL);

~Module()
{

if(m_credentials)
delete(m_credentials);

m_credentials = NULL;
}

bool Authenticate(unsigned int authType, unsigned char *authenticationBlob)
{

if(m_credentials)
delete m_credentials;

m_credentials = new Credentials(authType, authenticationBlob);

... more code ...
}

};

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

C++ Exception Handling
class Module
{
private:

Credentials *m_credentials;

public:
Module()

:m_credentials(NULL);

~Module()
{

if(m_credentials)
delete(m_credentials);

m_credentials = NULL;
}

bool Authenticate(unsigned int authType, unsigned char *authenticationBlob)
{

if(m_credentials)
delete m_credentials;

m_credentials = new Credentials(authType, authenticationBlob);

... more code ...
}

};

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Auditing For Stack Overflow Problems

Find Codepaths with all necessary ingredients present
– Unrestricted stack usage – alloca() is preferable because it allows far more precision
– Otherwise, recursive function calls might be of some use (depending on the

“exception gap” you are trying to hit)
– From that point on, you must find a function with useful exception handling

functionality – API ones we talked about, or custom exception handling
– Functionality you’re looking for might involve causing an allocation failure, a

miscalculation (like with lstrlen), or more likely, an uninitialized variable usage
scenario

But wait, it’s not quite that easy…
– You only get one shot at a stack overflow exception
– The function with the interesting EH must be called at the peak of stack usage
– Previously called functions with bigger stack footprints affect whether or not there is

actually an exploitable problem
– You need to ensure that the function you call has a bigger stack frame or is called at a

point deeper into the stack than previous function calls
– This can be difficult and time consuming to work out

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Auditing For C++ Exception Problems
Identify Compilation Environment

– Compilation environment affects whether system exceptions will be caught by C++
catch() blocks

– Identify compilation environment using methods discussed earlier in the speech
(mainly checking EH function info structure and which version of _CxxFrameHandler()
is linked)

When performing traditional audits on member functions, note
which exceptions are caught

– Making a special note of catch-all exception handlers
– Check what happens when exceptions are caught – the most likely problems to occur

will be uninitialized variable usage or possibly double de-allocation style problems
– Another implication can be a function not performing the duty it’s supposed to – for a

string assignment where exceptions are caught, is the result that the string is never
assigned?

Record all the functions that can throw exceptions
– Functions that can generate exceptions may occur deeply within a call chain
– Knowing which ones can throw exceptions will be useful for finding subtle EH-related

bugs
– Remember allocation exceptions!
– You should familiarize yourself with standard STL functions that can throw them as

well when they are used

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Auditing For C++ Exception Problems

Example Exception Audit Log

Function throws catches passes Notes
Thing::Thing() invalid_dimensions bad_alloc from

new[]
Seems ok

Thing::resize() invalid_dimensions
resize_failed

bad_alloc Possible inconsistent state if
invalid_dimensions is thrown –
check callers

Thing::render() render_failed *catch-all* -
(rethrows
render_failed)

If we get a system exception in the
call to render(), might be
improperly handled by the
catch(…)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Auditing For Exception Problems - Automation

Automation of some of the key elements of these vulnerabilities is possible
– Discovering vulnerabilities of this nature particularly in binaries can be difficult
– Non-linear code paths, exception handling code is often ignored
– Manually checking scope tables to see what regions of code are protected by what

filter/handler can be a little tiresome and easy to forget about
– For stack exceptions, finding dynamic allocations and recursion is really time

consuming
– Checking stack footprints around where the allocation happens too is hard and easy

to get wrong
– Lots of this stuff is relatively easy to automate

Summary of desirable features
– Easy identification of code blocks guarded with exception handlers/filters
– Identification of any dynamic stack allocations
– Identification of catch-all exception handlers
– Stack footprint enumeration
– Might want functionality for when looking at one binary, or across a whole directory of

binaries

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Auditing For Exception Problems - Automation

Identifying exception handlers
– Easy to do – functions with SEH will typically begin with _SEH_prolog or similar
– Single argument is a pointer to a structure which contains the scope table (and

possibly cookie offsets in the case of SEH4)
– Code in function can be parsed for modifications to the tryLevel stack variable, and

used to determine which exception filters guard which parts of the code
– Nesting can be identified using the scope table

Dynamic stack allocations
– Some compilers subtract directly from ESP, but VS uses a function to do it safely -

__chkstk/_alloca_probe/_alloca_probe_8/_alloca_probe_16
– Find this function and cross-reference all instances to it
– The amount of space it will allocate is passed in EAX
– Check if EAX contains a variable value, if so it is interesting
– Doesn’t really require in-depth dataflow analysis, it always gets populated shortly

before the call
– Usually with an immediate value if its not a variable allocation (and also occasionally

with an immediate value that’s been pushed to the stack and retrieved with a pop
instruction)

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Auditing For Exception Problems - Automation

Catch-all Exception Handlers
– These might require some level of dataflow analysis, depending on how in

depth you want to go
– Usually the filter expression is a small isolated piece of code
– Typical catch-all exception handlers zero out eax (with xor eax, eax) and

then increment it (inc eax)
Stack footprints

– These can sometimes be more difficult to enumerate
– Functions other than those in the relevant function need to be evaluated in

addition to code portions leading up to the interesting function call
– Different code paths leading to the interesting function call might use

different amount of stack, and as such might be vulnerable depending on
which code path is taken through the function

– Dataflow analysis is not needed per se, but understanding stack changes in
all scenarios is necessary

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exception Handling and Exploitation

Exception handlers being present allows for control-
data modification in memory corruption conditions

– EH records on the stack enable exploitation in many case
– Very well-known technique – overwriting exception handler structures with pointers to

arbitrary addresses
– Microsoft addressed this by adding “SafeSEH” functionality
– Litchfield discussed this in a previous blackhat speech in 2003

(https://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf)
– Methods included: returning to memory not located within any module, returning to

code in modules without a safe SE handler table, abusing the registered exception
handlers

– Microsoft has cleaned a lot of these vectors up, but some ideas are still valid
– Abusing registered exception handlers is possible, if a module exports any dangerous

functionality

https://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exception Handling and Exploitation

Exploiting _except_handler3
– Many modules register _except_handler3(), as it was the SEH function for code built

with compilers earlier than VS2005
– Litchfield mentioned abusing this function, but additional functionality has since been

put in place to validate the stack frame
– __ValidateEH3RN() responsible for validation
– Ryan Smith (member of X-Force) devised some ways of gaining execution bypassing

the protections

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems X-Force Preemptive Protection

Exception Handling and Exploitation

Exception handling might also facilitate in the
exploitation of vulnerabilities

– When the exception handler itself is not insecure, but the operations it performs if an
exception is triggered might aid an attacker

– Doing things like catching memory access violations and recovering can be
particularly beneficial for an attacker exploiting a memory corruption style vulnerability

– This was the case in the recent ANI vulnerability as detailed by Alex Sotirov
(http://www.determina.com/security.research/vulnerabilities/ani-header.html)

– Scenarios like this allow for multiple attempts at exploiting a bug successfully
– Improves reliability, undermines some protections such as ASLR. cookies
– When exploiting a bug, you need to determine what exception handlers are present,

and carefully consider the code being executed given that the process is potentially
compromised (ie, has a smashed stack/heap/etc)

http://www.determina.com/security.research/vulnerabilities/ani-header.html

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

Thank you!

markdowd@au1.ibm.com
neelm@us.ibm.com
jrmcdona@us.ibm.com
IBM ISS X-Force R&D

mailto:markdowd@au1.ibm.com
mailto:neelm@us.ibm.com
mailto:jrmcdona@us.ibm.com

	Slide Number 1
	Introduction
	What We Will Cover….
	Choosing your compiler
	Choosing your compiler
	Example 1 – Platform SDK 2003 R2 (vector class)
	Example 1 – Platform SDK 2003 R2 (vector class)
	Example 1 – Windows SDK Version (vector class)
	Example 1 – Windows SDK Version (vector class)
	Example 2 – Platform SDK 2003 R2 (allocator routines)
	Example 2 – Platform SDK 2003 R2 (allocator routines)
	Example 2 – Windows SDK Version (allocator routines)
	Example 2 – Windows SDK Version (allocator routines)
	Which STL / Compiler was this binary built with?
	Which STL / Compiler was this binary built with?
	Class Behavior
	Class Behavior - Constructors
	Class Behavior
	Class Behavior
	Class Behavior - Destructors
	Class Behavior – Overloading Operators
	Class Behavior – Auditing Classes
	Class Behavior – Auditing Classes
	Class Behavior – Auditing Construction/Destruction
	Class Behavior – Auditing Class Behavior
	Variable Length Arrays
	Variable Length Arrays
	Variable Length Arrays
	Variable Length Arrays – Mixing
	Array Allocation in C++
	Variable Length Arrays – Mixing
	Variable Length Arrays - Auditing
	Exception Handling
	Windows Exception Handling
	Windows Exception Handling (A little background…)
	Windows Exception Handling (A little background…)
	Handling an Exception – The Scope Table
	Handling an Exception – Pass 1
	Handling an Exception – Pass 1
	Handling an Exception – Pass 1
	Handling an Exception – Pass 2
	Handling an Exception – Pass 2
	Windows Exception Handling
	Windows System Exceptions (from WinBase.h)
	Windows System Exceptions (from WinBase.h)
	Stack Layout
	Guard Pages
	Stack Dynamic Resizing
	Stack Dynamic Resizing
	Stack Dynamic Resizing
	Exploiting Stack Overflow Exceptions
	Exploiting Stack Overflow Exceptions – API Examples
	The lstrlenW() SEH _except_handler3() structure
	The lstrlenW() Filter Function – catch everything
	The lstrlenW() Handler Function – return 0
	Exploiting Stack Overflow Exceptions – lstrlenW()
	Exploiting Stack Overflow Exceptions – lstrlenW()
	Exploiting Stack Overflow Exceptions – lstrlenW()
	Exploiting Stack Overflow Exceptions – API Examples
	Exploiting Stack Overflow Exceptions – API Examples
	Exploiting Stack Overflow Exceptions – API Examples
	Exploiting Stack Overflow Exceptions – Other API Calls
	C++ Exception Handling
	Example 1 – Windows SDK basic_string Deallocator
	Example 1 – Windows SDK basic_string Deallocator
	C++ Exception Handling
	C++ Exception Handling
	C++ Exception Handling
	C++ Exception Handling
	C++ Exception Handling
	WMP Exception Handler
	C++ Exception Handling
	C++ Exception Handling
	C++ Exception Handling
	Auditing For Stack Overflow Problems
	Auditing For C++ Exception Problems
	Auditing For C++ Exception Problems
	Auditing For Exception Problems - Automation
	Auditing For Exception Problems - Automation
	Auditing For Exception Problems - Automation
	Exception Handling and Exploitation
	Exception Handling and Exploitation
	Exception Handling and Exploitation
	Slide Number 84

