Building an Effective Application Security Practice on a Shoestring Budget

John Viega
VP, Chief Security Architect

David Coffey
Manager, Product Security

© 2007 McAfee, Inc.
Agenda

• Application Security and understanding the problem
 — Evolution
 — The cost of doing nothing
 — Known issues and regulations

• Finding a solution to the problem
 — Best Practices
 — What works and what other people have implemented

• Showing that the solution works
 — Mantra: “Metrics are your Friend”
 — Measuring the un-measurable
 — Alignment with business goals
What is application security?

• Application security
 — catch-all phrase for the research, study, and remediation of security problems in applications

• What is the problem?
 — Bugs in software that may allow for manipulation of the program or computer to lead to un-intended results

• “Why can’t we just fix the problem?”
 — Complexity
 — Time
 — Technology
 — Knowledge
Evolution of Application Security

• Lowest hanging fruit phenomenon
 — Aided by the internet
 — Progressed from gateway perimeter to host and application

• Functioning as designed?
 — Port 80 is open and 443 is open and not monitored
How bad is it?

• Steadily increasing trend
 — Due to better knowledge?
 — Due to more software?
 — Due to worse software?
 — Irrelevant!

• This is only the public side
 — Underground knows of issues months and years before they are released
 — So do the vendors

- Top graph is generated from CERT data found on http://www.cert.org/stats/
- Bottom graph is generated from the National Vulnerability Database found at http://nvd.nist.gov/
How many issues get detected?

- According to the FBI 2006 summary report
 - 52% had a break in
 - 10% are clueless

- According to DISA in 1996
 - 65% of attacks are successful
 - 2.6% are detected

- Getting better
How much does it really cost to fix a bug?

- Cost to fix bugs is exponential per development phase
- Coupled with the exponential vulnerability release
 - Hurts business
 - Hurts schedules
 - Hurts efficiency
- Business driver for adding security early on
Hidden Cost of insecure solutions

• In 2005, study shows that average stock price drops .63%
• Highest price drop McAfee has had is $.32 or <1%

Impact of Software Vulnerability Announcements on the Market Value of Software Vendors - an Empirical Investigation by Rahul Telang and Sunil Wattal
PR and Customer Cost

• Vulnerabilities represent a Public Relations nightmare
 — Customers feel betrayed
 — Partners not responsible but held accountable
 — How do you defend the accusation that the computer is safer without your software on it?
Types of Finders

• Internal
 — Employee of the company
 — Hired security firm

• External
 — Security researcher
 — Partner
 — Knowledgeable end-user

• Hostile
 — Malware or targeted attack
Internal Finders

• Developer, architect, QA, hired security hand
• Usually can be trust worthy
 — it is their job
 — contracts
• Has several motivations
 — Curiosity
 — Prestige
 — Mission
 — Job
External Security Researcher

• Someone who finds security flaws in applications
• Unknown trust level
 — They will usually communicate their intentions
• Has several motivations
 — Money
 — Prestige
 — Curiosity
 — Mission
 — Malice
External Partner or Customer

• Business partner who is exposed to more IP
• Usually can be trustworthy
 — You are in business together
 — May not understand the full implications
• Has several motivations
 — Risk Assessment
 — Business improvement
 — Customer acquisition
 — Curiosity
Hostile Attacker and Black Market

• Someone who needs to exploit for a reason
• Completely un-trustworthy
 — They have full knowledge of what they are doing
 — Only one reason to do it
• Has several motivations
 — Money
 — Political or personal motivations
 — Prestige
What we know about the Black Market

• Increasingly being run by organized crime
 — Recruiting people out of college like agencies
 — Very adept at running a business

• Pay out well for vulnerabilities
 — Going rate of IIS6 is in the 7 figures
 — Fresh IE flaws in the tens of thousands

• Continually need fresh exploits
 — Once they are patched == useless
 — Need cheap ways to re-use old methods
 — Highly specialized
Regulations, Standards, oh-my!

• Information Security is growing up!
 — And has to deal with the pains

• New laws and standards have been established
 — Sarbanes Oxley Act (SOX)
 — Gramm-Leach-Blily Act (GLBA)
 — HIPPA
 — EU Privacy
 — ISO 17799:2005
 — Visa PCI

• Rome was not built in a day
 — They may not be perfect, but need to start somewhere
Sarbanes-Oxley Act of 2002 (SOX)

• Purpose? Prevent Corporate Fraud
• How? Holds the executives of the company personally accountable for the accuracy of their data
• Is this effective? Hell yeah!
• Punishment?
 — Fines
 — Serve time
• Why was it created?
 — Response to a string of corporate fraud cases like Tyco and Enron
Security and SOX

• The Act is huge, what sections do I need to worry about?
 — 302: Corporate Responsibility for Financial Reports
 • Outlines who is responsible for what
 • Outlines that adequate controls need to be established
 — Maintain confidentiality and integrity of data
 — Maintain accountability
 — 404: Management Assessment of Internal Controls
 • Outlines that controls need to be managed properly
 • Requires a yearly audit on established controls
 — 409: Real Time Issuer Disclosures
 • Requires the company to disclose “in a rapid and current basis” anything that the public will need to know in order to “protect investments”
 — CONSULT YOUR LAWYER!!!
How does SOX affect application security?

• Remember basic security principles (CIA + AAA)
 — Log files
 — Strong password policies
 — Secure network communication
 — Secure backup and storage
 — Session management
 — Vulnerabilities which may circumvent these

• Know who you are selling to and what it is used for
 — Several of our products have to go through a SOX compliant requirements review
Financial Modernization Act of 1999 (Gramm-Leach-Blilly Act or GLBA)

- **Purpose?** Prevent identity theft and crimes
- **How?** Placed controls around financial data
 - What data can be collected
 - What and how that data can be stored
 - What and how that data can be disclosed and shared
- **Is this effective?** Moderately
 - Still some loopholes in place to allow business to function like subsidiaries
- **Punishment?**
 - Fines
- **Why was it created?**
 - Allow financial mergers and stop the ease in which data is stolen
 - Victoria’s Secret???
GLBA side story

• So the story goes…

• Title V (consumer data privacy) proposed by Ed Markey (D-MA)
 — Opposed by financial companies (no kidding)
 — Originally opposed by others including Joe Barton (R-TX)

• Until, Joe started receiving Victoria’s Secret catalog
 — His personal information had been sold by his bank
 — Had to answer a few questions to his wife (addressed to him)
 — He changed his support
 • Apparently politicians don’t have too many personal problems with their data being sold off
Security and GLBA

• What sections to worry about
 — Title V: Privacy
 • Section 501: Protection of Nonpublic Personal Information
 — Ensure confidentiality and integrity of personal information
 • Section 502: Obligations with Respect to Disclosure of Personal Information
 — Ensure proper disclosure is followed and customer is alerted
 — Always allows for an “opt-out”
 • Section 521: Privacy Protection of Customer Information for Financial Institutions
 — Stops “pretexting”
 — Makes fraudulent requests for information illegal (social engineering)
How does GLBA affect application security?

• Openly depends on the security of the systems
 — Outside the scope of the act
• Need to worry about how financial data is:
 — Stored
 — Backed up
 — Logged
 — Transferred
• Affects all “financial institutions”
 — Be prepared for customer questions and new features
ISO/IEC 17799:2005

• Purpose? Provide an international code of practice for information security management

• How? Provides a series of best practices
 — Covers everything from physical to application security

• Is this effective? Moderately
 — Not the end-all reference people believe it is
 — Needs supporting documentation

• Punishment?
 — none

• Why was it created?
 — Effort to create an international security management standard
 — Original edition contained the City of London fire code
Application Security and the 17799:2005

• What sections to pay attention to
 — Section 10: Communications and Operations Management
 • Protection against malicious and mobile code
 • Security of network services
 • Audit logging
 — Section 11: Access Control
 • Application and information access control
 — Section 12: Information Systems Acquisition, Development, and Maintenance
 • Cryptographic controls
 • Security in development and support processes
 — Section 13: Information Security Incident Management
 • Reporting and management of security events, weaknesses, and incidents
 — Section 15: Compliance
 • Legal requirements and audit considerations
Application Security and the 17799:2005

• What it is not
 — A specific HOWTO detailing exactly what must be done
 — A legal document

• What it is
 — A set of best practices and guidelines to follow when doing one of the above
 — Example: outsourcing development, what to do?
 • Go to section 12.5.5 and read the list of things you need to take care of
 — IP rights and laws
 — Oversight
 — Contracts for quality and accuracy
 — Ability to conduct audits
 — Etc.
 — More like a shopping list or Chinese take-out menu
Visa Payment Card Industry Data Security Standard (PCI DSS or just PCI)

• Purpose? Prevent identity theft and fraud
• How? Placed controls around card data and merchant sites
 — What data can be collected and how it can be stored
 — How secure online merchant sites should be
• Is this effective? Moderately
 — Only scanned quarterly
 — Scanning vendors need to qualify annually with VISA
• Punishment?
 — Become non-compliant
• Why was it created?
 — Gesture of making online merchants more secure for customers
Application Security and PCI

• Which sections to pay attention to
 — Requirement 3+4: Protect Cardholder Data (rest/transmission)
 • Encrypting data while at rest and in motion
 • Ensure confidentiality and integrity of data
 — Requirement 6: Develop and Maintain Secure Applications
 • Must be free of common security flaws
 • OWASP top 10 (input validation…)
 — Requirement 7-9: Strong Access Controls
 • Best practices around access controls
 — Requirement 10+11: Regularly Monitor and Test
 • Must do a quarterly test and review
 — Requirement 12: Maintain a Security Policy
 • Have a plan for remediation and incident management
Application Security and PCI

• Encryption
 — Use standard libraries, DO NOT BUILD YOUR OWN!

• OWASP top 10
 — Mostly centers around input validation
 • Injection, XSS, overflows, etc.
 — Improper error handling and others
Best practices overview

1. Institute security awareness programs
2. Establish and monitor security metrics
3. Document security-relevant requirements
4. Apply security principles to design
5. Perform security analysis of requirements and design
6. Research and assess security posture of third-party software
7. Perform source-level security review
8. Identify, implement and perform security tests
9. Build operational security guide
10. Check operational security configuration
Institute security awareness

• Why security awareness training?
 — People need focused education in order to build security in
 — This can have the largest impact of all the best practices

• Program should target everyone involved
 — Product and Project Managers
 — Requirements Specifiers
 — Architects & Designers
 — Developers
 — Testers
 — Help Desk

• Program should be aligned with the technical standards and controls supporting established information security policies (e.g. coding standards)

• Program should stress accountability
Security Metrics

• Overcoming “security is a cost” mentality
 — It is possible to show a Return on Security Investment (ROSI)
 — If studies can show the usefulness of security, so can you

• Overcoming “security geek” label
 — Metrics are the “universal language” of business, use it
 — Suits might not know what a “double free” is, but they do understand
 saving the company 7 figure risk from attacks

• Getting the bigger budget, headcount, cool projects
 — Showing effectiveness and usefulness allows growth

• Alignment with business goals
 — If they understand, security can be more useful to the company
Establish and monitor metrics

• Why security metrics are important
 — Risk management
 — Measurement of effectiveness
 — Accountability
 — Guidance on compensating controls
 — Alignment with business goals
 — Compliance and regulation
 — Audits and emergency situations
Metrics should be SMART+

• Might have been around for a while, but it is true

• S - Specific
• M - Measurable
• A - Attainable
• R - Realistic
• T - Traceable
• + - Appropriate
How do you measure the un-measurable?

• How do you measure the security of an application?
 — You can measure the progress of securing it
 — You can use lessons from quantum physics and measure the effect on the environment

• It is impossible to prove that something is secure
 — Need to show that you are making progress
 — Raising the bar makes things less attractive to attackers
What should the goals be?

- The application is becoming more secure
- Developers are writing better code
- Fewer and less severe reports are coming in
- Compliance and regulations are being met
- Business goals can be established and are being met
- Deliver clear and concise timely reports to business
Showing the application is more secure

- Things that are known
 - Lines of code
 - Bugs found in code ranked by severity, probability, CVSS
 - Types of bugs found
 - How long it takes to fix the issues
 - Reported issues from customers, partners, researchers
 - Tracking these numbers over time

- What can you do with this?
 - Average defect density broken up by project, bug type, severity, and being tracked over time

- What this shows
 - How secure the application is becoming
 - Trends in fixing what type of issues and how long they take
 - Trends in classes of vulnerabilities within the organization
Showing developers are writing better code

• Things you know
 — Lines of code added by which developer
 — Which internal courses have been attended and when
 — Defects added per line of code, severity, and type (automation is your friend)
 — When audit has been completed and how many issues belong to which developer

• What can you do with this?
 — Compute errors added per line of code over time against events in time

• What this shows
 — How developer improves over time
 — How courses affect developer’s quality of code
 — How security audits affect developer’s quality of code
Showing fewer and less severe reports being made

• Things you know
 — Issues being reported in rated by type, severity
 — Issues being reported in by who
 — When audits have been completed and which bugs fixed

• What can you do with this?
 — Compute issues being reported in by who, organized by project, severity, and compared against the audits

• What this shows
 — How issues found in audit compare against issues found from researchers (are you finding what you should be finding)
 — How this occurs over time, by project and bug type
 — How long it takes to research, respond, and remediate
Compliance and regulation

• Work closely with the auditors to
 — Establish scope
 — Determine what is lacking and what is good
 — Establish a plan to reach acceptance

• Integrate with QA
 — Establish what your product needs to be compliant with
 — Create a testing plan to show compliance
 — Integrate tests with QA to test for compliance on every release if possible

• Check up on a regular basis
 — Notice deviations
 — Review any changes in regulation or standards and how that affects your standing and current tests
Delivering timely and clear reports

• Work with other business groups to see what they do
 — Probably already established
 — Fit in with their schedule and format if possible

• Programs like Six Sigma work well
 — Establish goals on a quarterly basis
 — Establish what metrics others should be tracking
 — Create an integrated score card

• Rome was not built in a day
 — It takes time to get it right
 — Trends are going to whacky for a while as well
 — It will show results faster than you think
Conclusion

• Understanding what threats are out there
 — Where they come from
 — How to face them and expectations for the future
 — How laws and regulations need to be accounted for in projects

• Understanding best practices
 — What is out there
 — Established processes for over 6 years

• Understanding how to show progress
 — Leveraging what you know to do a better job
 — Proving things are getting better
 — Aligning with business goals
Questions?