
Revolutionizing the Field of Grey-box Attack Surface
Testing with Evolutionary Fuzzing

Jared D. DeMott
Computer Science
Michigan State University
demottja@msu.edu

Richard J. Enbody
Computer Science
Michigan State University
enbody@msu.edu

William F. Punch
GARAGe
Michigan State University
punch@msu.edu

Accepted for publication at Black Hat and DEFCON 2007

Abstract
Runtime code coverage analysis is feasible and useful when application source code is
not available. An evolutionary test tool receiving such statistics can use that information
as fitness for pools of sessions to actively learn the interface protocol. We call this
activity grey-box fuzzing. We intend to show that, when applicable, grey-box fuzzing is
more effective at finding bugs than RFC compliant or capture-replay mutation black-box
tools. This research is focused on building a better/new breed of fuzzer. The impact of
which is the discovery of difficult to find bugs in real world applications which are
accessible (not theoretical).

We have successfully combined an evolutionary approach with a debugged target to get
real-time grey-box code coverage (CC) fitness data. We build upon existing test tool
General Purpose Fuzzer (GPF) [8], and existing reverse engineering and debugging
framework PaiMei [10] to accomplish this. We call our new tool the Evolutionary
Fuzzing System (EFS), which is the initial realization of my PhD thesis.

We have shown that it is possible for our system to learn the targets language (protocol)
as target communication sessions become more fit over time. We have also shown that
this technique works to find bugs in a real world application. Initial results are promising
though further testing is still underway.

This paper will explain EFS, describing its unique features, and present preliminary
results for one test case. We will also discuss ongoing research efforts. First we begin
with some background and related works.

Previous Evolutionary Testing Work
“Evolutionary Testing uses evolutionary algorithms to search for software test data. For
white-box testing criteria, each uncovered structure-for example a program statement or
branch-is taken as the individual target of a test data search. With certain types of
programs, however, the approach degenerates into a random search, due to a lack of
guidance to the required test data. Often this is because the fitness function does not take
into account data dependencies within the program under test, and the fact that certain

mailto:demottja@msu.edu
mailto:enbody@msu.edu
mailto:punch@msu.edu

program statements need to have been executed prior to the target structure in order for it
to be feasible. For instance, the outcome of a target branching condition may be
dependent on a variable having a special value that is only set in a special circumstance-
for example a special flag or enumeration value denoting an unusual condition; a unique
return value from a function call indicating that an error has occurred, or a counter
variable only incremented under certain conditions. Without specific knowledge of such
dependencies, the fitness landscape may contain coarse, flat, or even deceptive areas,
causing the evolutionary search to stagnate and fail. The problem of flag variables in
particular has received much interest from researchers (Baresel et aL, 2004; Baresel and
Sthamer, 2003; Bottaci, 2002; Harman et aL, 2002), but there has been little attention
with regards to the broader problem as described. [1]”

The above quote is from a McMinn paper that is pushing forward the field of traditional
evolutionary testing. However, in this paper we propose a method for performing
evolutionary testing (ET) that does not require source code. This is useful for third-party
testing, verification, and security audits when the source code of the test target will not be
provided. Our approach is to track the portions of code executed (“hits”) during runtime
via a debugger. Previous static analysis of the compile code, allows the debugger to set
break points on functions (funcs) or basic blocks (BBs). We partially overcome the
traditional problems of evolutionary testing by the use of a seed file, which gives the
evolutionary algorithm hints about the nature of the protocol to learn. Our approach
works differently from traditional ET in two important ways:

1. We use a grey-box style of testing that allows us to proceed without
source code

2. We search for sequences of test data, known as sessions, which fully
define the documented and undocumented features of the interface under
test (protocol discovery). This is very similar to finding test data to cover
every source code branch via ET. However, the administration, of
discovered test data is happening during the search. Thus, test results, are
discovered as our algorithm runs. Robustness issues are recorded in the
form of crash files and Mysql data, and can be further explored for
exploitable conditions while the algorithm continues to run.

Introduction
Fuzzing is simply another term for interface robustness testing. Robustness testing often
indicates security testing of user accessible interfaces, often called the attack surface.
This is not security testing in the sense that a penetration test is being performed. We’re
testing if user supplied input validation errors exist (think buffer overflows and the like).
Solid security in said target is not possible if such validation errors are found. Fuzzing
does not replace formal engineering practices, solid quality assurance, or a full code audit
and penetration test. EFS focuses on testing the robustness of a given attack surface in
the face of unexpected input.

Solid work has been done in the field of software testing. Much work has also been done
in the field of white-box evolutionary testing [1] [5]. Our work is unique in that no other

grey-box fuzzer using evolutionary computing to generate test cases is known at this
time. White-box indicates access to source code. Black-box indicates the ability to
supply data to a running program, but no source code. In Grey-box while no access to
source code is directly granted, it is possible to monitor the running executable in as
much detail as a debugger and/or static binary analysis will permit.

Current Fuzzers
Current fuzzer development has two main branches: full and mutation. A full fuzzer uses
a protocol specific (think RFC) to the target program and works only for that protocol.
For example, one might develop a fuzzer specific to SMTP. A mutation fuzzer
(sometimes called capture/replay) starts with some known good data, changes it
somehow, and than repeatedly delivers mutations of that data to the target. Many fuzzers
will also monitor the state of the application during fuzzing and report access violations.
Both types of fuzzers have value. The full fuzzer will typically get better code coverage
(and thus find more bugs), but the mutation fuzzer is quicker to develop and could
uncover bugs the full might not. For example, the mutation fuzzer might create an SMTP
conversation with a target using commands not listed in the SMTP RFC.

Open Source vs. Commercial
The debate within fuzzing lists [14], quality assurance groups, security conferences, and
testers of all kinds rages about who owns the state of the art here. Commercial
companies claim they do. Most vender neutral testers say open source solutions are
superior. There has been no real study to date. This would make an excellent study. If
time permits, and vendors cooperate, we would like to do such a study.

EFS Overview
We propose a new fuzzer which we call the Evolving Fuzzer System or EFS as shown in
Figure 1. We’d like to receive the benefits of both fuzzer types: good code coverage and
short development time per application.

Figure 1: The Evolving Fuzzer System (EFS)

EFS will learn the target protocol by evolving sessions: a sequence of input and output
that makes up a conversation with the target. To keep track of how well we are doing we

use code coverage as a session metric (fitness). Sessions with greater fitness breed to
produce new sessions. Over time, each generation will cover more and more of the code
in the target. In particular, since EFS covers code that can be externally exercised, it
covers code on the networked attack surface. EFS could be adapted to fuzz almost any
type of interface (attack surface). To aid in the discovery of the language of the target, a
seed file is one of the parameters given to the GPF portion of EFS (see Figure 8). The
seed file contains binary data or ASCII strings that we expect to see in this class of
protocol. For example, if we’re testing SMTP some strings we’d expect to find in the
seed file would be: “helo”, “mail to: “, “mail from: “, “data”, “\r\n.r\n”, etc. EFS could
find the strings required to speak the SMTP language, but for performance, initialing
some sessions with known requirements (such as a valid username and password, etc.)
will be beneficial.

EFS uses fuzzing heuristics in mutation to keep the fuzzer from learning the protocol
completely correct. Fuzzing heuristics include things like bit-flipping, long string
insertion, format string creation, etc. Probably even more important is the implicit
fuzzing that a GA performs. Many permutations of valid command orderings will be
tried and retried with varying data. The key to fuzzing is the successful delivery, and
subsequent consumption by the target, of semi-valid sessions of data. Sessions that are
entirely correct will find no bugs. Sessions that are entirely bogus will be rejected by the
target. Testers might call this activity “good test case development”.

While the evolutionary tool is learning the unfamiliar network protocol, it may crash the
code. That is, as we go through the many iterations of trying to learn each layer of a given
protocol we will be implicitly fuzzing. If crashes occur, we make note of them and
continue trying to learn the protocol. Those crashes indicate places of interest in the
target code for fixing or exploiting depending on which hat is on. The probability of
finding bugs, time to convergence, and total diversity are still under research at this time.

A possible interesting side effect of automatic protocol discovery is the iteration paths
through a give protocol. Consider for example the recent VNC bug. The option to use
no authentication was a valid server setting, but should never have been possible to
exercise from the client side unless specifically set on the server side. However, this bug
allowed a VNC client to choose no authentication even when the server was configure to
force client authentication. This allowed a VNC client to control any VNC server (of a
specific release version) without valid credentials. This notion indicates that it might be
possible to use EFS results, even if no robustness issues are discovered, to uncover
possible security or unintended functionality errors. Data path analysis of the matured
sessions would be required at the end of a run.

Total diversity is perceived to be an important metric leading to maximum bug discovery
capability. Diversity indicates the percentage of code coverage on the current attack
surface. If EFS converges to one best session, and than all other sessions begin to look
like that (which is common in genetic algorithms), this will be the only path through code
that is thoroughly tested. Thus, it’s important to measure diversity while testing. As a
method to test such capabilities a benchmarking system is in development. Initial results

are interesting and indicate that the use of multiple pools to store sessions is helpful in
maintaining a slightly higher level of diversity. However, maximum diversity (total
attack surface coverage) was not possible with pools. We intend to develop a newer
niching or speciation technique, which will measure the individuality of each session.
Those that are significantly different from the best session, regardless of session fitness,
will be kept. (I.e., they will be exempt from the crossover process). In this case, the
simple fitness function we use now (hit basic blocks or functions) would be a little more
complex. Again, it would than consider session uniqueness [15].

GPF + PaiMei + Jpgraph Reporting + Countless Hours of Implementation = EFS:
We choose to build upon GPF because the primary author of this paper is also the author
of that fuzzer, and consequently controls access to the source code. GPF was designed to
fuzz arbitrary protocols given a capture of real network traffic. In this case, no network
sniff is required, as EFS will learn the protocol dynamically.

PaiMei was chosen because if it’s ability to “stalk” a process. The process of stalking
involves:

• Pre-analyzing an executable to find functions and basic blocks
• Attach to that executable as it runs and set breakpoints.
• Checking off those breakpoints as they are hit.

GPF and PaiMei had to be substantially modified to allow the realization of EFS. PHP
code, using the Jpgraph library, was written to access the database to build and report
graphical results.

EFS Data Structures
A session is one full transaction with the target. A session is made up of legs (reads or
writes). Each leg is made up of tokens. A token is a piece of data. Each token has a type
(ASCII, BINARY, LEN, etc.) and some data (“jared”, \xfe340078, etc.). Sessions are
organized into pools of sessions. See Figure 2. This organization is for data
management, but we also maintain a pool fitness, the sum of the unique function hits
found by all sessions. Thus, we maintain two levels of fitness for EFS: session fitness and
pool fitness. We maintain pool fitness because it is reasonable that a group of lower fit
sessions, when taken together, could be better at finding bugs than any single, high-fit
session. In genetic algorithm verbiage [7], each chromosome represents a
communication session.

Figure 2: Data Structures in EFS

EFS Initialization
Initially, p pools are filled with at most s-max sessions each of which has at most l-max
legs each of which has at most t-max tokens. The type and data for each token are drawn
35% of the time from a seed file or 65% of the time randomly generated. Again, a seed
file should be created for each protocol under test. If little is known about the protocol a
generic file could be used, but pulling strings from a binary via reverse engineering, or
sniffing actual communications is typically possible. Using no seed file is also a valid
option.

For each generation, every session is sent to the target and a fitness is generated. The
fitness is coverage which we measure as the number of functions or basic blocks hit in
the target. At the end of each generation, evolutionary operators are applied. The rate
(every x generations) at which session mutation, pool crossover, and pool mutation
occurs is configurable. Session crossover occurs every generation.

Session Crossover
Having evaluated code-coverage/fitness for each session, we use the following algorithm
for crossover (see Figure 3):

Figure 3: Session Crossover

1. Order the sessions by fitness, with the most fit being first.
2. The first session is copied to the next generation untouched. Thus we do use

elitism.

3. Randomly pick two parents, A and B, and perform single point crossover,
creating children A’ and B’. Much like over-selection in genetic programming,
70% of the time we use only the top half of the sorted list to pick parents from.
30% of the time we chose from the entire pool.

4. Copy all of the A Legs into A’ up until the leg that contains the cross point.
Create a new leg in A’. Copy all tokens from current A leg into the new A’ leg,
up until the cross point. In session B advance to the leg that contains the cross
point. In that leg advance to the token after the cross point. From there, copy the
remaining tokens into the current A’ leg. Copy all the remaining legs from B into
A’.

5. If we have enough sessions stop. Else,
6. Create B’ from (B x A)
7. Start in B. Copy all of the B Legs into B’ up until the leg that contains the cross

point. Create a new leg in B’. Copy all tokens from that B leg into the new B’
leg, up until the cross point. In session A advance to the leg that contains the
cross point. In that leg advance to the token after the cross point. From there,
copy the remaining tokens into the current B’ leg. Copy all the remaining legs
from A into B’.

8. Repeat until our total number of sessions (1st + new children) equals the number
we started with.

Session Mutation
Since we are using elitism, the elite session is not modified. Otherwise, every session is
potentially mutated with probability p. The algorithm as follows (example in Figure 4):

Figure 4: Session Mutation

1. For each session we randomly choose a leg to do a data mutation on. We then

randomly choose another leg to do a type mutation on.
2. A Data mutation modifies the data in one random token in the chosen leg.

Fuzzing heuristics are applied, but a few rules are in place to keep the tokens from
growing to large.

3. If the token is too large or invalid, we truncate or reinitialize.
4. The heuristics file also contains the rules detailing how each token is mutated.

For example a token that contains strings (ASCII, STRING, ASCII_CMD, etc) is
more likely to be mutated by the insertion of a large or format string. Also, as
part of the information we carry on each token we will know if each token

contains specific ASCII traits such as numbers, brackets, quotes, etc. We may
mutate those as well. Tokens of type (BINARY, LEN, etc.) are more likely to
have bits flipped, hex values changed, etc.

5. The type mutation has a chance to modify both the type of the leg and the type of
one token in that leg. Leg->type = _rand(2) could reinitialize the legs type. (That
will pick either a 0 or a 1. 0 indicates READ and 1 indicates WRITE.) tok-
>type = _rand(14) could reinitialize the tokens type. There are 0-13 valid types.
For example, STRING is type 0. (structs.h contains all the definitions and
structure types.)

Pool Crossover
Pool crossover is very similar to session crossover, but the fitness is measured differently.
Pool fitness is measured as the sum of the code uniquely covered by the sessions within.
That is, count all the unique functions or basic blocks hit by all sessions in the pool. This
provides a different (typically better) measure than say the coverage by the best session in
the pool. See Figure 5.

Figure 5: Pool Crossover

The algorithm is:

1. Order the pools by fitness, with the most fit being first. Again, pool fitness is the
sum of all the sessions’ fitness.

2. The first pool is copied to the next generation untouched. Thus elitism is also
operating at the pool level

3. Randomly pick two parents and perform single point crossover. The crossover
point in a pool is the location that separates one set of sessions from another. 70%
of the time we use only the top half of the sorted list to pick parents from. 30% of
the time we chose from the entire list of pools.

4. Create A’ from (A x B):
5. Start in A. Copy all of the sessions from A into A’ up until the cross point. In

pool B, advance to the session after the cross point. From there, copy the
remaining sessions into A’.

6. If we have enough pools stop. Else,
7. Create B’ from (B x A)

8. Start in B. Copy all of the sessions from B into B’ up until the cross point. In
pool A, advance to the session after the cross point. From there, copy the
remaining sessions into B’.

9. Repeat until our total number of pools (1st + new children) equals the number we
started with.

Pool Mutation
As with session mutation, pool mutation does not modify the elite pool. The algorithm is
(example in Figure 6):

Figure 6: Pool Mutation

1. 50% of time we add a session according to the new session initialization rules.
2. 50% of the time we delete a session.
3. If the sessions/pool are fixed, we do both.
4. In all cases, we don’t disturb the first session.

Running EFS
From a high level, the protocol between EFS-GPF and EFS-PaiMei is as follows:

GPF initialization/setup data PaiMei
Ready PaiMei
<GPF carries out communication session with target>
GPF {OK|ERR} PaiMei
<PaiMei stores all of the hit and crash (if any) information to the database>

When all of the sessions for a given generation have been played GPF contacts the
database, calculates a fitness for each session (counts hits) and for each pool (distinct hits
for all sessions within a pool), and breeds sessions and pools as indicated by the
configuration options (See the description of Figure 8).

Figures 7 and 8 show the EFS-GPF and EFS-PaiMei portions of EFS in action. For the
GUI portion we see:

1. Two methods to choose an executable to stalk:

a. The first is from a list of process identifications (PIDs). Click the
“Refresh Process List” to show running processes. Click the process you
wish to stalk.

b. The second is by specifying the path to the executable with arguments.
An example would be: “c:\textserver.exe” med

2. We can choose to stalk functions (funcs) or basic blocks (BBs).
3. The time to wait for each target process load defaults to 6 seconds, but could be

much less (1 second) in many cases.
4. Hits can be stored to the GPF or PaiMei sub-databases that are in the Mysql

database. PaiMei should be used for tests or creating filter tags, while GPF
should be used for all EFS runs.

5. After each session, or stalk, we can do nothing, detach from the process (and
reattach for the next stalk), or terminate the process. The same options are
available if the process crashes.

6. Use the PIDA Modules box for loading the .pida files. These are derived from
executables or dynamically linked libraries (.DLLs), and are used to set the
breakpoints which enable the process stalking to occur. One executable needs to
be specified and as many .DLLs as desired. (Note: Sometimes processes will
include files called .api, .apl, etc which are really .DLLs and can be used here as
well.)

7. There is a dialog box under Connections to connect to the Mysql database.
Proper installation and setup of EFS-PaiMei (database, etc.) is included in a
document in the EFS source tree.

8. The Data Sources box is the place to view target lists and to create filter tags.
This is done to speed up EFS, by weeding out hits that are common to every
session. The process to create a filter tag is:

a. Define a filter tag. (We called ours
“ApplictionName_startup_conn_junk_disconn_shutdown”)

b. Stalk with that tag and record to the PaiMei database
c. Start the target application
d. Using netcat, connect to the target application
e. Send a few random characters
f. Disconnect
g. Shutdown the target application

9. There is another dialog box that defines the GPF connection to EFS-PaiMei called
Fuzzer Connect.

a. The default port is 31338 (if you don’t get why that number, ask a hax0r).
b. The general wait time describes how long each session has to complete

before EFS will move on to the next session. This is needed to coordinate
the hit dumping to mysql after each session. The default is .8 but for lean
applications running around .2 should be fine. For larger applications
more time will be required for each session. Tuning this number is the
key to the speed that EFS will run at. (For example: .4*100000=11hrs,
.8*100000=22hrs, 1.6*100000=44hrs, etc)

c. The “dump directory” defines a place for EFS to dump crash information
should a robustness issue be found. We typically create a directory of the
structure “..\EFS_crash_data\application_name\number”.

d. The number should coordinate to the GPF_ID for clarity and organization.

Figure 7: The GUI portion of EFS

For the GPF (command line) portion of EFS we have 32 options:

1. –E indicates GPF is in the evolving mode. GPF has other general purpose fuzzing
modes which will not be detailed here.

2. IP of Mysql db
3. Username of Mysql db
4. password for Mysql db
5. GPF_ID
6. Starting generation. If a number other than zero is specified, a run is picked up

where it left off. This is helpful if EFS where to crash, hang, or quit.
7. IP of GUI EFS
8. Port of GUI EFS
9. Stalk type. Functions or basic blocks.
10. Play mode. Client indicates we connect to the target and server is the opposite.
11. IP of target. (Also IP of proxy in proxy mode.)
12. Port of target. (Also port of proxy in proxy mode.)
13. Source port to use. ‘?’ lets the OS choose.
14. Protocol. TCP or UDP
15. Delay time in milliseconds between each leg of a session.
16. Number of .01 seconds slots to wait while attempting to read data.
17. Output verbosity. Low, med, or high.
18. Output mode. Hex, ASCII, or auto.
19. Number of pools.
20. Number of sessions/pool.

21. Is the number fixed or a max? Fixed indicates it must be that number while max
allows any number under that to valid as well.

22. Legs/session
23. Fixed or max
24. Tokens/leg
25. Fixed or max
26. Total generations to run
27. Generation at which to perform session mutation
28. Generation at which to perform pool crossover
29. Generation at which to perform pool mutation
30. User definable function on outgoing sessions. None indicates there isn’t one.
31. Seed file name.
32. Proxy mode. Yes or no. A proxy can be developed to all EFS to run against none

network protocols such as internal RPC API calls, etc.
33. (UPDATE: A 33rd was just added to control diversity.)

Figure 8: The GPF UNIX command line portion of EFS

Benchmarking
The work in this section has become intense enough to warrant a whole new paper. See
Benchmarking Grey-box Robustness Testing Tools with an Analysis of the Evolutionary
Fuzzing System (EFS) [15]. The topics in that paper include:

• Attack surface example
• Functions vs. basic blocks.
• Learning a binary protocol
• Pools vs. niching

o EFS Fitness function updates to achieve greater diversity

Test Case – Golden FTP server
The first test target was the Golden FTP server (GFTP) [9]. It is a public domain ftp
server GUI application for Windows that has been available since 2004. Analysis shows
approximately 5100 functions in GFTP, of which about 1500 are concerned with the
GUI/startup/shutdown/config file read/etc, leaving potentially 3500 functions available.
However, the typical attack surface of a program is considerably smaller, often around
10%. We show more evidence of this in the benchmarking research.

Three sets of experiments were run. Each experiment was run 3 times on two separate
machines (6 total runs/experiment). The reason for two machines was two fold: time
savings, as each complete run can take about 6hrs/100generations, and to be sure
configurations issues were not present on any one machine. Experiment 1 is 1 pool of
100 sessions. Experiment 2, 4 pools each with 25 sessions. Experiment 3, 10 pools each
with 10 sessions. All other parameters remain the same: target was Golden Ftp Server
v1.92, 10 legs/session, 10 tokens/leg, 100 total generations, session mutation every 7
generations, for multiple pool runs—pool crossover every 5 generations, and pool
mutation every 9 generations. For these experiments we used function hits as the code
coverage metric. The session, leg, and token sizes are fixed values.

Results
Figure 9 shows the average fitness for both pool and session runs, averaged over all the
runs for each group. Figure 10 shows the best fitness for both pool and session, selected
from the “best” run (that is, the best session of all the runs in the group, and the best pool
of all the runs in the group). The first thing that Figure 9 shows us is that pools are more
effective at covering code than any single session. Even the worst pool (1-pool) covers
more code than the best session. Roughly speaking, the best pool covers around twice as
much as the best session. The second observation that Figure 9 shows us is that multiple,
interacting pools are more effective than a single large pool. Note that this is not just a
conclusion about island-parallel evolutionary computation [11], since the interaction
between pools is more frequent and of a very different nature than the occasional
exchange of a small number of individuals as found in island parallelism. The pool
interaction is more in line with a second-order evolutionary process, since we are
evolving not only at the session level, but also at the pool level. While pool-1 starts out
with better coverage, it converges to less and less coverage. Both 4-pool and 10-pool start
out with less coverage, but have a positive fitness trajectory on average, and 4-pool
nearly equals the original 1-pool performance by around generation 180 and appears to
still be progressing.

Figure 10 shows that, selecting for the best pool/session from all the runs (not the
averages as in Figure 5), 4-pool does slightly outperform other approaches. That is, the
best 4-pool run outperformed any other best pool, and greatly outperformed any best
session.

The information provided by Figures 11, 12, and 13 shows the following: First, they
show the total number of crashes that occurred across all runs for 1-pool, 4-pool, and 10-
pool. The numbers around the outside of the pie chart are the actual number of crashes

that occurred for that piece, while the size of each pie chart piece indicates that crash’s
relative frequency with respect to all crashes encountered. Furthermore, the colors of
each piece reflect the addresses in gftp.exe where the crashes occurred. Remember that
the only measure of fitness that EFS uses is the amount of code covered, not the crashes.
However, these crash numbers provide a kind of history of the breadth of search each
experiment has developed. For example, all 3 experiments crashed predominantly at
address 0x7C80CF60. However, 10-pool found a number of addresses that neither of the
others did, for example the other 0x7C addresses.

GFTP is an interesting (and obviously buggy) application. In creates a new thread for
each connection, and even if that thread crashes can keep processing the current session
in a new thread. This allows for multiple crashes/session, something that was not
originally considered. This accounts for the thousands of crashes observed. Also, keep
in mind these tests are done in a lab environment, not on productions systems. Nothing
was affected by our crashes, or could have caused them. These tests were done in
January 2007, and no ongoing effort against GFTP is in place to note rather or not these
bugs have been patched. Also, no time was spent attempting to develop exploits from the
recorded crash data. It is the authors’ opinion that such exploits could be developed but
we would rather focus on continued development and testing of EFS.

Figure 9: Average Fitness of pool and session over 6 runs

Figure 10: Best of Pool and Session over 6 Runs

Figure 11: 1-pool Crash Total (all runs)

Figure 12: 4-pool Crash Total (all runs)

Figure 13: 10-pool Crash Total (all runs)

Conclusions and Future Work
We have shown that EFS was able to learn a protocol and find bugs in real software using
a grey-box evolutionary robustness testing technique. Continuing research:

• What is the probability to find various bug types as this is the final goal of this
research

o How does its performance compare with existing fuzzing technologies?
o What bugs can be found and in what software?

• Could this type of learning be important to other fields?
• Is it possible to cover the entire attack surface with our approach? How would

one know, since we don’t have the source code?
o Pools don’t seem to have completely covered the target interface, is their a

niching or speciation approach we can design ?
• Testing of clear text protocols was done, but is it also possible to learn more

complex binary protocols?

References
[1] McMinn, P. “Search-based Software Test Data Generation: A Survey”. Software

Testing, Verification & Reliability, Vol 14, Num 2, pp 105-156, 2004
[2] Roper, M. “Computer aided software testing using genetic algorithms”, in 10th

International Software Quality Week, San Francisco, 1997
[3] Watkins, A., “The automatic generation of test data using genetic algorithms”, in

Proceedings of the Fourth Software Quality Conference, pp 300-309, 1995
[4] B.P. Miller, L. Fredriksen, and B. So, "An Empirical Study of the Reliability of

UNIX Utilities", Communications of the ACM 33, 12 (December 1990). See also
http://www.cs.wisc.edu/~bart/fuzz/

[5] P. McMinn and M. Holcombe, “Evolutionary Testing Using an Extended
Chaining Approach”, ACM Evolutionary Computation, Pgs 41-64, Volume 14,
Issue 1 (March 2006)

[6] Stefan Wappler, Joachim Wegener: Evolutionary unit testing of object-oriented
software using strongly-typed genetic programming. GECCO 2006: 1925-1932

[7] Goldberg, David E. Genetic Algorithms in Search, Optimization and Machine
Learning Addison-Wesley Pub. Co. 1989. ISBN: 0201157675

[8] http://www.appliedsec.com/resources.html
[9] http://www.goldenftpserver.com/
[10] Pedram Amini, PaiMei Reverse Engineering Framework,

http://pedram.redhive.com/PaiMei/
[11] Cantu-Paz, E. “Efficient and Accurate Parallel Genetic Algorithms”, Kluwer

Academic Publishers, 2000
[12] Pargas, Harrold, & Peck. “Test-Data Generation Using Genetic Algorithms”,

Journal of Software Testing, Verification and Reliability, 1999.
[13] Wegener, Sthamer, & Baresel. “Application Fields for Evolutionary Testing”,

EuroSTAR, 2001.
[14] A mailing list dedicated to the discussion of fuzzing.

fuzzing@whitestar.linuxbox.org
[15] J. DeMott, “Benchmarking Grey-box Robustness Testing Tools with an Analysis

of the Evolutionary Fuzzing System (EFS)”, continuing PhD research

mailto:fuzzing@whitestar.linuxbox.org

	Revolutionizing the Field of Grey-box Attack Surface Testing with Evolutionary Fuzzing
	Abstract
	Previous Evolutionary Testing Work
	Introduction
	Current Fuzzers
	Open Source vs. Commercial

	EFS Overview
	EFS Data Structures
	EFS Initialization
	Session Crossover
	Session Mutation
	Pool Crossover
	Pool Mutation
	Running EFS

	Test Case – Golden FTP server
	Results

	Conclusions and Future Work
	References

