Introduction

With the advent of advanced data collection techniques in the form of honeypots, distributed honeynets, honey clients and malware collectors, data collected from these mechanisms becomes an abundant resource. One must remember though that the value of data is often only as good as the analysis technique used.

In this presentation, we will describe a number of alternative analysis techniques that leverages techniques adopted from statistics, AI, data mining, graphics design pattern recognition and economics. We will also show how security researchers can utilize tools from other disciplines to extract valuable findings to support security research work.

This presentation hopes to be an eye opener for security practitioners that there are many more techniques, tools and options beyond the security research field that they can use in their work. Hopefully, this will be the groundwork for a cross-discipline collaborative project that will help identify more techniques for security research and analysis.

Some techniques that we will talk about is the use of various clustering algorithms to classify attacks. Predicting attacks by using learning algorithms, detecting attacks through artificial intelligence, determining attack trends using pattern recognition and advanced visualization for attack analysis.

Among the tools that we will demonstrate are readily available open source tools like WEKA, Tanagra, and R Project that have not been traditionally used in security research but has great potential in security research.

What is Security Analytics Project

Security Analytics = Security + Data Analysis
The Security Analytics Project is an initiative that aims to find, discover and utilize alternative techniques to analyze security data. As security data collection tools continue to improve and evolve, the quantity of data that we collect increases exponentially. This, though good, brings us to the value of the data which is often only as valuable as what the analysis can shape it into. Thus, collecting and utilizing techniques to analyze data may probably be as important as collecting the data itself.

Though security in itself is a unique field with unique needs, analysis techniques often span the boundaries of different disciplines. So practitioners that limit themselves to the boundaries imposed by one field may unnecessarily miss out all the possibilities that may exist in the multitude of disciplines that exists outside of it. Look for instance, in Economics, such a dynamic field won’t be possible without it’s ties with mathematics, psychology and computer science. We believe that this is the same with security, by making more ties to different disciplines, we expand the possibilities exponentially.

Another important aspect of this project is the idea of sharing. One thing that we have often observed is the lack of coordination between researchers from different fields and security practitioners. Practitioners often have access to a wealth of data while researchers specially from the academe often have lots of techniques available to them but lack the data in which to apply those techniques. It is our hope that through this project, we can provide a forum where researchers and security practitioners can share data and techniques towards a collaborative security analysis project.

Objectives:

1. Identify fields and disciplines that may be useful in security
2. Identify tools and techniques from each of these disciplines that can be used in analyzing security data
3. Develop a forum where people from different fields can share data and techniques

Sources of Data for Security Analysis

Honeypots and Honeynets

A Honeypot is a security resource whose value is in being probed, attacked or compromised. A more advanced form of honeypot.

1. High-interaction - A high-interaction honeypot can be compromised completely, allowing an attacker to gain full access to the system and use it to launch further network attacks.
2. Low-interaction - simulate only services that cannot be exploited to get complete access to the honeypot. Low-interaction honeypots are more limited, but they are useful to gather information at a higher level

References:

Malware collectors

Gathers exploit attempts from attackers and extracting transferred malware binaries from the transaction. These honeypots can be low or high interaction, however most are low interaction since the goal is to collect malware samples only.

References:

Honeyclients and Honeymonkeys

While most honeypots emulate servers, waiting for an attacker to exploit the service being offered, some honeypots actively pursue attacks against software clients. In particular, web based exploits against specific web browsers can enable malicious websites to install malware onto a victim's machine. These honeypots crawl websites, and through various methods, determine which websites actually attack the web browser. Malware samples are collected from the honeypot before it is cleaned from infection, it is then allowed to continue crawling.

References:

Others

Other sources of data for analysis:

1. Spam
2. Phishing databases
3. Disk images
4. IRC chats / Forums
5. Logs

Looking Beyond Security: Alternative techniques from different fields

Data and Text Mining

Data mining is the process of automatically searching large volumes of data for patterns. Text mining is the process of deriving high quality information from text.
Possible applications:
- Topical Analysis of IRC hacker chatter through text mining

Clustering

The classification of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often proximity according to some defined distance measure. Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning, data mining, pattern recognition, image analysis and bioinformatics.

Possible applications:
- Classifying Attacks Using K-Means

Machine Learning

As a broad subfield of artificial intelligence, machine learning is concerned with the design and development of algorithms and techniques that allow computers to "learn". At a general level, there are two types of learning: inductive, and deductive. Inductive machine learning methods extract rules and patterns out of massive data sets.

Possible applications:
- Predicting attacks using Support Vector Machines

Pattern Recognition

Pattern recognition aims to classify data (patterns) based on either a priori knowledge or on statistical information extracted from the patterns. The patterns to be classified are usually groups of measurements or observations, defining points in an appropriate multidimensional space.

Statistics

Statistics is a mathematical science pertaining to the collection, analysis, interpretation or explanation, and presentation of data. It is applicable to a wide variety of academic disciplines, from the physical and social sciences to the humanities. Statistics are also used for making informed decisions – and misused for other reasons – in all areas of business and government.

Visualization

Visualization is any technique for creating images, diagrams, or animations to communicate a message. Visualization through visual imagery has been an effective way to communicate both abstract and concrete ideas since the dawn of man.

Possible applications:
• Post-attack analysis, reporting, and sharing.

Psychology

is an academic/ applied discipline involving the scientific study of mental processes and behavior. Psychologists study such phenomena as perception, cognition, emotion, personality, behavior, and interpersonal relationships. Psychology also refers to the application of such knowledge to various spheres of human activity, including problems of individuals' daily lives and the treatment of mental health problems.

Possible applications:
• Study of hacker motivations through IRC hacker chatter

Economics

is a social science that studies the production, distribution, and consumption of goods and services. The word 'economics' is from the Greek for οἶκος (oikos: house) and νόμος (nomos: custom or law), hence "rules of the house(hold)."

Possible applications:
• Game Theory and Hacker Behaviour

Data Analysis Tools

Weka

URL: http://www.cs.waikato.ac.nz/ml/weka/

Applications:
1. Data mining
2. Text mining
3. Clustering
4. Machine Learning

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.

Tanagra

URL: http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html

Applications:
1. Data mining
2. Text mining
3. Clustering
4. Machine Learning

Tanagra is a free data mining software for academic and research purposes. It proposes several data mining methods from exploratory data analysis, statistical learning, machine learning and databases area.

R-Project

URL: http://www.r-project.org/

Applications:

1. Statistics
2. Data mining
3. Text mining
4. Clustering
5. Machine Learning
6. Pattern Recognition

R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R.

Flowtag

URL: http://r82h147.res.gatech.edu/pages/research/projects.html
Application:

1. Visualization

a collaborative attack-analysis, reporting, and sharing tool for security researchers.

Honeysnap

URL: http://www.ukhoneynet.org/tools/honeysnap/

Application:

1. Preprocessing
2. Data cleansing

Honeysnap is designed to be a command-line tool for parsing single or multiple pcap data files and producing a 'first-cut' analysis report that identifies significant events within the processed data. This presents security analysts with a pre-prepared menu of high value network activity, aimed at focusing manual forensic analysis and saving significant incident investigation time.

Excel and Access

Application:

1. Preprocessing
2. Data cleansing
3. Statistics

Our favorite spreadsheet and desktop database from Microsoft.

Orange

URL: http://www.ailab.si/orange

Application:

1. Data mining
2. Text mining
3. Clustering
4. Machine learning

Orange is a component-based framework, which means you can use existing components and build your own ones. You can even prototype your own components in Python, and use it in place of some standard C-based Orange component. For instance, you may craft your own function for attribute quality estimation, and use it within Orange’s classification tree induction algorithm.
Techniques

Summary of Techniques:

1. Preprocessing
2. Data Cleansing
3. Detection
4. Classification
5. Patterns and Trends
6. Prediction
7. Motivation and Behaviors

Discipline to Technique

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Discipline</th>
<th>Tool Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing and Data Cleansing</td>
<td>Clustering</td>
<td>Honeysnap</td>
</tr>
<tr>
<td></td>
<td>Data and Text Mining</td>
<td>Excel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Access</td>
</tr>
<tr>
<td>Detection</td>
<td>Visualization</td>
<td>Flowtag</td>
</tr>
<tr>
<td></td>
<td>Data and Text Mining</td>
<td>R-Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orange</td>
</tr>
<tr>
<td>Classification</td>
<td>Clustering</td>
<td>Weka</td>
</tr>
<tr>
<td></td>
<td>Learning Algorithms</td>
<td>Tanagra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PyCluster</td>
</tr>
<tr>
<td>Patterns and Trends</td>
<td>Statistics</td>
<td>R-Project</td>
</tr>
<tr>
<td></td>
<td>Visualization</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>Data and Text Mining</td>
<td></td>
</tr>
<tr>
<td>Prediction</td>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning Algorithms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-Project</td>
</tr>
<tr>
<td>Motivation and Behaviors</td>
<td>Psychology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data and Text Mining</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weka</td>
</tr>
</tbody>
</table>
Studying Geographic Internet Attack Patterns using Honeynet Data
Using Principal Component Analysis in Analyzing Attack Patterns

Preliminary Notes:

- Based on 1 month data collected from a honeypot
- Based on 5 common ports (21, 25, 42, 80, 139)
- Technique used was Principal Component Analysis and Histograms
- Tool used for analysis was “R” (R-Project)
- Future work: date variables, more ports, other statistical techniques

Results and Observations

Geographic Distribution of Port Attacks using 5 common Ports
Observations:

1. Port 21, 25, 139 have a high degree of relationship with each other
2. Port 42 and 80 have a high degree of relationship with each other
3. Attacks coming from the Philippines consist mostly of attacks on port 21, 25 and 139
4. Attack from China, US, Italy, Russian Federation and Republic of Korea have similar characteristics being port 80 and 42

Distribution of Attacked Port 42 and 80 by Geographic Location
Observations:

1. Port 42 and 80 attacks have a direct relationship with each other.
2. Port 80 attacks are more prevalent in Italy, US, Hong Kong and the Republic of Korea respectively.
3. Port 42 attacks are more prevalent in China, Russian Federation, Singapore and European Union.
4. Most other countries have an equal distribution of both.

Distribution of Port 80 attacks
Observations:

1. Port 80 attacks have a range of 0 to 700 attacks per country
2. The 0 to 100 range has the highest distribution among the countries followed by the 100-200 range

Distribution of Port 42 attacks

Observations:

1. Port 42 attacks have a range of 0 to 150 attacks per country
2. The 0 to 20 attacks has the highest occurrence among the countries
Observations:

1. Port 21, 25 and 139 have a direct relationship with each other
2. Port 25 and 139 have a higher correlation with each other as compared to port 21
3. Attacks on port 25 and 139 are predominantly coming from the Philippines
4. Attacks on port 21 are predominantly coming from the European Union, Taiwan, Belgium and the United States
Observations:

1. Port 21 and 25 have a direct relationship with each other
2. The Philippines has the highest occurrence of port 21 and 25 attacks and have a fairly distributed attack on each port
3. China has more attacks on port 25 while the European Union, Taiwan, Belgium and the US are more skewed towards port 21
Distribution of Port 42 attacks

Observations:
1. Port 25 Attacks range from 0 to 2 per country
2. The 0 to 1 attacks are the most predominant among all countries

Distribution of Port 139 attacks

Observations:
1. Port 139 attacks range from 0 to 25
2. The 0 to 5 range is the most predominant occurrence in each country

Observations:

1. Port 21 attacks range from 0 to 40 attacks per country
2. Most attacks occur at the 0 to 5 range among the countries
Step 1: Data

In my case, the data I decided to use were pcap files exported from a local honeynet. Because I was a bit lazy and didn’t want to build or look for parsing tools, I decided to use the most convenient one for me: Snort.

So I took the pcap files, ran it through Snort in sniffer mode to get all the packets (even those without alerts) into the database. I guess there are a lot of ways that I could have done this more efficiently so I would really be glad if someone could point me in the right direction.

So now, I have a Snort database with the typical fields like destination ports, source ports, ip addresses plus signature names like this one:

<table>
<thead>
<tr>
<th>src_id</th>
<th>src_ip</th>
<th>src_port</th>
<th>dst_id</th>
<th>dst_ip</th>
<th>dst_port</th>
<th>sig_name</th>
<th>sig_class_name</th>
<th>sig_cat</th>
<th>sig_digit</th>
<th>sig_digit</th>
<th>sig_digit</th>
<th>sig_digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>20016</td>
<td>2005-10-01 02:13:45</td>
<td>1</td>
<td>1</td>
<td>SCAN</td>
<td>UDP service</td>
<td>network</td>
<td>scan</td>
<td>16737</td>
<td>40255</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20016</td>
<td>2005-10-01 02:13:45</td>
<td>1</td>
<td>1</td>
<td>SCAN</td>
<td>UDP service</td>
<td>network</td>
<td>scan</td>
<td>16737</td>
<td>40255</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20016</td>
<td>2005-10-01 02:13:45</td>
<td>1</td>
<td>1</td>
<td>SCAN</td>
<td>UDP service</td>
<td>network</td>
<td>scan</td>
<td>16737</td>
<td>40255</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 2: Pre-process

Obviously, this would be different for everyone depending on what you hope to accomplish. In my case, I needed the aggregate sum of all attacks per destination port per source IP. I wrote a script that will manipulate the data (placed the script in the internal server) and saved it into a CSV file. So now, I had a CSV file called tcp_dport_clean that looked like this:
Take note that the first row is one column less. This is because the countries are the classification scheme and not a variable to be computed.

Step 3: Start R

So now we have our data file. Next up, we run R. R is a language and environment for statistical computing and graphics. It provides a wide range of statistical and graphical techniques and is very extensible. It runs on Linux, MacOS and Windows. It can be downloaded at http://www.r-project.org/.

Right now, I'm running it off Windows so there might be a little difference in the interface if your running it off MacOS or Linux. Here’s the initial screen:
Some useful commands to get you started would be:

- `help.start()`
- `help([function])`
- `help.search([string])`
- `demo([function])`
- `example([function])`

For example, you could try running the example for one of the pre-build data sets:

```r
example(swiss)
```

This command produces this result:
Step 4: Load Data

So after you've played around with the interface, you can now load our data. In step 2, I created a data file from the preprocessed data. I named this file tcp_dport_clean.csv. In order to load this data file, we will use the read.table() which is a command that reads a file in table format and creates a data frame from it. The actual command I used to load the data was:

```
tcp_dport <- read.table('c:/tools/tcp_dport_clean.csv', sep=',', header=TRUE)
```

Where "tcp_dport" is the name of the data frame or the data object that R will refer to when your manipulating the data. Next is the directory and filename of the actual data.
file, followed by the separator which in this case is a comma and lastly we instruct R that we have a header in our data file.

To view the data that you’ve loaded, just type in the data frame. In this case, “tcp_dport”

```
> tcp_dport <- read.table('c:/tools/tcp_dport_clean.csv', sep = ',', header = TRUE)
> tcp_dport
           X24  X25  X42  X50  X139
AUSTRALIA   0     0    8    0
AUSTRIA     0     0   10    0
BELGIUM     7     0    0    0
BRAZIL      2     0    27    0
CANADA      0     0   127   0
CHILE       0     0   103   0
CHINA       11    162   363   0
COLUMBIA    0     0    15    0
CZECH REPUBLIC  0   0    19    0
EUROPEAN UNION 17    0   37  091
FRANCE      2     0    69    0
GERMANY     1     0    95    0
```

Now that we’ve loaded the data into R we can now play around with it...

Step 5: Pick your Poison

Depending on what your goals are, there are tons of statistical and data mining techniques available in R that you can use. In my case, I just wanted to do a principal components analysis, see the correlations and generate some histograms.

One of the simplest things to do is to plot all the data that we have. This could be done by a simple `plot()` command which is a generic function for plotting of R objects:

```
plot(tcp_dport)
```

which produces this graph:
Hmm... pretty, but not really that useful.

Anyway, back to the principal components analysis of the data. Principal components analysis is a technique for simplifying a dataset, by reducing multidimensional datasets to lower dimensions for analysis. This is done using the prcomp() command. To represent this in graphical form, a biplot() command is often used. A biplot is a plot which aims to represent both the observations and variables of a matrix of multivariate data on the same plot. Hmm... I won’t go too much into that so let’s go straight to the commands:

```
biplot(prcomp(tcp_dport, scale=T), expand=T, scale=T)
```
Basically, this command runs a principal components analysis on the data set and represents it into a graphical format using the `biplot()` command. The scale and expand parameters are used to tailor the dimensions. This produces a result like this one:

![R Graphics: Device 2 (ACTIVE)](image)

If you want to be more specific like looking at port 21 and port 25 only, you can use this command:

```r
biplot(prcomp(tcp_dport[1:2], scale=T), expand=T, scale=T)
```

Where Ports 21 and 25 being columns 1 and 2 respectively in the `[1:2]` part of the command.
Next, let’s see some correlations. This is as simple as running a `cor()` command:

```r
cor(tcp_dport)
```

This produces the following table:
So here, you’ll see the correlations between the different ports in our data set. Next, let’s throw in some histograms. This can be done by simply invoking the `hist()` command.

```
> cor(tcp_dport)
          X21    X25    X42    X80    X139
X21  1.0000000 0.8642542 0.24100455 0.12777480 0.6661073
X25  0.8642542 1.0000000 0.36414085 0.13634326 0.59203568
X42  0.24100455 0.36414085 1.00000000 0.40592033 -0.01433054
X80  0.12777480 0.13634326 0.40592033 1.00000000 -0.01413124
X139 0.66610730 0.59203568 -0.01433054 -0.01413124 1.00000000
```

So here, you’ll see the correlations between the different ports in our data set. Next, let’s throw in some histograms. This can be done by simply invoking the `hist()` command.

```
hist(tcp_dport$X80)
```

Where the “`tcp_dport`” is the data object, and X80 is the name of the field. So there we go, a histogram for port 80:
Pictures really do say a lot don’t they? You can do a lot more like clustering and time series analysis which I hope to add in the following weeks or months.

The complete results can be found in the internal server under the DA section. For more into about this technique use the help() or the help.search() command in R which I often find very useful.
Data Mining Web Attacks from Apache Logs
Using data mining techniques to classify web attacks

We've been working on a way to apply an automated text classification technique to the entries of an apache log. The idea is to automatically classify the contents in order to get a bird's eye view of the attacks.

Results:

1. Group 0.1:0.1
 a. awstats.pl
 b. configdir
 c. libsh
 d. ping
 e. perl
 f. temp2006

2. Group 0.2:0.2
 a. index.php
 b. option
 c. com_content
 d. do_pdf
 e. index2.php
 f. _REQUEST[option]
 g. com_content _REQUEST[Itemid]
 h. GLOBALS
 i. mosConfig_absolute_path
3. Group 0.3:0.3
 a. cache
 b. index2.php
 c. $_REQUEST[option]
 d. com_content $_REQUEST[Itemid]
 e. GLOBALS
 f. mosConfig_absolute_path
 g. cmd.gif
 h. giculz

4. Group 0.4:04
 a. index2.php
 b. option
 c. com_content
 d. do_pdf
 e. index2.php
 f. $_REQUEST[option]
 g. com_content $_REQUEST[Itemid]
 h. GLOBALS
 i. mosConfig_absolute_path
 j. cmd.gif
 k. sexy

5. Group 0.5:0.5
 a. awstats
 b. awstats.pl
 c. configdir
 d. killok
 e. cgi-bin

6. Group 0.6:0.6
 a. cvs
 b. index2.php
 c. $_REQUEST[option]
 d. com_content $_REQUEST[Itemid]
 e. GLOBALS
 f. mosConfig_absolute_path
 g. aldoilea.info
 h. cmd.txt
 i. cback
 j. mambo

7. Group 0.7:0.7
 a. modules
b. Forums
c. admin
d. admin_styles.php
e. phpbb_root_path
f. cmd.gif
g. criman

8. Group 0.8:0.8
a. mambo
b. index2.php
c. _REQUEST[option]
d. com_content
e. _REQUEST[Itemid]
f. GLOBALS
g. mosConfig_absolute_path
h. cmd.gif
i. bash

9. Group 0.9:0.9
a. cgi-bin
b. awstats.pl
c. configdir
d. killoz

10. 0.10:0.10
a. cgi-bin
b. awstats.pl
c. configdir
d. killos
e. listen

11. Group 0.11:0.11
a. modules
b. coppermine
c. themes
d. default
e. theme.php
f. THEME_DIR
g. cmd.gif
h. cbac

12. Group 0.13:0.13
a. cvs
b. index.php
c. _REQUEST[option]
d. com_content _REQUEST[Itemid]
e. GLOBALS
f. mosConfig_absolute_path
g. cmd.gif
h. cacti
i. cgi-bin
j. awstats
k. awstats.pl
l. configdir
m. phpBB2
n. admin_styles.php
o. phpbb_root_path
p. modules
q. Forums
r. mambo
s. index.php
t. _REQUEST[option]
u. com_content _REQUEST[Itemid]
v. GLOBALS
w. mosConfig_absolute_path

13. Group 0.14:0.14
 a. cgi-bin
 b. awstats.pl
 c. configdir
d. echo
e. b_exp
f. uname
g. E_exp

14. Group 0.15:0.15
 a. cgi-bin
 b. awstats
 c. awstats.pl
d. configdir
e. nikons

15. Group 1:1
 a. < name>< value>< param>< params>< methodCall>
b. perl dc.txt
c. cback

16. Group 2:2
 a. zboard
 b. botperl
c. error.php
d. zeroboard
e. bbs
f. skin zero_vote
g. kaero
h. fbi.gif
17. Group 3:3
 a. modules
 b. PNphpBB2
 c. includes
 d. functions_admin.php
 e. haita
 f. cmd.dat

18. Group 4:4
 a. webcalendar
 b. send_reminders.php
 c. includedir
 d. haita
 e. tools
 f. cmd.dat

Observations:

Group 1:
very long awstats attack with "ping" and "perl" keywords

Group 2:
typical mambo mosConfig_absolute_path attack with "giculz"

Group 3:
similar to group 2 but was separated as a different group because the attack contained the word "cache"
Group 4:
similar to group 2 but had the word "sexy"

Group 5:
awstats attack with "killok"

Group 6:
common keywords include cvs, mosConfig_absolute_path, aldoilea.info, cback, mambo. "aldoilea.info" and "cback" seems to be the defining keywords

Group 7:
phpbb attacks with "criman"

Group 8:
mambo with "bash"

Group 9:
awstats with "killoz"

Group 10:
awstats with "killos" and "listen"

Group 11:
coppermine, theme.php and THEME_DIR with "cbac"

Group 12:
"cacti" was the most correlated here. also includes phpbb2, awstats and mambo

Group 13:
awstats with "b_exp", "uname", "E_exp"

Group 14:
awstats with "nikons"

Group 15:
"< name>< value>< param>< params>< methodCall>" with "perl dc.txt" and "cback"

Group 16:
zeroboard / zboard / bbs with "kaero" and "fbi.gif"

Group 17:
PNphpBB2 with "haita"

Group 18:
webcalendar and send_reminders.php with "haita"
References

Honeynet Project
http://www.honeynet.org

Honeyd
http://www.honeyd.org

Nepenthes
http://nepenthes.mwcollect.org/

HoneyBow
http://honeybow.mwcollect.org/

Honeyclient
http://www.honeyclient.org/

Strider Project
http://research.microsoft.com/HoneyMonkey/

HoneyC
http://www.nz-honeynet.org/honeyc.html

Capture-HPC
http://www.nz-honeynet.org/cabout.html

Weka
http://www.cs.waikato.ac.nz/ml/weka/

Tanagra

R-Project
http://www.r-project.org/

RowTag
http://r82h147.res.gatech.edu/pages/research/projects.html

Honeysnap
http://www.ukhoneynet.org/tools/honeysnap/

Excel and Access

Orange
http://www.ai4lab.si/orange